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Abstract

This thesis addresses the problem of drowsy driver detection using com-
puter vision techniques applied to the human face. Specifically we explore
the possibility of discriminating drowsy from alert video segments using fa-
cial expressions automatically extracted from video. Several approaches were
previously proposed for the detection and prediction of drowsiness. There
has recently been increasing interest in computer vision approaches as it is
a potentially promising approach due to its non-invasive nature for detect-
ing drowsiness. Previous studies with vision based approaches detect driver
drowsiness primarily by making pre-assumptions about the relevant behavior,
focusing on blink rate, eye closure, and yawning. Here we employ machine
learning to explore, understand and exploit actual human behavior during
drowsiness episodes. We have collected two datasets including facial and head
movement measures. Head motion is collected through an accelerometer for
the first dataset (UYAN-1) and an automatic video based head pose detector
for the second dataset (UYAN-2). We use outputs of the automatic classifiers
of the facial action coding system (FACS) for detecting drowsiness. These
facial actions include blinking and yawn motions, as well as a number of other
facial movements. These measures are passed to a learning-based classifier
based on multinomial logistic regression. In UYAN-1 the system is able to
predict sleep and crash episodes during a driving computer game with 0.98
performance area under the receiver operator characteristic curve for across
subjects tests. This is the highest prediction rate reported to date for detect-
ing real drowsiness. Moreover, the analysis reveals new information about
human facial behavior during drowsy driving. In UYAN-2 fine discrimina-
tion of drowsy states are also explored on a separate dataset. The degree to
which individual facial action units can predict the difference between mod-
erately drowsy to acutely drowsy is studied. Signal processing techniques
and machine learning methods are employed to build a person independent
acute drowsiness detection system. Temporal dynamics are captured using a
bank of temporal filters. Individual action unit predictive power is explored
with an MLR based classifier. Best performing five action units have been
determined for a person independent system. The system is able to obtain



0.96 performance of area under the receiver operator characteristic curve for
a more challenging dataset with the combined features of the best performing
5 action units. Moreover the analysis reveals new markers for different levels
of drowsiness.

Keywords: Fatigue Detection, Driver Drowsiness Detection, Computer
Vision, Automatic Facial Expression Recognition, Machine Learning, Multi-
nomial Logistic Regression, Gabor Filters, Temporal Analysis, Iterative Fea-
ture Selection, Facial Action Coding System (FACS), Head Motion
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Özet
Bu doktora tezinde yüze uygulanan bilgisayar görü teknikleri kullanılarak

sürücüde uykululuğun sezimi problemi ele alınmıştır. Özellikle uykulu görüntü
kesitlerinin uykusuz görüntü kesitlerinden yüz ifadeleri aracılığıyla ayrıla-
bilirliği keşfedilmeye çalışılmıştır. Geçmişte uykululuğun sezimi ve tahmini
icin ceşitli yaklaşımlar önerilmiştir. Uykulu sürücü seziminde bilgisayarla
görü yaklaşımlarının umut vaad eden ve müdehaleci olmayan özellikleri son
yıllarda bu yaklaşımlara ilgiyi arttırmaktadır. Bilgisayar görü yaklaşımıyla
çalışan önceki calışmalar uykulu sürücü seziminde başlıca varsayımlar olan
göz kırpma hızı, göz kapama, ve esneme gibi uygun davranışlara odaklan-
maktadır. Burada makine öğrenme tekniklerini kullanarak uykululuk kesit-
lerinde gerçek insan davranışını araştırmayı, anlamayı ve kullanmayı hede-
flemekteyiz. Bu çalışma icin yüz ölçümleri ve baş hareketleri ölçümlerini
içeren iki veri kümesi toplanmıştır. Baş hareketi verileri ilk veri kümesinde
bir ivmeölçer cihazi ile ikinci veri kümesinde ise otomatik görüntü tabanlı
baş pozisyonu sezici yardımıyla toplanmıştır. Yüz hareket kodlama sistemi
(FACS) otomatik sınıflandırıcılarının çıktıları uykulu sürücü seziminde kul-
lanılmaktadır. Bu hareket birimleri göz kapama esneme ve de birkaç ek yüz
hareketini barındırmaktadır. Bu ölçüler öğrenme tabanlı sınıflandırıcı olan
Lojistik Bağlanım Sınıflandırıcılarına (MLR) geçirilmiştir. Sistem birinci veri
kümesi icin bir bilgisayar sürüş simülasyonu kullanan deneklerin uykulu ve
uykusuz kesitlerini kişi bağımsız testler icin ROC (Receiver Operating Char-
acteristics) eğrisi altında kalan alan hesabında 0.98 başarı elde etmiştir. Bu
uykululuğun seziminde en yüksek tahmin oranıdır. Ayrıca analiz uykululukta
insan yüz davranışı icin yeni bilgiler ortaya koymaktadır. Uykulu hallerin
ince ayrımı iki veri kümesinde araştırılmıştır. Bireysel yüz hareket birim-
lerinin ne derecede orta ve ileri dereceli uykululuk farkını tespit edebileceği
çalışılmıştır. Sinyal işleme teknikleri ve makina öğrenme yontemleri kul-
lanılarak kişi bağımsız ileri derecede uykululuk sezim sistemi kurulmustur.
Zamandaki dinamik bilgi zamansal filtre bankası kullanılarak çıkarılmıştır.
Bireysel hareket ünitelerinin tahmin gücü MLR tabanlı sınıflandırıcılar kul-
lanılarak araştırılmıstır. En iyi performansı veren beş hareket birimi insan



bağımsız bir sistem icin belirlenmiştir. Sistem 5 hareket ünitesinin öznite-
liklerini birleştiren bir sınıflandırıcı için daha zorlu bir veri kümesinde ROC
(Receiver Operating Characteristics) eğrisi altında kalan alan hesabında 0.96
başarı göstermektedir. Ayrıca analiz değişik seviyelerdeki uykululuk için yeni
belirteçler ortaya koymaktadır.

Anahtar Sozcükler : Yorgunluğun Sezimi, Sürücüde Uykululuğun Sezimi,
Bilgisayar Görü Sistemleri, Otomatik Yüz İfadeleri Tanıma Sistemi, Makina
Öğrenmesi, Lojistik Bağlanım Sınıflandırıcıları, Gabor Filtreleri, Zamansal
Analiz, Öznitelik Seçimi, Yüz Hareket Kodlama Sistemi, Baş Hareketleri
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Chapter 1

Introduction

1.1 Problem Definition
This thesis addresses the problem of drowsy driver detection using computer
vision techniques applied to the human face. Specifically we explore the
possibility of discriminating drowsy from alert video segments using facial
expressions automatically extracted from video. In order to objectively cap-
ture the richness and complexity of facial expressions, behavioral scientists
have found it necessary to develop objective coding standards. The facial
action coding system (FACS)[23] is the most widely used expression coding
system in the behavioral sciences. A human coder decomposes facial expres-
sions in terms of 46 component movements or action units which roughly
correspond to the individual facial muscle movements. FACS provides an
objective and comprehensive way to analyze all the different facial expres-
sions that a human face can make into elementary components, analogous
to decomposition of speech into phonemes. Because it is comprehensive,
FACS has proven useful for discovering facial movements that are indicative
of cognitive and affective states [22]. In this thesis facial expressions in a
video segment are extracted using an automated facial expression recogni-
tion toolbox, called Computer Expression Recognition Toolbox (CERT) [10],
that operates in real-time and is robust to the video conditions in real ap-
plications. CERT codes facial expressions in terms of 30 actions from the
facial action coding system (FACS). CERT assigns a continuous value for
each of the 30 action units it considers. These continuous values represent
the estimated intensities (muscle activations) of the action units observed in

2



that frame.
In this thesis we use the CERT system to address several questions: First

we investigate the hypothesis of whether or not automatically detected facial
behaviour is a good source of information for detecting drowsiness. If so, our
second goal is to investigate what aspects of the morphology and dynamics of
facial expressions are indicative of drowsiness. Our third goal is to understand
the possibilities and challenges of automatic drowsiness detection based on
facial expression analysis and develop classification algorithms. Finally our
fourth goal is to understand the facial expressions occurring at fine states of
drowsiness such as moderate drowsiness and acute drowsiness.

1.2 Solution Approach
The approach we take to answer this problem is as follows.

(1) Data sets are collected from subjects showing spontaneous facial ex-
pressions during the state of fatigue.

(2) We analyze the degree to which individual facial action units can
predict the difference between alert and drowsy or moderately drowsy and
acutely drowsy

(3) Temporal dynamics are captured using a bank of temporal filters.
How to extract the relevant feature set of filters for a person independent
drowsiness detector is studied.

1.3 Significance of the Problem
The US National Highway Traffic Safety Administration (NHTSA) estimates
that in the US alone approximately 100,000 crashes each year are caused pri-
marily by driver drowsiness or fatigue [36][5]. According to statistics gathered
by the federal government each year, at least 1500 people die and 40,000 peo-
ple get injured in crashes related to sleepy, fatigued or drowsy drivers in the
United States of America. These numbers are most likely an underestimate.
Unless someone witnesses or survives the crash and can testify the driver’s
condition, it is difficult to determine if the driver fell asleep[5]. In a 2003
interview with 4010 drivers in the U.S.A., 37% of the drivers reported having
nodded off while driving at some point in their lives and 29% of these drivers
reported having experienced this problem within the past year [20][32]. Sim-
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ilarly in a 2006 survey with 750 drivers in the province of Ontario, Canada,
nearly 60% of the drivers admitted driving while drowsy or fatigued at least
sometimes, and 15% reported falling asleep while driving during the past
year[32] [55]. A questionnaire study participated by 154 truck drivers to
assess the relationship between prior sleep, work and individual characteris-
tics and drowsiness found out that prior sleep aspects contributed the most
to sleepiness while driving [52]. The National Safety Traffic Board (NTSB)
concluded that 52 % of 107 single-vehicle accidents involving heavy trucks
were fatigue-related; in nearly 18 per cent of the cases, the driver admitted
to falling asleep [1].

Tiredness and fatigue can often affect a person’s driving ability long before
he/she even notices that he/she is getting tired. Fatigue related crashes are
often more severe than others because driver’s reaction times are delayed or
the drivers have failed to make any maneuvers to avoid a crash. The number
of hours spent driving has a strong correlation to the number of fatigue-
related accidents. Figure 1.1 displays the relationship between number of
hours driven and the percent of crashes related to driver fatigue [4]. A study
conducted by the Adelaide Centre for Sleep Research has shown that drivers
who have been awake for 24 hours have an equivalent driving performance
to a person who has a BAC (blood alcohol content) of 0.1 g/100ml, and is
seven times more likely to have an accident[1]. In fact, NHTSA has concluded
that drowsy driving is just as dangerous as drunk driving. Thus methods to
automatically detect drowsiness may help save many lives and contribute to
the well-being of the society.
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Figure 1.1: The figure displays the relationship between number of hours
driven and the percent of crashes related to driver fatigue [4].

Current state of the art technologies focus on behavioral cues to detect
drowsiness. Behavioral technologies detect drowsiness based on physiological
signals or computer vision methods. Brain waves, heart rate and respira-
tion rate are some of the physiological signals exploited for the detection of
drowsiness[14][38][34]. Physiological signals usually require physical contact
with the driver and may cause disturbance. Hence there has recently been
increasing interest in computer vision as it is a prominent and a non-invasive
approach for detecting drowsiness. Computer vision approaches use facial
expressions to infer drowsiness[30][58]. Previous approaches to drowsiness
detection primarily make pre-assumptions about the relevant behavior, fo-
cusing on blink rate, eye closure, and yawning [30] [48]. Here we employ
machine learning methods to explore actual human behavior during drowsi-
ness episodes. Computer vision based expression analysis systems can use
several inputs ranging from low-level inputs such as raw pixels, to higher
level inputs i.e facial action units or basic facial expressions to detect the
facial appearance changes. For drowsiness detection since large sets of data
from different subjects is not available, using higher levels of input such as
action units helps to increase the performance of the system. FACS also
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provides versatile representations of the face. FACS does not apply interpre-
tive labels to expressions but rather a description of physical changes in the
face. This enables studies of new relationships between facial movement and
internal state, such as the facial signals of stress or drowsiness[9]. Develop-
ing technologies and methods to automatically recognize internal states, like
drowsiness, from objective behavior, has a revolutionary effect in the brain
and behavioral sciences. Moreover, the problem of automatic recognition of
facial behavior from video is currently a recognized research area within the
machine perception and computer vision communities[41][40].

This thesis contributes to understand how to build better vision machines
with potential practical applications. It also helps us understand from a
computational point of view the problems that the human visual system
solves seamlessly.

.

1.4 Contributions
A common dataset of non-posed, spontaneous facial expressions during drowsi-
ness is not available for the research community. Hence for this thesis we
created our own spontaneous drowsiness dataset. Capturing spontaneous
drowsiness behavior is a challenging and laborious task. We preferred to
collect drowsiness data during midnight as it is of lesser chance to observe
drowsiness during the day. A unique dataset of spontaneous facial expressions
are collected from 20 subjects during driving in alert and drowsy conditions.
Spontaneous facial expressions have not been studied for drowsiness until
now and this is the first study that explores spontaneous facial expressions
occurring during drowsiness to our knowledge. We analyzed what aspects
of the morphology and dynamics of facial expressions are informative about
drowsiness and to what degree. Machine learning methods are developed
and evaluated for a person independent drowsiness detection system. Dif-
ferent classification and feature extraction methods are explored for a more
accurate drowsiness detector. How to detect fine states of drowsiness like
acute and moderate drowsiness is also explored in this thesis. Facial expres-
sions informative about these two states are explored. Our analysis with
this limited dataset discovered new expressions indicative of acute and mod-
erate drowsiness states. We also obtained a better performing classifier by
including features capturing temporal dynamics of facial expressions.
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1.5 Outline
In Chapter 2 we describe prior work on fatigue detection and prediction
technologies. We also introduce some of the methods employed for process-
ing the signal, developing automatic classifiers, and evaluating performance
: e.g. ROC, Adaboost, Multinomial Logistic Regression, Gabor Filters. In
Chapter 3 we describe Study I that predicts sleep versus crash episodes from
facial expressions of subjects performing a driving simulator task. We also
describe some preliminary results obtained from head movement measures.
In Chapter 4 we present the results for detecting fine states of drowsiness
like acute drowsiness and moderate drowsiness. A new dataset, UYAN-2,
has been collected for this study which consists of 11 subjects using the
driving simulator while their faces are captured with a DV Camera and the
brain dynamics and upper torso movements are measured using EEG and
Motion Capture facilities respectively. The details about the experimental
setup and the subject-wise differences in comparison with the UYAN-1 are
also presented in Chapter 4. We discuss how different signal processing ap-
proaches and machine learning methods perform on generalization to novel
subjects. The discriminative power of individual filters for predicting drowsi-
ness is studied and how to select the prominent features is analyzed in the
same chapter. Finally in Chapter 5 we present our conclusions together with
some potential topics for future work.
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Chapter 2

Background

2.1 Background on Fatigue Detection and Pre-
diction Technologies

Dinges and Mallis [18] identified 4 different categories of fatigue detection
technologies : (1) Fitness for Duty Technologies, (2) Ambulatory Alertness
Prediction Technologies, (3) Vehicle-based Performance Technologies and (4)
In-vehicle Online Operator Status technologies.

2.1.1 Fitness for Duty Technologies
The goal of fitness-for-duty technologies is to assess the vigilance or alertness
capacity of an operator before a high risk type of work such as mining or
driving is performed. Performance of the subject at a chosen task is used
as a measure to detect existing fatigue impairment. Eye hand coordination
[45] or driving simulator tasks are some of the previously used methods in
detecting fatigue using this approach. This technology is potentially useful
for measuring existing fatigue impairment [33]: an operator who fails the
chosen test task lacks the vigilance for the work. Note that even if the
operator passes the test, his/her state will change during the course of duty.
The predictive validity, the task’s predictive power of future fatigue, is still
not well established[33]: it is not known how long an operator, that passes
the test at a chosen task, will keep vigilant during work.
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2.1.2 Ambulatory Alertness Prediction Technologies
The goal of ambulatory alertness prediction technologies is to predict oper-
ator alertness/performance at different times based on interactions of sleep,
circadian rhythm, and related temporal antecedents of fatigue. Note that
these technologies are different from our work as they do not assess fitness
online as the work is performed. This technology predicts alertness using
devices that monitor sources of fatigue, such as how much sleep an operator
has obtained (via wrist activity monitor, defined below), and combine this
information with mathematical models that predict performance and fatigue
over future periods of time[33]. As an example to such a system US Army
medical researchers have developed a mathematical model to predict human
performance on the basis of prior sleep [11]. They integrated this model into
a wrist-activity monitor based sleep and performance predictor system called
”Sleep Watch”. The Sleep Watch system includes a wrist-worn piezo electric
chip activity monitor and recorder which will store up records of the wearer’s
activity and sleep obtained over several days. While this technology shows
potential to predict fatigue in operators, more data and possible fine tuning
of the models are needed before they can be fully accepted [33].

2.1.3 Vehicle-based Performance Technologies
Vehicle-based performance technologies place sensors on standard vehicle
components, e.g., steering wheel, gas pedal, and analyzes the signals sent
by these sensors to detect drowsiness [51]. Some of the previous studies use
driver steering wheel movements and steering grip as an indicator of fatigue
impairment. Microcorrections for steering are necessary for environmental
factors and the reduction in number of microcorrections to steering indi-
cate an impaired state [9]. Some car companies, Nissan[56] and Renault[7],
adopted this technology however the main problem with steering wheel input
is that it works in very limited situations [37]. Such monitors are too depen-
dent on the geometric characteristics of the road (and to a lesser extent the
kinetic characteristics of the vehicle), thus they can only function reliably on
motorways [7].

Simple systems that purport to measure fatigue through vehicle-based
performance are currently commercially available. However, their effective-
ness in terms of reliability, sensitivity and validity is uncertain (i.e. formal
validation tests either have not been undertaken or at least have not been
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made available to the scientific community) [33].
A commercial product, AAlert (AA), is a flexible rubber device that uses

motion combined with reaction time to determine whether or not the driver
is in a drowsy state. The device vibrates when a driver is tired and should
take a break from the wheel. If a driver, while driving, doesn’t move his/her
wrist for more than 15 seconds, a vibration is sent to the bracelet. To stop the
vibration, the person needs to move his/her wrist. The slower the reaction
to the vibration, the more likely it is that the driver is tired and should
take a break from the wheel. The device communicates with an RFID tag
positioned in the car and only starts detecting drowsiness when the driver is
in the car. The picture of the device is shown in Figure 2.1.

Figure 2.1: AAlert wristband driver drowsiness detection device developed
by Dan Ruffle. The device uses motion combined with reaction time to
determine whether or not the driver is in a drowsy state.
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2.1.4 In-vehicle, On-line, Operator Status Monitoring
Technologies : Behavioral Studies using Physio-
logical Signals

These techniques estimate fatigue based on physiological signals such as heart
rate variability (HRV), pulse rate, breathing and Electroencephalography
(EEG) [15][57] measures. Time series of heart beat pulse signal can be used
to calculate the heart rate variability (HRV) – the variations of beat-to-beat
intervals in the heart rate [6], and HRV has established differences between
waking and sleep stages from previous psycho-physiological studies [24][57].
The frequency domain spectral analysis of HRV shows that typical HRV in
human has three main frequency bands: high frequency band (HF) that lies
in 0.15 – 0.4 Hz, low frequency band (LF) in 0.04 – 0.15 Hz, and very low fre-
quency (VLF) in 0.0033 – 0.04 Hz [6] [57]. A number of psycho-physiological
researches have found that the LF to HF power spectral density ratio (LF/HF
ratio) decreases when a person changes from waking into drowsiness/sleep
stage, while the HF power increases associated with this status change [24]
[57].

EEG is the recording of electrical activity along the scalp produced by
the firing of neurons within the brain. In clinical contexts, EEG refers to
the brain’s spontaneous electrical activity as recorded from multiple elec-
trodes placed on the scalp. There are five major brain waves distinguished
by their different frequency ranges. These frequency bands from low to high
frequencies respectively are called alpha, theta, beta, delta and gamma. The
alpha and beta waves lie between 8-12 Hz and 12-30 Hz respectively (Berger
et al. 1929). Alpha waves tend to occur during relaxation or keeping the
eyes closed. Beta is the dominant wave representing alertness, anxiety or
active concentration. Gamma refers to the waves of above 30 Hz (Jasper
and Andrews (1938)). Gamma waves are thought to represent binding of
different populations of neurons together into a network for the purpose of
carrying out a certain cognitive or motor function[3]. The delta waves desig-
nate all frequencies between 0-4 Hz (Walter et al, 1936). Theta waves have
frequencies within the range of 4-7.5 Hz. Theta waves represent drowsiness
in adults.

In the literature power spectrum of EEG brain waves is used as a measure
to detect drowsiness [38]. It has been reported by researchers that as the
alertness level decreases EEG power of the alpha and theta bands increases
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[34]. Hence providing indicators of drowsiness. However using EEG as a
measure of drowsiness has drawbacks in terms of practicality since it requires
a person to wear an EEG cap while driving. Moreover motion related artifacts
are still an unsolved research problem.

One important problem in EEG is that it is very easy to confuse artifact
signals caused by the large muscles in the neck and jaw with the genuine delta
response [49]. This is because the muscles are near the surface of the skin
and produce large signals, whereas the signal that is of interest originates
from deep within the brain and is severely attenuated in passing through
the skull [49]. In general EEG recordings are extremely sensitive to motion
artifacts. Motion related signals are actually 3 orders of magnitude larger
than signals due to neural activity and this is still a big unsolved problem
for EEG analysis.

2.1.5 In-vehicle, On-line, Operator Status Monitoring
Technologies : Behavioral Studies using Computer
Vision Systems

Computer vision is a prominent technology in monitoring the human be-
havior. The advantage of computer vision techniques is that they are non-
invasive, and thus are more amenable to use by the general public. In recent
years machine learning applications to computer vision had a revolution-
ary effect in building automatic behavior monitoring systems. The current
technology provides us imperfect but reasonable tools to build computer vi-
sion systems that can detect and recognize the facial motion and appearance
changes occurring during drowsiness [30] [58].

Most of the published research on computer vision approaches to detec-
tion of fatigue has focused on the analysis of blinks [53]. Percent closure
(PERCLOS), which is the percentage of eyelid closure over the pupil over
time and reflects slow eyelid closures (“droops”) rather than blinks, is ana-
lyzed in many studies [16] [28]. Some of these studies used infrared cameras to
estimate the PERCLOS measure [16]. It is worth pointing out that infrared
technology for PERCLOS measurement works fairly well at night, but not
very well in daylight, because ambient sunlight reflections make it impracti-
cal to obtain retinal reflections of infrared waves[33]. Other studies used the
video frames for estimating the PERCLOS measure [50]. One example of
such commercial products is the Driver State Sensor (DSS) device developed
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by SeeingMachines [2]. DSS is a robust, automatic and nonintrusive sensor
platform that uses cutting edge face tracking techniques to deliver informa-
tion on operator fatigue and operator distraction. In cars DSS is located on
the dashboard and it uses the eyelid opening and Percent Closure (PERC-
LOS), which is the the percentage of eyelid closure over the pupil over time,
as a measure to derive the drowsiness state. A snapshot of the system is
displayed in Figure 2.2.

Figure 2.2: Driver State Sensor (DSS) device developed by SeeingMachines.
DSS uses eyelid opening as a measure to infer the drowsiness state.

Head nodding [48] and eye closure[50][48] have been studied as indicators
of fatigue but there are other facial expressions and not much is known about
facial behavior during the state of fatigue. Until now tools have not been
available to study these expressions and manual coding of facial expressions
is extremely difficult.

Computer vision has advanced to the point that scientists are now be-
ginning to apply automatic facial expression recognition systems to impor-
tant research questions in behavioral science: Lie detection, differentiating
real pain from faked pain, understanding emotions such as happiness, sur-
prise etc are all possible applications of facial expression recognition systems
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[40][8][39].
Gu & Ji [31] presented one of the first fatigue studies that incorporated

certain facial expressions other than blinks. Their study fed action unit in-
formation as an input to a dynamic Bayesian network. The network was
trained on subjects posing a state of fatigue. The video segments were clas-
sified into three stages: inattention, yawn, or falling asleep. For predicting
falling-asleep, head nods, blinks, nose wrinkles and eyelid tighteners were
used. While this was a pioneering study, its value is limited by the use
of posed expressions. Spontaneous expressions have a different brain sub-
strate than posed expressions. They also typically differ in dynamics and
morphology in that different action unit combinations occur for posed and
spontaneous expressions. In addition, as we have observed during the work,
it is very difficult for people to guess the expressions they would actually
make when drowsy or fatigued. Using spontaneous behavior for developing
and testing computer vision systems is highly important given the fact that
the spontaneous and posed expressions have very different brain substrate,
morphology and dynamics [22]

Previous approaches to drowsiness detection primarily make pre-assumptions
about the relevant behavior, focusing on blink rate, eye closure, and yawn-
ing. Here we employ machine learning methods to data-mine actual human
behavior during drowsiness episodes. The objective of this thesis is to inves-
tigate whether there are facial expression configurations or facial expression
dynamics that are predictors of fatigue and to explain methods for analyz-
ing automatic facial expression signals to effectively extract this information.
In this thesis, facial motion was analyzed automatically from video using a
fully automated facial expression analysis system based on the Facial Action
Coding System (FACS) [10]. In addition to the output of the automatic
FACS recognition system we also collected head motion data either through
an accelerometer placed on the subject’s head, or a computer vision-based
head pose tracking system, as well as steering wheel data.

Computer vision based expression analysis systems can use several inputs
ranging from low-level inputs such as raw pixels to higher level inputs i.e fa-
cial action units or basic facial expressions to detect the facial appearance
changes. For special purpose systems designed to detect only a particular ex-
pression or a particular state it may be beneficial to avoid intermediate repre-
sentations such as FACS, provide a large database is available. For example
Whitehill et. al presents a smile analyzer system [54] that can discern smiles
from non-smiles by training the system with a set of 20,000 different subject’s
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face data. The system is able to detect smile versus non-smiles with a high
performance. On the other hand when the dataset is relatively small, it may
be beneficial to use systems that provided a rich intermediate representation,
such as FACS codes. In addition the use of a FACS based representation has
the advantage of being anatomically interpretable. For drowsiness detection
large sets of data from different subjects is not available as capturing sponta-
neous drowsiness behavior is a challenging and laborious task. Hence using
higher levels of input such as action units might increase the performance of
the system. FACS also provides versatile representations of the face. Thus
for all the above reasons action unit outputs from CERT[10], which is a user
independent fully automatic system for real time recognition of facial actions
from the Facial Action Coding System (FACS), is used as an input to the
automated drowsiness detector.

2.1.5.1 Facial Action Coding System

The facial action coding system (FACS) [23] is one of the most widely used
methods for coding facial expressions in the behavioral sciences. The sys-
tem describes facial expressions in terms of 46 component movements, which
roughly correspond to the individual facial muscle movements. An example
is shown in Figure 2.3. FACS provides an objective and comprehensive way
to analyze expressions into elementary components, analogous to decomposi-
tion of speech into phonemes. Because it is comprehensive, FACS has proven
useful for discovering facial movements that are indicative of cognitive and
affective states. See Ekman and Rosenberg (2005) [22] for a review of facial
expression studies using FACS. The primary limitation to the widespread use
of FACS is the time required to code. FACS was developed for coding by
hand, using human experts. It takes over 100 hours of training to become
proficient in FACS, and it takes approximately 2 hours for human experts
to code each minute of video. Researchers have been developing methods
for fully automating the facial action coding system [10][19]. In this thesis
we apply a computer vision system trained to automatically detect FACS to
data mine facial behavior under driver fatigue.

15



Figure 2.3: Example facial action decomposition from the Facial Action Cod-
ing System [23].

2.1.5.2 Spontaneous Expressions

The machine learning system presented in this thesis was trained on sponta-
neous facial expressions. The importance of using spontaneous behavior for
developing and testing computer vision systems becomes apparent when we
examine the neurological substrate for facial expression. There are two dis-
tinct neural pathways that mediate facial expressions, each one originating
in a different area of the brain. Volitional facial movements originate in the
cortical motor strip, whereas spontaneous facial expressions originate in the
sub-cortical areas of the brain (see [47], for a review). These two pathways
have different patterns of innervation on the face, with the cortical system
tending to give stronger innervation to certain muscles primarily in the lower
face, while the sub-cortical system tends to more strongly innervate muscles
primarily in the upper face [42]. The facial expressions mediated by these two
pathways have differences both in which facial muscles are moved and in their
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dynamics [21][22]. Subcortically initiated facial expressions (the spontaneous
group) are characterized by synchronized, smooth, symmetrical, consistent,
and reflex-like facial muscle movements whereas cortically initiated facial ex-
pressions (posed expressions) are subject to volitional real-time control and
tend to be less smooth, with more variable dynamics [47]. Given the two
different neural pathways for facial expressions, it is reasonable to expect to
find differences between genuine and posed expressions of states such as pain
or drowsiness. Moreover, it is crucial that the computer vision model for de-
tecting states such as genuine pain or driver drowsiness be based on machine
learning of expression samples when the subject is actually experiencing the
state in question. It is very difficult for people to imagine and produce the
expressions they would actually make when they are tired or drowsy.

2.1.5.3 The Computer Expression Recognition Toolbox (CERT)

This study uses the output of CERT as an intermediate representation to
study fatigue and drowsiness. CERT, developed by researchers at Machine
Perception Laboratory UCSD [10], is a user independent fully automatic sys-
tem for real time recognition of facial actions from the Facial Action Coding
System (FACS). The system automatically detects frontal faces in the video
stream and codes each frame with respect to 20 Action units. An overview
of the system can be found in Figure 2.4.

Figure 2.4: Overview of fully automated facial action coding system
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Real Time Face and Feature Detection CERT uses a real-time face
detection system that uses boosting techniques in a generative framework
(Fasel et al.) and extends work by Viola and Jones (2001). Enhance-
ments to Viola and Jones include employing Gentleboost instead of Ad-
aBoost, smart feature search, and a novel cascade training procedure, com-
bined in a generative framework. Source code for the face detector is freely
available at http://kolmogorov.sourceforge.net. Accuracy on the CMU-MIT
dataset, a standard public data set for benchmarking frontal face detection
systems (Schneiderman & Kanade, 1998), is 90% detections and 1/million
false alarms, which is state-of-the-art accuracy. The CMU test set has uncon-
strained lighting and background. With controlled lighting and background,
such as the facial expression data employed here, detection accuracy is much
higher. The system presently operates at 24 frames/second on a 3 GHz Pen-
tium IV for 320x240 images. The automatically located faces are rescaled to
96x96 pixels. The typical distance between the centers of the eyes is roughly
48 pixels. Automatic eye detection [26](Fasel et al., 2005) is employed to
align the eyes in each image. In the CERT system the images are then
passed to a filtering stage through a bank of 72 Gabor filters 8 orientations
and 9 spatial frequencies (2:32 pixels per cycle at 1/2 octave steps). Output
magnitudes are then passed to the action unit classifiers.

Automatic Facial Action Classification The AU classifiers in the CERT
system were trained using three posed datasets and one dataset of sponta-
neous expressions. The facial expressions in each dataset were FACS coded
by certified FACS coders. The first posed dataset was the Cohn- Kanade
DFAT-504 dataset [35] (Kanade, Cohn & Tian, 2000). This dataset consists
of 100 university students who were instructed by an experimenter to perform
a series of 23 facial displays, including expressions of seven basic emotions.
The second posed dataset consisted of directed facial actions from 24 sub-
jects collected by Ekman and Hager. Subjects were instructed by a FACS
expert on the display of individual facial actions and action combinations,
and they practiced with a mirror. The resulting video was verified for AU
content by two certified FACS coders. The third posed dataset consisted of
a subset of 50 videos from 20 subjects from the MMI database (Pantic et
al., 2005). The spontaneous expression dataset consisted of the FACS-101
dataset collected by Mark Frank (Bartlett et. al. 2006). 33 subjects under-
went an interview about political opinions on which they felt strongly. Two
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minutes of each subject were FACS coded. The total training set consisted
of posed databases and 3000 from the spontaneous set.

Twenty linear Support Vector Machines were trained for each of 20 facial
actions. Separate binary classifiers, one for each action, were trained to detect
the presence of the action in a one versus all manner. Positive examples
consisted of the apex frame for the target AU. Negative examples consisted
of all apex frames that did not contain the target AU plus neutral images
obtained from the first frame of each sequence. Eighteen of the detectors were
for individual action units, and two of the detectors were for specific brow
region combinations: fear brow (1+2+4) and distress brow (1 alone or 1+4).
All other detectors were trained to detect the presence of the target action
regardless of co-occurring actions. A list is shown in Table 1A. Thirteen
additional AU’s were trained for the Driver Fatigue Study. These are shown
in Table 1B.

In general the output of a classifier is thought as discrete, rather than
real-valued. Here the output of the system is the distance to the separating
hyperplane of an SVM classifier. The distance is a real number representing
the output of an AU classifier. Previous work showed that the distance to the
separating hyperplane (the margin) contained information about action unit
intensity [10](e.g. Bartlett et al., 2006). A vector of real-valued numbers is
output by the system each number representing the output of an AU classifier.

In this thesis we will be using the output of CERT as our basic repre-
sentation of facial behavior. Classifiers will be built on top of the CERT
output to investigate which facial expressions and facial expression dynamics
are informative of driver drowsiness.

2.2 Background on Machine Learning Techniques
Here we will give a brief introduction to machine learning concepts that have
been used for the context of this thesis.

2.2.1 System Evaluation : Receiver operating charac-
teristic (ROC)

In signal detection theory, a receiver operating characteristic (ROC), or sim-
ply ROC curve, is a graphical plot of the sensitivity vs. (1 - specificity) for
a binary classifier system as its discrimination threshold is varied [29]. In
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this thesis, area under the ROC curve (A’) used to assess performance most
frequently rather than overall percent correct, since percent correct can be
an unreliable measure of performance, as it depends on the proportion of
targets to non-targets, and also on the decision threshold. Notice that A’
will refer to the area under the ROC curve for the context of the thesis. Sim-
ilarly, other statistics such as true positive and false positive rates depend on
decision threshold, which can complicate comparisons across systems. The
ROC curve is obtained by plotting true positives against false positives as
the decision threshold shifts from 0 to 100% detections. The area under the
ROC (A’) ranges from 0.5 (chance) to 1 (perfect discrimination). Figure 2.5
shows the true positive rate (TPR) and false positive rate (FPR) for positive
and negative instances for a certain threshold. The figure also shows a plot
for the ROC curve. A’ is equivalent to the theoretical maximum percent
correct achievable with the information provided by the system when using a
2-Alternative Forced Choice testing and paradigm [13]. 2-Alternative Forced
Choice (abbreviated to 2AFC) testing is a psycho-physical method for elicit-
ing responses from a person about his or her experiences of a stimulus. For
example, a researcher might want to decide on every trial which of two lo-
cations A or B contains the stimulus [25]. On any trial, the stimulus might
be presented at location A or location B. The subject then has to choose
whether the stimulus appeared in location A or B. The subject is allowed
only to choose two of these locations; he or she is not allowed to say "Not
sure", or "I don’t know". Thus the subject’s choice is forced in this sense.
The area below an ROC curve corresponds to the fraction of correct decisions
in a two-alternative forced choice task. For this thesis we will use the term
“A”’ to refer to the area under the response operating curve.
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Figure 2.5: The true positive rate (TPR) and false positive rate (FPR) of
positive and negative instances for a certain threshold. ROC plot is obtained
by plotting true positives against false positives as the decision threshold
shifts from 0 to 100% detections.

2.2.2 Signal Processing
2.2.2.1 Gabor Filter

A Gabor filter is a linear filter whose impulse response is defined by a complex
sinusoid multiplied by a Gaussian function [43]. In this thesis, we use two
different types for Gabor Filters. Spatial Gabor filters are used by the CERT
system to extract features from images to detect facial action units. A bank
of 72 Gabor filters 8 orientations and 9 spatial frequencies (2:32 pixels per
cycle at 1/2 octave steps) are employed for filtering face images. Output
magnitudes are then passed to the action unit classifiers. In this thesis we are
employing temporal Gabor filters to analyze the temporal patterns of action
units. A set of complex Gabor [17] filters is used for analyzing temporal
patterns of action unit signals. Gabor filters can serve as excellent band-pass
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filters for uni-dimensional signals (e.g., speech). Uni-dimensional temporal
Gabor Filters are employed for capturing temporal properties of the action
unit signals for detecting drowsiness. A complex Gabor filter is defined as
the product of a Gaussian kernel times a complex sinusoid, i.e.

g(t) = kejθw(at)s(t) (2.1)

where

w(t) = e−πt2 (2.2)

s(t) = ej2πfot (2.3)

ejθs(t)ej2πfot+θ = (sin(2πfot + θ), jcos(2πfot + θ)) (2.4)

Here a, k, θ, fo are filter parameters that correspond to a bandwidth, ampli-
tude constant, phase and peak frequency respectively. We can think of the
complex Gabor filter as two out-of-phase filters conveniently allocated in the
real and complex part of a complex function, the real part holds the filter in
equation 5[43].

gr(t) = w(t)sin(2πfot + θ) (2.5)

and the imaginary part holds the filter

gi(t) = w(t)cos(2πfot + θ) (2.6)

Frequency Response

Frequency response is obtained by taking the Fourier Transform,

ĝ(f) = kejθ
∫ ∞

−∞
e−j2πftw(at)s(t) dt = kejθ

∫ ∞

−∞
e−j2π(f−fo)tw(at)dt (2.7)

=
k

a
ejθŵ(

f − fo

a
) (2.8)

where

ŵ(f) = F{w(t)} = e−πf2 (2.9)
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Gabor Energy Filters

The real and imaginary components of a complex Gabor filter are phase
sensitive, i.e., as a consequence their response to a sinusoid is another sinusoid
[43]. By getting the magnitude of the output (square root of the sum of
squared real and imaginary outputs) we can get a response that is phase
insensitive and thus gives unmodulated positive response to a target sinusoid
input . In some cases it is useful to compute the overall output of the two
out-of-phase filters. One common way of doing so is to add the squared
output (the energy) of each filter, equivalently we can get the magnitude.
This corresponds to the magnitude (more precisely the squared magnitude)
of the complex Gabor filter output. In the frequency domain, the magnitude
of the response to a particular frequency is simply the magnitude of the
complex Fourier transform, i.e.

‖g(f)‖ =
k

a
ŵ(

f − fo

a
) (2.10)

Note this is a Gaussian function centered at fo and with width proportional
to a.

Bandwidth and Peak Response

Thus the peak filter response is at fo. To get the half-magnitude bandwidth
∆f note

ŵ(
f − fo

a
) = e−π f−fo

a2 = 0.5 (2.11)

Thus the half peak magnitude is achieved for

f − fo ±
√

a2 log 2π = 0.4697a ≈ 0.5a (2.12)

Thus the half-magnitude bandwidth is (2)(0.4697)a which is approxi-
mately equal to a. Thus a can be interpreted as the half-magnitude filter
bandwidth.

2.2.3 Adaboost
AdaBoost calls a weak classifier repeatedly in a series of rounds . For each call
a distribution of weights is updated such that it indicates the importance of
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examples in the data set for the classification. On each round, the weights of
each incorrectly classified example are increased (or alternatively, the weights
of each correctly classified example are decreased), so that the new classifier
focuses more on those examples. It is shown that Adaboost can be interpreted
as a method of sequential maximum likelihood estimation [27].

In this thesis AdaBoost is used only for within subject drowsiness pre-
diction of the UYAN-1 dataset. For this study AdaBoost selected the facial
action detector among a set of 30 Facial Action units that minimized the
training error. Since multinomial logistic regression (MLR) obtained better
performance MLR was employed for the rest of the thesis.

2.2.4 Support Vector Machines (SVM)
Support vector machines (SVMs) [12] are supervised learning methods used
for classification and regression. Viewing input data as two sets of vectors
in an n-dimensional space, an SVM will construct a separating hyperplane
in that space, one which maximizes the margin between the two data sets.
To calculate the margin, two parallel hyperplanes are constructed, one on
each side of the separating hyperplane, that maximixes the minimum dis-
tance from the hyperplane to the closest training point. Intuitively, a good
separation is achieved by the hyperplane that has the largest distance to the
neighboring datapoints of both classes, since in general the larger the margin
the lower the generalization error of the classifier. In this thesis Support Vec-
tor Machines are used by the CERT system as a classifier for determining the
action unit intensity value. In general the output of a classifier is thought
as discrete, rather than real-valued. Here the output of the system is the
distance to the separating hyperplane of an SVM classifier. The distance is
a real number representing the output of an AU classifier.

2.2.5 Multinomial Logistic Regression (MLR)
In statistics, logistic regression is used for prediction of the probability of
occurrence of an event by fitting data to a logistic curve. Multinomial logistic
regression (MLR) is an extension of logistic regression with two or more
classes. Our goal is to train a well defined model based on examples of
input-output pairs. For this thesis we use MLR with two classes (drowsy
and alert) of dependents. The inputs to MLR are n-dimensional vectors and
the outputs are 2-dimensional vectors representing drowsy and alert classes.
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The training samples consist of m input output pairs. We organize the
example inputs as an m× n matrix x. The corresponding example outputs
are organized as a 2×m matrix y. The rows in y matrix add up to 1. For
example for a given training sample the first row may have the value of 0
and the second row has the value of 1 for a drowsy sample or vice verse for
an alert sample. The MLR makes predictions h(ŷ) where h is defined in
equation 2.15 and ŷ is a linear transformation of the data ŷ= θx, and θ is
a 2× n weight matrix.

The optimality of ŷ, and thus of θ, is evaluated using the following cri-
terion in L2 regularization norm [44]. L2 imposes a Gaussian prior over the
weights and forces the weights to be small.

Φ(θ) = −
m∑

j=1

ρ(yj, ŷj) +
α

2

2∑

k=1

θT
k θk (2.13)

Informally in the above formula, the first term can be seen as a negative
log-likelihood function, capturing the degree of match between the data and
the model, the second term can be interpreted as a negative log prior over θ
[44].

ρ(yj, ŷj) =
2∑

k=1

yjk log hk(ŷj) (2.14)

where
hk(ŷj) =

eŷjk

∑2
i=1 eŷji

(2.15)

Newton Raphson algorithm is employed to minimize Φ [44]. There are
many possible solutions to θ, we choose the one for which the last row is
all zeros. For this thesis MLR training algorithm was used with different
L2 regularization parameters (weight decay parameter). Once the model is
trained and the weight vector is found the weighted data, ŷj1 =

∑n
l=1 θ1lxjl,

is used as a measure to estimate the area under the ROC curve A’ for the
two classes.
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Chapter 3

Study I : Detecting Drowsiness

The goal in this study is to investigate whether or not automatically detected
facial behaviour is a reliable source of information for detecting drowsiness.
We employ machine learning methods to datamine actual human behavior
during drowsiness episodes. Automatic classifiers for 30 facial actions from
the Facial Action Coding system were passed to classifiers such as Adaboost
and Multinomial Logistic Regression(MLR). A block diagram of the system
is shown in Figure 3.1. The system was able to predict sleep and crash
episodes during a driving computer game with 98% accuracy across subjects.
Moreover, the analysis revealed new information about human facial behavior
during drowsy driving.

Figure 3.1: Outline of the Fatigue Detection System
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3.1 UYAN-1 Dataset
Subjects were asked to drive a virtual car simulator. The simulator displayed
the driver’s view of a car through a computer terminal. The interface with
the simulator was a steering wheel 1 and an open source multi-platform video
game2 (See Figure 3.2). The windows version of the video game was main-
tained such that at random times, a wind effect was applied that dragged the
car to the right or left, forcing the subject to correct the position of the car.
This type of manipulation had been found in the past to increase fatigue [46].
Driving speed was held constant. Four subjects performed the driving task
over a three hour period beginning at midnight. During this time subjects fell
asleep multiple times thus crashing their vehicles. Episodes in which the car
left the road (crash) were recorded. Video of the subjects face was recorded
using a DV camera for the entire 3 hour session. Subject data was parti-
tioned into drowsy (non-alert) and alert states as follows. The one minute
preceding a sleep episode or a crash was identified as a non-alert state. There
was a mean of 24 non-alert episodes per subject with a minimum of 9 and
a maximum of 35. Fourteen alert segments for each subject were collected
from the first 20 minutes of the driving task.3

3.2 Head movement measures
Head movement was measured using an accelerometer that has three one
dimensional accelerometers mounted at right angles measuring accelerations
in the range of 5g to +5g where g represents earth gravitational force. A
preliminary analysis of the correlation between head movement measure and
the steering signal is employed.

3.3 Facial Action Classifiers
In this chapter we investigate whether there are action units that are predic-
tive of the levels of drowsiness observed prior to the subjects falling sleep.

1ThrustMaster steering wheel
2Torcs
3Several of the drivers became drowsy very quickly which prevented extraction of more

alert segments.
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Figure 3.2: Driving simulation task
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In Chapter 2 a computer expression recognition toolbox, named CERT,
is presented for fully automated detection of facial actions from the facial
action coding system [10]. Previously for 20 facial action units, a mean of
93% correct detection under controlled posed conditions, and 75% correct
for less controlled spontaneous expressions with head movements and speech
was reported for CERT.

For this study an improved version of CERT is used which was retrained
on a larger dataset of spontaneous as well as posed examples. In addition,
the system was trained to detect an additional 11 facial actions for a total
of 31 (See Table 3.1 ). The facial action set includes blink (action unit 45),
as well as facial actions involved in yawning (action units 26 and 27). The
selection of this set of 31 out of 46 total facial actions was based on the
availability of labeled training data. Figure 3.3 shows sample facial actions
from the Facial Action Coding System incorporated in CERT.
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Table 3.1: Full set of action units used for predicting drowsiness in Study I
AU Name
1 Inner Brow Raise
2 Outer Brow Raise
4 Brow Lowerer
5 Upper Lid Raise
6 Cheek Raise
7 Lids Tight
8 Lip Toward
9 Nose Wrinkle
10 Upper Lip Raiser
11 Nasolabial Furrow Deepener
12 Lip Corner Puller
13 Sharp Lip Puller
14 Dimpler
15 Lip Corner Depressor
16 Lower Lip Depress
17 Chin Raise
18 Lip Pucker
19 Tongue show
20 Lip Stretch
22 Lip Funneller
23 Lip Tightener
24 Lip Presser
25 Lips Part
26 Jaw Drop
27 Mouth Stretch
28 Lips Suck
30 Jaw Sideways
32 Bite
38 Nostril Dilate
39 Nostril Compress
45 Eye Closure
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Figure 3.3: An Improved version of CERT is used for this study. The figure
displays the sample facial actions from the Facial Action Coding System
incorporated in CERT

3.4 Facial action signals
Our initial analysis focused on drowsiness prediction within-subjects. The
output of the facial action detector consisted of a continuous value for each
frame which was the distance to the separating hyperplane, i.e., the margin.
Histograms for two of the action units in alert and non-alert states for two
different subjects are shown in Figure 3.4. ROC curve was obtained by
plotting false positive versus true positive rate for the intensity of an action
unit for a subject. The area under the ROC (A’) was computed for the
outputs of each facial action detector to see to what degree the alert and
non-alert output distributions were separated for all possible thresholds. The
A’ measure is derived from signal detection theory and characterizes the
discriminative capacity of the signal, independent of decision threshold. Area
under the ROC A’, as discussed in the previous chapter, can be interpreted
as equivalent to the theoretical maximum percent correct achievable with
the information provided by the system when using a 2-Alternative Forced
Choice testing paradigm. Table 3.2 shows the actions with the highest A’
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for each subject. As expected, the blink/eye closure measure was overall the
most discriminative for most subjects. However note that for Subject 2, the
outer brow raise (Action Unit 2) was the most discriminative.

Figure 3.4: Histograms for blink and Action Unit 2 in alert and non-alert
states. A’ is area under the ROC.
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Table 3.2: The top 5 most discriminant action units for discriminating alert
from non-alert states for each of the four subjects. A’ is area under the ROC
curve.

AU Name A’
Subj1 45 Blink .94

17 Chin Raise .85
30 Jaw sideways .84
7 Lid tighten .81
39 Nostril compress .79

Subj2 2 Outer brow raise .91
45 Blink .80
17 Chin Raise .76
15 Lip corner depress .76
11 Nasolabial furrow .76

Subj3 45 Blink .86
9 Nose wrinkle .78
25 Lips part .78
1 Inner brow raise .74
20 Lip stretch .73

Subj4 45 Blink .90
4 Brow lower .81
15 Lip corner depress .81
7 Lid tighten .80
39 Nostril Compress .74
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3.5 Drowsiness prediction
The facial action outputs were passed to a classifier for predicting drowsiness
based on the automatically detected facial behavior. Two learning-based clas-
sifiers, Adaboost and multinomial logistic regression are compared. Within-
subject prediction of drowsiness and across-subject (subject independent)
prediction of drowsiness were both tested.

3.5.1 Within subject drowsiness prediction.

For the within-subject prediction, 80% of the alert and non-alert episodes
were used for training and the other 20% were reserved for testing. This
resulted in a mean of 19 non-alert and 11 alert episodes for training, and 5
non-alert and 3 alert episodes for testing per subject.

The features for the Adaboost classifier consisted of each of the 30 Facial
Action units of each frame of video. The classifier was trained to predict alert
or non-alert from each frame of video. There was a mean of 43,200 training
samples, (24 + 11) × 60 × 30, and 1440 testing samples, (5 + 3) × 60 × 30,
for each subject. On each training iteration, Adaboost selected the facial
action detector that minimized prediction error given the previously selected
detectors. Adaboost obtained 92% correct accuracy for predicting driver
drowsiness based on the facial behavior.

Classification with Adaboost was compared to that using multinomial
logistic regression (MLR). Performance with MLR was slightly better, ob-
taining 94% correct prediction of drowsy states. The facial actions that were
most highly weighted by MLR also tended to be the facial actions selected by
Adaboost. 85% of the top ten facial actions as weighted by MLR were among
the first 10 facial actions to be selected by Adaboost. Table 3.3 shows the
within subject drowsiness prediction performances for Adaboost and MLR.
Means and standard deviations in this table are shown across subjects. For
the rest of the study we continued with MLR for the classification task.
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Table 3.3: Performance for drowsiness prediction, within subjects. Means
and standard deviations are shown across subjects.

Classifier Percent Correct Hit Rate False Alarm Rate
Adaboost .92 ±.03 .92±.01 .06±.1
MLR .94 ±.02 .98±.02 .13±.02

3.5.2 Across subject drowsiness prediction.

The ability to predict drowsiness in novel subjects was tested by using a
leave-one-out cross validation procedure. The data for each subject was first
normalized to zero-mean and unit standard deviation before training the clas-
sifier. MLR was trained to predict drowsiness from the AU outputs several
ways. Performance was evaluated in terms of area under the ROC. For all
of the novel subject analysis, the MLR output for each feature was summed
over a temporal window of 12 seconds (360 frames) before computing A’.
MLR trained on all features obtained an A’ of .90 for predicting drowsiness
in novel subjects.

Action Unit Predictiveness: In order to understand the action unit
predictiveness in drowsiness MLR was trained on framewise outputs of each
facial action individually. Examination of the A’ for each action unit reveals
the degree to which each facial movement is associated with drowsiness in
this study. The A’s for the drowsy and alert states are shown in Table 3.4.
Performance was evaluated in terms of area under the ROC. For all of the
novel subject analysis, the MLR output for each feature was summed over
a temporal window of 12 seconds (360 frames) before computing A’. Cross
validation was performed with with MLR trained on 3 subjects and tested
on 1 subject at a time. The average of the five facial actions that were the
most predictive of drowsiness by increasing in drowsy states were 45, 2 (outer
brow raise), 15 (frown), 17 (chin raise), and 9 (nose wrinkle). The five actions
that were the most predictive of drowsiness by decreasing in drowsy states
were 12 (smile), 7 (lid tighten), 39 (nostril compress), 4 (brow lower), and
26 (jaw drop). The high predictive ability of the blink/eye closure measure
was expected. However the predictability of the outer brow raise (AU 2) was
previously unknown.
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Table 3.4: MLR model for predicting drowsiness across subjects. Predictive
performance of each facial action individually is shown.

More when critically drowsy
AU Name A’
45 Blink/eye closure 0.94
2 Outer Brow Raise 0.81
15 Lip Corner Depressor 0.80
17 Chin Raiser 0.79
9 Nose wrinkle 0.78
30 Jaw sideways 0.76
20 Lip stretch 0.74
11 Nasolabial furrow 0.71
14 Dimpler 0.71
1 Inner brow raise 0.68
10 Upper Lip Raise 0.67
27 Mouth Stretch 0.66
18 Lip Pucker 0.66
22 Lip funneler 0.64
24 Lip presser 0.64
19 Tongue show 0.61
Less when critically drowsy
AU Name A’
12 Smile 0.87
7 Lid tighten 0.86
39 Nostril Compress 0.79
4 Brow lower 0.79
26 Jaw Drop 0.77
6 Cheek raise 0.73
38 Nostril Dilate 0.72
23 Lip tighten 0.67
8 Lips toward 0.67
5 Upper lid raise 0.65
16 Lower lip depress 0.64
32 Bite 0.63

We observed during this study that many subjects raised their eyebrows
in an attempt to keep their eyes open, and the strong association of the AU
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2 detector is consistent with that observation. Also of note is that action 26,
jaw drop, which occurs during yawning, actually occurred less often in the
critical 60 seconds prior to a crash. This study suggests the prediction that
yawning does not tend to occur in the final moments before falling asleep.

Finally, a new MLR classifier was trained using a sequential feature se-
lection approach, starting with the most discriminative feature (AU 45), and
then iteratively adding the next most discriminative feature given the fea-
tures already selected. These features are shown at the bottom of Table 3.5.
Best performance of .98 was obtained with five features: 45, 2, 19 (tongue
show), 26 (jaw drop), and 15. This five feature model outperformed the
MLR trained on all features. Note that using all features did not improve
the performance.

Table 3.5: Drowsiness detection performance for novel subjects, using an
MLR classifier with different feature combinations. The weighted features
are summed over 12 seconds before computing A’.

Feature A’
AU45 .9468
AU45,AU2 .9614
AU45,AU2,AU19 .9693
AU45,AU2,AU19,AU26 .9776
AU45,AU2,AU19,AU26,AU15 .9792
all the features .8954

Effect of Temporal Window Length: We next examined the effect
of the size of the temporal window on performance. The five feature model
was employed for this analysis. The performances shown to this point in
this chapter were for temporal windows of one frame, with the exception of
the novel subject analysis (Tables 3.4 and 3.5), which employed a temporal
window of 12 seconds. The MLR output in the 5 feature model was summed
over windows of N seconds, where N ranged from 0.5 to 60 seconds. Figure 3.5
shows the area under the ROC for drowsiness detection in novel subjects over
time periods. Performance saturates at about 0.99 as the window size exceeds
30 seconds. In other words, given a 30 second video segment the system can
discriminate sleepy versus non-sleepy segments with 0.99 accuracy across
subjects.
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Figure 3.5: Performance for drowsiness detection in novel subjects over tem-
poral window sizes.

3.6 Coupling of Steering and Head Motion
Observation of the subjects during drowsy and nondrowsy states indicated
that the subjects head motion differed substantially when alert versus when
the driver was about to fall asleep. Here the accelerometer’s z axis is aligned
with the gravitational force and the subject’s face is looking towards the y
direction of the accelerometer. Thus roll is measured as the accelerometer’s
measure in the x direction (roll direction). Surprisingly, head motion in-
creased as the driver became drowsy, with large roll motion coupled with the
steering motion as the driver became drowsy. Just before falling asleep, the
head would become still.

We also investigated the coupling of the head and arm motions. Steering
wheel motion is measured as a continuous value ranging between (-1,+1)
corresponding to angular values (-pi,0). Correlations between head motion
as measured by the roll dimension ( of the accelerometer output and the
steering wheel motion are shown in Figure 3.6. For this subject (subject
2), the correlation between head motion and steering increased from 0.33 in
the alert state to 0.71 in the non-alert state. For subject 1, the correlation
between head motion and steering similarly increased from 0.24 in the alert
state to 0.43 in the non-alert state. The other two subjects showed a smaller
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coupling effect. Future work includes combining the head motion measures
and steering correlations with the facial movement measures in the predictive
model. Next chapter describes a predictive model that also includes head
movement measures combined with the other action units.

Figure 3.6: Head motion and steering position for 60 seconds in an alert state
(left) and 60 seconds prior to a crash (right). Head motion is the output of
the roll dimension of the accelerometer.

3.7 Coupling of eye openness and eyebrow raise.
We observed that for some of the subjects coupling between eye brow raise
and eye openness increased in the drowsy state. In other words subjects tried
to open their eyes using their eyebrows in an attempt to keep awake. See
Figure 3.7.
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Figure 3.7: Action Unit Intensities for Eye Openness (red/black) and Eye
Brow Raises (AU2) (Blue/gray) for 10 seconds in an alert state (left) and 10
seconds prior to a crash (right).

3.8 Conclusion
This chapter presented a system for automatic detection of driver drowsiness
from video. A system for automatically measuring facial expressions was
employed to explore spontaneous behavior during real drowsiness episodes.
This is the first work to our knowledge to reveal significant associations
between facial expression and fatigue beyond eyeblinks. The project also
revealed a potential association between head roll and driver drowsiness, and
the coupling of head roll with steering motion during drowsiness. Of note is
that a behavior that is often assumed to be predictive of drowsiness, yawn,
was in fact a negative predictor of the 60-second window prior to a crash.
It appears that in the moments before falling asleep, drivers yawn less, not
more, often. The pilot study reveals that facial expression information is
This highlights the importance of using examples of fatigue and drowsiness
conditions in which subjects actually fall sleep.
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Chapter 4

Study II : Fine Discrimination of
Fatigue States

In this chapter we explore the fine discrimination of fatigue states using
facial expressions automatically extracted from video. We discriminate mod-
erate drowsiness from acute drowsiness in the UYAN-2 dataset. In particular
the degree to which individual facial action units can predict the difference
between moderately drowsy to acutely drowsy is studied. Signal process-
ing techniques and machine learning methods are employed on the UYAN-2
dataset to build a person independent acute drowsiness detection system.
Temporal dynamics are captured using a bank of temporal filters. How to
extract the prominent set of features for individual action units is analyzed.
A person independent acute drowsiness detector was built by selecting and
combining relevant features of all the action units.

For this study in order to increase the set of subjects for drowsiness and
to expand the drowsiness measures a new dataset is collected. In this chap-
ter we describe the “UYAN-2” dataset which consists of 11 subjects using
the driving simulator while their faces are captured with a DV Camera and
the brain dynamics and upper torso movements are measured through EEG
and Motion Capture facilities respectively. Prior to the collection of 11 sub-
jects an additional 6 subject data were collected under different illumination
conditions. However these subjects are not included in the dataset as the il-
lumination was not sufficient for the CERT system to operate. In the future
low-lighting conditions can be explored using near infra-red (NIR) technol-
ogy. The UYAN-2 dataset differs from the UYAN-1 dataset in two ways: (1)
It is a larger dataset (2) It includes an expanded set of measures including
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brain dynamics (EEG), upper torso and head movements through a motion
capture. The head movement measures are also captured using a computer
vision based head tracking system.

4.1 UYAN-2 Dataset

4.1.1 Experimental Setup
Subjects were asked to drive a virtual car simulator on a Windows machine
using a steering wheel and an open source multi-platform video game. Same
experimental setup is being used as in UYAN-1 dataset with the following
differences: Subjects arrived at the motion capture and brain dynamics lab
at 11:00 pm. Preparation of the EEG and motion capture setup took over
an hour. Eleven subjects performed the driving task beginning at 12:30 am
over a three hour period.

For the “UYAN-2” dataset brainwaves were measured through an EEG
facility 1 that records 64 channels of brainwaves with a rate of 512 Hz. Upper
torso and head movements are measured through a Motion Capture facility.
In order to measure body and head movements subjects wear an led sensor
affixed jacket and a head band. The the led sensor positions are captured by
a set of 12 infrared cameras 2 and recorded at a rate of 480 Hz. In Figure 4.1
the subject is displayed wearing an EEG cap for the measurement of brain
waves and a motion capture jacket and a hat for the analysis of body and
head movements.

The motion capture and EEG facilities are run on Windows and Unix
servers respectively using different sampling rates. Similarly the driving game
is run on a different Windows server recording driving signals at a 30 fps
sampling rate. The synchronization of the signals is a crucial step for this
experimental setup. For the synchrony of these three signals a hardware
solution was installed. The three signals were synchronized with the help of
the trigger port of the box that converts optical data to USB2 output (USB2
Box of EEG Biosemi device). The driving simulator and the motion capture
facilities sent a trigger signal for each sample that is being recorded. The
trigger channel of EEG device was decoded in an offline manner for matching
the time steps of the signals.

1Biosemi Instrumentation Inc
2PhaseSpace Inc
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4.1.2 Measures of Drowsiness
For this experimental setup measures of drowsiness include objective mea-
sures, such as crash, EEG, and steering signals, as well as subjective measures
obtained from human ratings of fatigue. Note that for the scope of the thesis
we only used time to crash as a measure of drowsiness.

4.1.3 Subject Variability
11 subjects were selected for the Study II analysis. The set of subjects in
the “UYAN-2” dataset is quite different in terms of initial drowsiness levels.
For this dataset most of the subjects were very tired while beginning the
experiment. This can be mainly attributed to the initial preparation stage
of the experiment which lasted longer than the preparation stage of UYAN-1
dataset. Each subject had to go through a process of an hour long process of
EEG cap preparation and motion capture calibration stage which were quite
exhaustive for the subjects. As a result the subjects are mostly more tired
than the UYAN-1 dataset.

Figure 4.1: In this task samples of real sleep episodes were collected from 11
subjects while they were performing a driving simulator task at midnight for
an entire 3 hour session.

4.1.4 Extraction of Facial Expressions
Computer Expression Recognition Toolbox (CERT), which is a user indepen-
dent fully automatic system for real time recognition of facial actions from
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the Facial Action Coding System (FACS), is again used for the analysis of the
fully automated extracted facial actions. The system automatically detects
frontal faces in the video stream and codes each frame with respect to 36
Action units. For this analysis we work on 22 Action units including a set of
promising action units of Study I. While choosing these CERT AUs we also
considered the criteria of having enough training samples for reliable CERT
outputs. A snapshot of the CERT system running on one of the subjects
from UYAN-2 dataset is shown in Figure 4.2.

Figure 4.2: Facial expressions are measured automatically using the Com-
puter Expression Recognition Toolbox (CERT). 22 Action Units from the
Facial Action Coding System (Ekman & Friesen, 1978) are measured. Head
and body motion are measured using the motion capture facility, as well as
the steering signal. Measures of alertness include EEG, distance to the road
center, and simulator crash. For the context of the thesis simulator crash is
being used as a measure of drowsiness..

A list of these 22 action units can be found in the following table. Note
that head movement action units such as Head Pitch, Head Roll and Head
Yaw are also included as part of the analysis. These measure are output
through CERT toolbox. For this analysis CERT outputs a single signal
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output for AU 53 (Head Up) and AU54 (Head Down) which are treated part
of the head pitch signal. Similarly AU 55 and AU 56 are treated as the head
roll signal. Lastly AU 51 (Head Turn Left) or AU 52 (Head Turn Right) are
treated as the head yaw signal.

Action Unit Action Unit Name
AU 1 Inner Brow Raise
AU 2 Outer Brow Raise
AU 4 Brow Lowerer
AU 5 Upper Lid Raise
AU 6 Cheek Raise
AU 7 Lids Tight
AU 9 Nose Wrinkle
AU 10 Upper Lip Raise
AU 12 Lip Corner Puller
AU 14 Dimpler
AU 15 Lip Corner Depressor
AU 17 Chin Raise
AU 18 Lip Puckerer
AU 20 Lip Stretch
AU 23 Lip Tightener
AU 24 Lip Presser
AU 26 Jaw Drop
AU 28 Lip Suck

AU 53 or AU 54 Head Pitch
AU 55 or AU 56 Head Roll
AU 51 or AU 52 Head Yaw

AU45 Eye Closure

Table 4.1: A list of 22 action unit outputs from CERT toolbox that are
chosen for the analysis.

As in Study I we use time to crash crash as a measure of drowsiness for
this analysis and the goal is to predict acutely drowsy (60 second window be-
fore crash) versus moderately drowsy episodes. The Study I analysis revealed
that 10 seconds is a satisfactory temporal duration for predicting drowsiness.
Therefore in this study we employ temporal analysis over 10 seconds. Con-
trary to the subjects in the UYAN-1 dataset, some subjects in the UYAN-2
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dataset are already quite drowsy at the beginning of the driving task. This
is due to the fact that prior to the driving task subjects had to go through a
1 hour period to set the EEG cap and the motion capture system. Most of
the subjects for the UYAN-2 dataset crash within 25 minutes after starting
the experiment. Hence we call the initial state of the subjects in UYAN-2
dataset “moderately drowsy (MD)” rather than “alert”. Table 4.3 displays the
mean and standard deviation of the time to the first crash for the alert and
moderately drowsy segments of the UYAN-1 and UYAN-2 datasets respec-
tively. Notice that the two datasets have different set of subjects. For this
analysis five one minute non-overlapping moderately drowsy episodes were
selected per subject from the first 10 minutes of the driving task based on
the criteria of being as far away from the crash point as possible. First the
one minute episode that is as far away from a crash point is chosen from the
first 10 minutes of the driving task and then the next one minute episode
that is the second furthest episode from a crash point and not necessarily
consecutive to the previous episode is selected and the iteration continues in
this fashion. Similar to study I one minute before crash points were taken as
drowsy episodes and this state is called “acute drowsiness (AD)”. In UYAN-2
dataset the two classes are in close proximity. The A’ for some action units
such as eye closure also supports this fact. In UYAN-1 across subjects A’
for eye closure was .94 whereas here the A’ for eye closure action unit as
will be shown later in the chapter (See Table4.5) is .83. Table 4.2 displays
some statistics for the average duration in minutes to the initial and next
crash after an MD and AD episode respectively. 5 subjects crashed within
20 minutes after an MD episode. Two subjects crashed within the first 10
minutes after an MD episode. The duration in minutes to the next crash
point after an AD episode is less than 5 minutes for 7 subjects.
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time to first crash for MD time to first crash for AD
Subject: mean standard deviation mean standard deviation
Subject 1 16.35 1.58 1.0 0.0
Subject 2 24.86 1.58 1.0 0.0
Subject 3 56.32 1.58 1.0 0.0
Subject 4 21.43 1.58 1.0 0.0
Subject 5 16.27 1.58 1.0 0.0
Subject 6 48.46 1.58 1.0 0.0
Subject 7 - - 1.0 0.0
Subject 8 42.53 1.51 - -
Subject 9 2.87 1.40 1.0 0.0
Subject 10 8.74 1.64 1.0 0.0
Subject 11 13.98 1.61 1.0 0.0

time to second crash for MD time to second crash for AD
Subject: mean standard deviation mean standard deviation
Subject 1 28.07 1.58 5.23 4.60
Subject 2 31.08 1.58 1.93 4.22
Subject 3 66.32 1.58 19.78 20.67
Subject 4 31.90 1.58 1.84 3.16
Subject 5 41.90 1.58 0.73 2.49
Subject 6 64.60 1.58 4.39 9.81
Subject 7 - - 26.92 18.50
Subject 8 72.53 1.51 - -
Subject 9 7.98 1.40 1.24 1.67
Subject 10 15.93 1.64 3.02 3.15
Subject 11 17.02 1.61 1.83 2.32

Table 4.2: The mean and standard deviation of time to crash for one minute
segments of moderate drowsiness (MD) and acute drowsiness (AD).
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time to first crash for MD UYAN-2
Subject: mean standard deviation
Subject 1 16.35 1.58
Subject 2 24.86 1.58
Subject 3 56.32 1.58
Subject 4 21.43 1.58
Subject 5 16.27 1.58
Subject 6 48.46 1.58
Subject 7 - -
Subject 8 42.53 1.51
Subject 9 2.87 1.40
Subject 10 8.74 1.64
Subject 11 13.98 1.61

time to first crash for Alert UYAN-1
Subject: mean standard deviation
Subject 1 49.6 4.18
Subject 2 71.89 34.83
Subject 3 33.31 4.18
Subject 4 90.35 4.18

Table 4.3: Table displays the mean and standard deviation of the time to the
first crash for the alert and moderately drowsy segments of the UYAN-1 and
UYAN-2 datasets respectively. Notice that the two datasets have different
set of subjects.

The selected episodes are segmented into non-overlapping 10 second video
patches. CERT action unit outputs are obtained over each of these patches.
The UYAN-2 dataset contains data from 11 subjects. 9 subjects have both
crash and alert episodes. One subject does not have any alert segments as
the first hour of the driving task is lost accidentally by the subject. One
other subject’s data for crash episodes is lost therefore the subject’s crash
data is not included. For some of the 10 second segments the face could not
be located due to occlusion or false alarms in CERT face detection module.
The 10 second segments that have more than 30 video frames with occlusions
or false alarms for the face ( assuming the video is 30 fps this corresponds
to 1 second ) were eliminated. Here false alarms in face detection were de-
tected using the measure of distance between the eyes. Usually the subject’s
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Subject #. segments for AD #. segments for MD
Subject 1 136 30
Subject 2 221 27
Subject 3 18 30
Subject 4 422 30
Subject 5 619 30
Subject 6 37 30
Subject 7 59 0
Subject 8 0 30
Subject 9 213 30
Subject 10 41 30
Subject 11 184 30

Mean: 177.27 27
Std: 192.08 9.0

Table 4.4: The number of 10 second segments for acute drowsiness (AD)
and moderate drowsiness (MD) is listed in the table. These segments are
obtained by partitioning one minute alert and drowsy episodes into six 10
second patches. Note that Subject 7 and 8 do not not have any MD and
AD segments respectively. Temporal dynamics are captured by employing
temporal filters over these 10 second CERT action unit signals.

distance between his/her eyes should be within a range of a constant mea-
sure and if there is a sudden jump in the distance between the eyes indicates
that the face detector started focusing on an object other than the subject’s
face. For the rest of the clips that have false alarms in the face detection
or occlusions of the face where the CERT cannot locate the face the action
unit signal is interpolated. Table 4.4 demonstrates the number of moderately
drowsy and acutely drowsy 10 second segments for each subject. Subjects
have a mean of 27 moderately drowsy 10 second patches. Subjects have a
mean of 177 acutely drowsy 10 second patches ranging from a minimum of
18 to a maximum of 619. Different subjects exhibit different behavior, some
crash more therefore the number of AD segments between subjects change
dramatically depending on the number of crash incidents occurring during
the experimental task.
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4.2 Discriminating Acute versus Moderate Drowsi-
ness Using Raw Action Unit Output

The goal in this analysis is to explore the predictive power of the individual
facial action units. Averages of raw action unit outputs are computed over 10
second patches of individual CERT action unit outputs. Separability of the
averaged raw action unit outputs is analyzed. We perform a leave-one-out
cross validation training procedure. A subject was left out for testing and
the model was trained with the rest of the subjects. MLR classifier is trained
with 10 training subjects at a time and tested with a novel test subject. For
training averaged 10 second patches of an individual action unit are passed
to an MLR classifier. The training data has a single feature which is the
average of the action unit for a 10 second patch. The data points are equal
to the number of 10 second patches of 10 subjects. Similarly the test data
has a single feature which is the 10 second average of an action unit and the
data points are equal to the number of 10 second patches of the test subject.
Since this is a single feature model, the only parameter that can change
the A’ value for the test subject is the sign assigned by the MLR model to
the AU under consideration. For example based on 10 training subjects the
MLR model may assign a positive weight to a particular AU. This means
that most of the training subjects have increasing intensity value for this
particular AU as the subject gets more drowsy under the assumption that
the acute drowsiness state is assigned to a positive class. For each test subject
MLR weight obtained from training was multiplied with the test feature to
estimate the A’ over the test outputs. While for training an A’ below 0.5 is
not possible, for an actual system that is required to generalize to new people
the test subject A’s may take values less than 0.5. For testing 9 test subjects
were tested as two subjects did not have either drowsy or alert episodes.
Individual action unit discriminability measure is estimated by averaging 9
test subject’s A’s. Note that the number of crashes across subjects changed
dramatically and this way of calculation helps the performance measure such
that it is not biased for subjects having a large number of drowsy patches.
Using this method we can highlight the action units that are informative for
a person independent system. This analysis is repeated for all the action
units. Table 4.5 displays the individual action unit mean A’ estimates over
all subjects. The 5 most informative units were (1) Eye Closure (AU45) with
an A’ of 0.83 (2) Lip Puckerer (AU18) with an A’ of 0.82 (3) Head Roll with
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an A’ of 0.77 (4) Lid Tightener (AU7) with an ROC of 0.71 (5) Nose Wrinkle
(AU9) with an A’ of 0.69.

In this study we found that brow raise(AU2) increases in drowsy condi-
tions in some subjects. As these subjects get more drowsy they raise their eye
brows. However as displayed in Figure 4.9 for one subject (subject 3) AU2
decreased dramatically in acute drowsiness and increased (the subject raised
his brows) in the moderately drowsy condition. As this subject contradicts
with the rest of the subjects for this action unit, the A’ value is less than 0.5
and closer to 0. This results in AU2 to be a non-informative action unit for a
subject independent system due to the cancelling effect of the decrease and
increase and neutral state of the intensity values. In the UYAN-1 dataset
all of the 4 subjects have increasing AU2 intensity values as they are get-
ting more drowsy. With UYAN-2 dataset we are seeing variabilities among
subjects for AU2.
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Action Unit A’ Standard Error
AU 45 0.8346 0.0587
AU 18 0.8247 0.0367

Head Roll 0.7761 0.0723
AU 7 0.7175 0.0884
AU 9 0.6951 0.0702
AU 14 0.6402 0.0943
AU 23 0.6315 0.0857
AU 26 0.6233 0.0728
AU 12 0.5920 0.0971

Head Pitch 0.5665 0.1033
AU 1 0.5632 0.0973
AU 28 0.5368 0.0755
AU 4 0.5035 0.0735
AU 2 0.4758 0.0938
AU 15 0.4684 0.1346
AU 20 0.4629 0.0880

Head Yaw 0.4543 0.0830
AU 17 0.4393 0.0918
AU 6 0.3457 0.0765
AU 24 0.3150 0.0494
AU 10 0.2787 0.0777
AU 5 0.2514 0.0602

Table 4.5: ROC performance results for the output of the raw action unit
outputs over individual action units.

To illustrate how the subjects differ from each other for certain action
units we display the histograms of action unit output values for individ-
ual subjects summed over 10 second segments. Figure 4.3 displays the his-
tograms over sums of eye closure action unit for 10 second segments of the
acute drowsy and moderate drowsy cases. The red histogram corresponds
to the acute drowsy samples and the blue corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have AD or MD
samples. The A’ here is computed using the samples of the subject without
multiplying with the training weight. Eye closure (AU45) is discriminative
for 7 of the test subjects. Similarly 4.4 displays the histograms for the head

52



roll action unit. This action unit is discriminative for all the subjects. Except
for one subject the head roll average intensity value increases as the subject
gets more drowsy. Figure 4.5 displays the histogram for the lip pucker (AU18)
action unit. Except for one subject this action unit is discriminative for all
subjects in the increasing direction as the subject gets more drowsy. Figure
4.6 displays the histograms for the lid tighten (AU7) action unit. For 7 sub-
jects this action unit looks discriminative and for 6 subjects it is increasing as
the subject gets more drowsy. We also analyzed subjectwise discriminability
of some of the action units that do not perform well for a subject indepen-
dent test. Figure 4.8 displays the histograms for the upper lip raiser (AU10)
action unit. This action unit is discriminative for 2 subjects in the increasing
direction as the subject gets more drowsy and for 3 subjects in the decreasing
direction as the subject gets more drowsy. For the rest of the subjects this
action unit is not discriminative. Similarly Figure 4.9 displays the histograms
for the action unit eye brow raise (AU2). For 4 of the subjects this action is
discriminative. For 3 subjects this action unit increases as the subject gets
more drowsy and for one subject the intensity value decreases as the subject
gets more drowsy.
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Figure 4.3: Figure displays the histograms of eye closure (AU45) signal for in-
dividual subjects summed over 10 second segments of acute drowsy and mod-
erate drowsy samples. The red histogram corresponds to the acute drowsy
samples and the blue histogram corresponds to moderately drowsy samples.
Here 9 subjects are plotted as 2 subjects do not have either AD or MD sam-
ples. The A’ here is computed using the samples of the subject without
multiplying with training weight.
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Figure 4.4: Figure displays the histograms of head roll signal for individual
subjects summed over 10 second segments of acute drowsy and moderate
drowsy samples. The red histogram corresponds to the acute drowsy samples
and the blue histogram corresponds to moderately drowsy samples. Here 9
subjects are plotted as 2 subjects do not have either AD or MD samples. The
A’ here is computed using the samples of the subject without multiplying
with training weight.
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Figure 4.5: Figure displays the histograms of lip pucker (AU18) signal for in-
dividual subjects summed over 10 second segments for acute drowsy and
moderate drowsy samples. The red histogram corresponds to the acute
drowsy samples and the blue histogram corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have either AD or
MD samples. The A’ here is computed using the samples of the subject and
without using a training weight.
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Figure 4.6: Figure displays the histograms of summed lid tighten (AU7) sig-
nal for individual subjects summed over 10 second segments of acute drowsy
and moderate drowsy samples. The red histogram corresponds to the acute
drowsy samples and the blue histogram corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have either AD
or MD samples. The A’ here is computed using the samples of the subject
without multiplying with a training weight.

57



Figure 4.7: Figure displays the histograms of summed nose wrinkle (AU9) sig-
nal for individual subjects summed over 10 second segments of acute drowsy
and moderate drowsy samples. The red histogram corresponds to the acute
drowsy samples and the blue histogram corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have either AD
or MD samples. The A’ here is computed using the samples of the subject
without multiplying with a training weight.
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Figure 4.8: Figure displays the histograms of upper lid raiser (AU10) signal
for individual subjects summed over 10 second segments for acute drowsy
and moderate drowsy samples. The red histogram corresponds to the acute
drowsy samples and the blue histogram corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have either AD
or MD samples. The A’ here is computed using the samples of the subject
without multiplying with training weight.
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Figure 4.9: Figure displays the histograms of eye brow raise (AU2) signal
for individual subjects summed over 10 second segments of acute drowsy
and moderate drowsy samples. The red histogram corresponds to the acute
drowsy samples and the blue histogram corresponds to moderately drowsy
samples. Here 9 subjects are plotted as 2 subjects do not have either AD
or MD samples. The A’ here is computed using the samples of the subject
without multiplying with training weight.
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Finally MLR model is trained with the combined 5 most informative ac-
tion units by performing leave-one-out cross validation. At each training
iteration one subjects was left out. The model was trained with different
regularization constants. The MLR combined model achieved 0.92 perfor-
mance. Figure 4.10 displays the A’ performances in the vertical axis and the
regularization constant in the horizontal axis for the combined model.

Figure 4.10: MLR model performances for the combined 5 most informative
action units by performing leave-one-out cross validation

4.3 Discriminating Acute versus Moderate Drowsi-
ness Using Temporal Gabor Filter Output

Analysis of some video clips from the UYAN-2 dataset revealed the fact that
averaging the AU outputs over 10 second segments may lose important infor-
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mation about dynamics. Consider for example, the data displayed in Figure
4.11. The figure displays the output of AU 45 over two different 10 second
episodes, one from the MD condition and the other one from the AD condi-
tion. These two figures have the same mean action unit output value over
10 seconds. Thus the mean filter approach would not be able to differentiate
these two episodes. However the temporal analysis of these segments can
bring additional information for discriminating the two episodes.

The approach we have used to capture temporal dynamics is to process
the AU outputs using a bank of temporal Gabor Filters. Gabor filters are
sine wave gratings modulated by a Gaussian and they model the simple cells
in the mammalian visual system. Daugman showed that for 2D banks of
Gabor filters at multiple scales and orientations model the response proper-
ties of primary visual cortical cells in primates (Daugman 1988) . 2D Gabor
filters have been used in the literature to extract the spatial information in
images. Here we use Gabor filters on uni-dimensional action unit signal to ex-
tract temporal information. For this analysis Gabor filters are applied to 10
second patches of unsmoothed CERT action unit outputs to get periodicity
information.

For capturing the temporal dynamics we applied Gabor energy (Magni-
tude Gabor), Gabor sine carrier (Real Gabor) and Gabor cosine (Imaginary
Gabor) carrier filters to CERT action unit outputs. Figure 4.12 displays a
sinusoidal sample signal convolved with these three types of filters. The real
and imaginary components of a complex Gabor filter are phase sensitive, i.e.,
as a consequence their response to a sinusoid is another sinusoid. By getting
the magnitude of the output (square root of the sum of squared real and
imaginary outputs) we can get a response that is phase insensitive and thus
unmodulated positive response to a target sinusoid input. Note that the real
and imaginary Gabor filters are linear filters whereas the magnitude Gabor
filter is a nonlinear filter. For all of the filters the output response magni-
tudes are half the magnitude of the input signal. The real and imaginary
filter input with a sinusoid input outputs a sinusoidal output with half mag-
nitude. However the magnitude filter basically outputs the location of the
sinusoid but does not keep the sinusoidal properties of the signal. For this
study we found that both Gabor energy and Gabor sine and cosine carrier
filters were informative for discriminating subject state. Therefore we used
all three outputs for our feature analysis.

For this analysis different bandwidth and frequency temporal Gabor fil-
ters have been applied to ten second segments of an action unit signal for
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Figure 4.11: This figure displays a case where temporal dynamics plays an
important role in discriminating two cases. The first case (figure on the top)
corresponds to a AD. The subject’s eyes are open all the time except towards
the end of the clip. The second case (figure on the bottom) demonstrates an
moderately drowsy (MD) clip from another subject. These two eye closure
signals have approximately the same mean. The output would not be able
to tell apart which of these two clips belongs to the AD or MD episode
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Figure 4.12: Top: An input signal. Second: Output of Gabor filter (cosine
carrier). Third: Output of Gabor Filter in quadrature (sine carrier); Fourth:
Output of Gabor Energy Filter [43]
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individual subjects. The Gabor representations of temporal action unit sig-
nals were obtained by convolving the temporal signal with a bank of 306
Gabor filters consisting of 18 frequency components ranging from 0 to 8 Hz
and 17 bandwidths ranging from 0 to 8 Hz. The Gabor filter frequencies used
for the analysis have the following values : 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.25,
1.6875, 1.2656, 0.9492, 0.7119, 0.5339, 0.4005, 0.3003, 0.2253, 0.1689, 0.01
0. The bandwidths have the same values excluding zero frequency. Figure
4.13 displays filtered version of the signals in Figure 4.11 where the applied
filter is a magnitude Gabor Filter with frequency 1.26 and bandwidth 1.26.
The AD signal has a mean of 0.11 and the MD signal has a mean of 0.36.
The magnitude filter can discriminate the two signals whereas the mean filter
approach was not able to discriminate the two signals.
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Figure 4.13: Filtered version of the signals in Figure 4.11 where the applied
filter is a magnitude Gabor Filter with frequency 1.26 and bandwidth 1.26.
The AD signal has a mean of 0.11 and the MD signal has a mean of 0.36.

66



4.4 Predictive Power of Individual Gabor Fil-
ters

The goal in this analysis is to understand which Gabor filters have predictive
power at discriminating moderately drowsy from acutely drowsy segments for
a person independent system. For individual action units Gabor filter out-
puts were obtained by convolving 10 second moderately drowsy and acutely
drowsy patches with each of the 918 Filters where these filters were Gabor
energy (Absolute Gabor -306 filters 18 frequencyx 17 bandwidth), Gabor
sine carrier (Real Gabor- 306 filters 18 frequencyx17 bandwidth) and Gabor
cosine carrier filters (Imaginary Gabor- 306 filters- 18 frequencyx17 band-
width). In order to estimate each individual Gabor filter’s predictive power
for an action unit, averages of individual Gabor filter outputs are used as an
input to a single feature MLR model by leaving one subject out at a time.
For the magnitude filter output averaging operation outputs the average en-
ergy over the temporal signal. For linear filters such as real and imaginary
Gabor filters averaging is basically the operation of compounding two filters:
the Gabor filter and the averaging filter (lowpass). Here we could have also
used other statistics such as median, percentiles, range or other filters for the
linear filter output that might keep more information about the linear filter
output. As a future work we are planning to explore more of these filters
instead of using the simple averaging. The training data has single feature
which is the average of the Gabor filter output for 10 second patches and
the number of data points is equal to the total number 10 second AD and
MD patches of 10 training subjects. Similarly the test data have a single
feature which is again the 10 second average of the Gabor filter output for
an action unit and the number of data points is equal to the number of 10
second AD and MD patches of the test subject. For each test subject, MLR
weight obtained from training was multiplied with test data points. From
these weighted outputs an A’ was estimated for each test subject. Individual
action unit discriminability for each Gabor Filter is estimated by averaging
9 test subject’s A’s. Since this is a single feature model training has no effect
other than changing the sign of the A’ value. Figure 4.14 displays the A’ for
eye closure action unit (AU45) of the Real filter for a set of 18 frequencies and
17 bandwidths. The horizontal axis displays the frequency and the vertical
axis displays the bandwidth whereas the color denotes the A’ value. No-
tice that low frequencies with all the bandwidths are discriminative of acute
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drowsiness for this action unit. As the frequency increases low bandwidths
become less discriminative. One reason for this could be due to not capturing
the negative frequencies with smaller bandwidths.

In general the Real filter for the eye closure action unit (AU45) is very
discriminative of acute drowsiness. Similarly Figure 4.15 displays the A’ of
individual Gabor Filters for all the action units. Each of the 66 (22x3) boxes
above represent the A’ performances for a specific action unit for either abso-
lute real or imaginary filter sets. For each box the horizontal axis represents
the frequency (0-8Hz), vertical axis represents the bandwidth (0-8Hz) and the
color denotes the A’ value. Note that the A’ values are represented between
0 and 1 for this figure. Here values less than 0.5 indicate that this is not a
prominent filter for subject independent drowsiness. This shows that there
are variabilities in the way the Gabor filter outputs increase or decrease with
acute drowsiness. If all the subjects have an increasing value for a Gabor
filter output the A’ will have a value higher than 0.5. If all the Gabor filter
outputs for an action unit have a decreasing value then the A’ will be again
higher than 0.5. However if it is less than 0.5 and a value closer to 0 than
the the feature might be a prominent feature for a subject dependent system.
This can happen if the direction of increase or decrease of the filter output
for the test subject is different from the increase or decrease direction of train
subjects. Notice that here head roll (AU55, AU56), eye closure (AU45) and
lip puckerer (AU18), (nose wrinkle) AU9 and (lid tightener) AU 7 are some
of the most important action units in predicting acute drowsiness. The real
filter looks the most prominent for these action units. One reason for this
might be due to the shape of the real filter. While convolving filters we align
the middle point of the filter with the time point t of the action unit signal.
The real filter’s shape in some frequencies and bandwidths look similar to the
onset apex and offset transition of an action unit signal. In these cases the
real filter looks like an averaging filter whereas the imaginary filter is similar
to a difference filter. Imaginary and magnitude filters were also prominent
with certain frequencies and bandwidths for the eye closure (AU45) action
unit.
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Figure 4.14: A’ performances of Real Gabor Filters for the Eye Closure
(AU45) action unit. The horizontal axis represents the frequency (0-8Hz),
vertical axis represents the bandwidth (0-8Hz) and the color denotes the A’
value. Note that the A’ values are represented between 0 and 1 for this figure.
Here values more than 0.5 closer to 1 indicate prominent filters of a subject
independent system. A’ values that are less than 0.5 and closer to 0 may
indicate prominent filters that are subject dependent.
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Figure 4.15: A’ performances of individual Gabor Filters for all the action
units. Each of the 66 (22x3) boxes above represent the A’ performances for
a specific action unit for either magnitude real or imaginary filter sets. For
each box the horizontal axis represents the frequency (0-8Hz), vertical axis
represents the bandwidth (0-8Hz) and the color denotes the A’ value. Note
that the A’ values are represented between 0 and 1 for this figure. Here
values more than 0.5 and closer to 1 indicate prominent filters a subject
independent system. A’ values that are less than 0.5 and closer to 0 may
indicate prominent filters that are subject dependent.
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4.5 Feature Selection
The goal for this analysis is to select relevant features from the 918 Gabor
filter possibilities for each of the 22 action units. The number of data points
for training a classifier for each subject is equal to the number of 10 second
AD and MD segments and for nearly for all of the subjects there are more
feature points than data points (See Table 4.4). The following scheme is
followed: First the best feature was selected that has the best A’ performance
and then the next feature that achieves the best performance combined with
the previous feature is chosen and the iteration continues in this fashion
and chooses the next feature performing best combined with the previously
selected features. All possible feature sets were trained with MLR by leaving
one subject out at a time and using cross validation with generalization to
novel test subjects. The obtained weights are tested on the test subject to
estimate the predictive power of this features set on the test subject. An
average of the test subject A’s determined the dicriminability power of this
feature set. At each iteration of the feature selection the feature that has
the highest discriminability power combined with the previous features is
included as a prominent feature. We tried 1 to 10 features with different
regularization constants.

4.5.1 Eye Closure (AU45)
The results obtained with the eye closure action unit (AU45) are displayed in
Figure 4.16. As the performance saturates with 10 features we stopped after
picking 10 features for all of the action units. In the figure the horizontal axis
represents the regularization constant for an L2 MLR model. The vertical
axis displays the average A’ over all test subjects for a specific feature count
and regularization constant. The highest discriminability for eye closure was
obtained with regularization constant 0 and using 10 features. Notice that the
average filter was able to obtain an average A’ of 0.83 for eye closure (AU45)
whereas here the performance is higher approximately 0.90 with temporal
Gabors using regularization 0 and 10 features.
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Figure 4.16: A’ performance for Action Unit 45 (eye closure) versus regu-
larization constant for different number of features selected with an iterative
feature selection policy. The vertical axis displays the A’ and the horizontal
axis displays the regularization constant. Each colored graph displays differ-
ent number of best features selected with iterative feature selection. Best A’
is obtained with regularization constant zero and 10 features.

The features selected by the best model is displayed in Figure 4.17.
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Figure 4.17: Features selected for the best model for eye closure action unit
(AU45)

Figure 4.18 displays the best average A’ (for the optimal regularization
parameter) for eye closure as a function of the number of features. Each point
(red dot) on the blue line displays the average A’ over test subjects with the
best performing regularization constant for a certain number of features. The
green dots represent the standard error over the test subjects. The standard
error is computed by dividing the standard deviation of subject performances
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s with the square root of number of subjects n as displayed below.

SE =
s√
n

(4.1)

As displayed in the figure the performance saturates towards 10 features.
Therefore for this analysis we stopped the iteration for feature search at the
tenth round.

Figure 4.18: The blue line represent the best average A’ among test subjects
achieved for different number of features. Each point (red dot) on the blue
line displays the average A’ over test subjects with the best performing regu-
larization constant for a certain number of features. The green dots represent
the standard error over the test subjects.

4.5.2 Lip Pucker (AU18)
We next report the results for the second best action unit Lip Pucker (AU18).
The A’ performance averaged over test subjects for the Lip Pucker action
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unit (AU18) is displayed in Figure 4.19. In the figure the horizontal axis
represents the regularization constant for an L2 MLR model. The vertical
axis displays the average A’ over all test subjects for a specific feature count
and regularization constant. The highest A’ obtained for lip pucker (AU18) is
0.84 with regularization constant 0.1 and using 10 best features. Notice that
the average filter is able to obtain an average A’ of 0.82 for lip pucker (AU18)
whereas here the performance is approximately 0.84 with regularization 0 and
10 features. The features selected by the best model is displayed in Figure
4.20.

Figure 4.19: A’ performance for Action Unit 18 (Lip Pucker) versus regu-
larization constant for different number of features selected with an iterative
feature selection policy. The vertical axis displays the A’ and the horizontal
axis displays the regularization constant. Each colored graph shows different
number of best features selected with iterative feature selection. Best A’ is
obtained with regularization constant 0.1 and 10 features.
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Figure 4.20: Set of features selected for the best model of lip pucker action
unit (AU18). For the best model the regularization constant is 0.1.

Figure 4.21 displays the best average A’ (for the optimal regularization
parameter) for the lip pucker action unit (AU18) as a function of the number
of features.
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Figure 4.21: Best A’ achieved as a function of different number of features
for Lip Pucker action unit (AU18). The blue line represent the best average
A’ among test subjects achieved for different number of features. Each point
(red dot) on the blue line shows the average A’ over test subjects with the
best performing regularization constant for a certain number of features. The
green lines represent the standard error over the test subjects.

4.5.3 Head Roll (AU55-AU56)
We next report the results for the third best action unit Head Roll (AU55-
AU56). The results obtained with the Head Roll action unit (AU55-AU56) for
a person independent action unit is reported in Figure 4.22. In the figure the
horizontal axis represents the regularization constant for an L2 MLR model.
The vertical axis shows the average A’ over all test subjects for a specific
feature count and regularization constant. The highest A’ performance for
head roll was 0.81 obtained with a regularization constant term of 0.5 and 8
features. The figure displays the results with 1 to 10 features. Notice that
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the average filter for Head Roll was able to obtain an average A’ of 0.77
whereas here the performance is approximately 0.81 with regularization 0.5
and 8 features. The selected 8 best features is displayed in Figure 4.23.

Figure 4.22: A’ performance for Head Roll versus regularization constant
for different number of features selected with an iterative feature selection
policy. The vertical axis displays the A’ and the horizontal axis displays the
regularization constant. Each colored graph shows different number of best
features selected with iterative feature selection. Best A’ performance of 0.81
is obtained with regularization constant 0.5 and 8 features.

78



Figure 4.23: Selected features for the best model for Head Roll (AU55-AU56)
action unit.

Figure 4.24 displays the best average A’ (for the optimal regularization
parameter) for head roll as a function of the number of features.
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Figure 4.24: Best A’ achieved with different number of features for Head Roll.
The blue line represent the best average A’ among test subjects achieved for
different number of features. Each point (red dot) on the blue line shows the
average A’ over test subjects with the best performing regularization constant
for a certain number of features. The green lines represent the standard error
over the test subjects.

4.5.4 Lid Tighten (AU7)
We next report the results for the fourth best action unit Lid Tighten (AU 7)
for a person independent action unit. The A’ performance results averaged
over test subjects for the Lid Tighten (AU7) is displayed in Figure 4.25. In
the figure the horizontal axis represents the regularization constant for an
L2 MLR model. The vertical axis shows the average A’ over all test subjects
for a specific feature count and regularization constant. The highest A’ per-
formance for lid tighten was 0.74 with temporal Gabors using regularization
constant 2 and 10 features. Notice that the average filter for Lid Tighten was

80



able to obtain an average A’ of 0.71 whereas here the performance is approx-
imately 0.75 with regularization constant 2 and 10 features. The selected
features for the best model is displayed in Figure 4.26.

Figure 4.25: A’ performance for Action Unit 7 (Lid Tighten) versus regu-
larization constant for different number of features selected with an iterative
feature selection policy. The y axis shows the A’ and the x axis shows the
regularization constant. Each colored graph shows different number of best
features selected with iterative feature selection. Best A’ of 0.74 is obtained
with regularization constant 2 and 10 features.
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Figure 4.26: Best set of features selected for Lid Tighten (AU7) with regu-
larization constant 2

Figure 4.27 displays the best average A’ (for the optimal regularization
parameter) for the lid tighten action unit (AU7) as a function of the number
of features.
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Figure 4.27: Best average A’ (for the optimal regularization parameter) as
a function of the number of features for Lid Tighten action unit (AU7).
The blue line represent the best average A’ among test subjects achieved for
different number of features. Each point (red dot) on the blue line shows the
average A’ over test subjects with the best performing regularization constant
for a certain number of features. The green lines represent the standard error
over the test subjects.

4.5.5 Nose Wrinkle (AU9)
We next report the results for the fifth best action unit Nose Wrinkle (AU9).
The A’ performance results averaged over test subjects for the Nose Wrinkle
is reported in Figure 4.28. In the figure the horizontal axis represents the
regularization constant for an L2 MLR model. The vertical axis shows the
average A’ over all test subjects for a specific feature count and regularization
constant. The highest A’ performance for nose wrinkle (AU 9) was 0.80
obtained with a regularization constant term of 0.001 and 10 features. Notice
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that the average filter for Head Roll was able to obtain an average A’ of 0.69
whereas here the performance is approximately 0.81 with temporal Gabors
using regularization 0.001 and 10 features. The features selected for the best
model is displayed in Figure 4.29.

Figure 4.28: A’ performance for Action Unit 9 (Nose Wrinkle) versus regu-
larization constant for different number of features selected with an iterative
feature selection policy. The vertical axis shows the A’ and the horizontal
axis shows the regularization constant. Each colored graph shows different
number of best features selected with iterative feature selection. Best A’ is
obtained with regularization constant 0.001 and 10 features.
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Figure 4.29: Features selected for the best model for Nose Wrinkle (AU9)
action unit.

Figure 4.30 displays the best average A’ (for the optimal regularization
parameter) as a function of the number of features for the nose wrinkle action
unit (AU9).
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Figure 4.30: Best A’ achieved with different number of features for Nose
Wrinkle (AU9). The blue line represent the best average A’ among test
subjects achieved for different number of features. Each point (red dot) on
the blue line shows the average A’ over test subjects with the best performing
regularization constant for a certain number of features. The green lines
represent the standard error over the test subjects.

4.6 Combining Multiple Action Units
For this analysis the features of best performing five action units were com-
bined to build a person independent drowsiness detector. These action units
were as follows : Eye Closure (AU45), Lip Pucker (AU18), Head Roll (AU55-
AU56), Lid Tighten (AU7), Nose Wrinkle (AU9). The best performing fea-
tures for these action units obtained in the single AU models were combined
to train a classifier. Except Head Roll achieving the best performance with 8
features all the other four action units had a set of 10 best features resulting
in a total of 48 features. Iterative feature selection was performed over these
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48 features. The following procedure was followed: First the best feature
was selected that has the best A’ performance and then the next feature
that achieved the best performance combined with the previous feature was
chosen and the next iteration continued in this fashion and chose the next
feature performing best combined with the previously selected features. Up
to 10 best features for 8 regularization constant ranging from 0 to 3 were
explored with an L2 MLR model. All possible feature sets were trained with
MLR by leaving one subject out at a time and using cross validation with
generalization to novel test subjects. The obtained MLR weights for a train
set are tested on the test subject to estimate the predictive power of this fea-
ture set on the test subject. An average of the test subject A”s determined
the dicriminability power of this feature set. At each iteration of the itera-
tive feature selection the feature that has the highest discriminability power
combined with the previous features is included as a prominent feature. We
tried feature counts from 1 to 10 with different regularization constants. The
results for the selected best feature sets from a set of 48 possible features
is displayed in Figure 4.31. As the performance mostly begins saturating
with 10 features we stopped after picking 10 features for all of the action
units. In the figure the horizontal axis represents the regularization constant
for an L2 MLR model. The vertical axis shows the average A’ over all test
subjects for a specific feature count and regularization constant. The highest
discriminability A’ performance of .96 was obtained for the combined action
units with temporal Gabors using regularization constant 0.01 and using 10
features. Note that the highest A’ performance of .96 cuts the error in half
when compared with the highest A’ performance of .90 for eye closure action
unit (AU 45). Hence combining other action units helps to build a more
accurate person independent drowsiness detector.
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Figure 4.31: A’ performance for 5 best action units combined versus regu-
larization constant for different number of features selected with an iterative
feature selection policy. The vertical axis shows the A’ and the horizontal
axis shows the regularization constant. Each colored graph shows different
number of best features selected with iterative feature selection. Best A’ of
0.96 is achieved with regularization constant 0.01 and 10 features.
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4.7 Conclusions
In this study we notice that the markers for different levels of drowsiness
change. When differentiating acute drowsiness from moderate drowsiness
the most discriminative action units are: Eye Closure (AU45), Head Roll
(AU55-AU56), Lip Pucker (AU18), Lid Tightener (AU7) and Nose Wrinkle
(AU9). We found that some features are good at discriminating both alert
from acutely drowsy and moderately drowsy from acutely drowsy. For ex-
ample eye closure is one of these action units. However some features are
good at discriminating alert from acutely drowsy but are not good at dis-
criminating moderately drowsy from acutely drowsy. Yawning (AU26) and
Smile (AU12) are examples of these action units. For this study head roll
(AU55-AU56) was a good predictor for drowsiness supporting the prelim-
inary study results in Study I. The subjects move their heads in the roll
dimension as they get more drowsy. In this study consistent with Study I
brow raise (AU2) increases in drowsy conditions in some subjects. However
for this study one subject lowered his eyebrows dramatically ( AU2 intensity
decreased) in acute drowsiness state and raised his eyebrows in the moder-
ate drowsiness condition. This resulted in AU2 to be non-informative for a
person independent system. With UYAN-2 dataset we saw that there exists
variabilities among subjects for the eye brow raise (AU2) signal. Using tem-
poral properties of the signal and employing a Gabor representation increased
the performance. Figure 4.32 displays a bar graph for the performance gain
of Gabor filter outputs in comparison with raw action unit outputs for the
5 best performing action units . In this figure the red bars indicate the Ga-
bor Filter output performances. For all the action units the performance
with temporal Gabors was higher in comparsion with the raw action unit
outputs. For example eye closure action unit performance A’ increased from
.83 to .90 after employing temporal Gabors. Finally by combining other ac-
tion units the error could be cut in half in comparison to using only single
action unit, eye closure (AU45), even for a harder task of discrimination of
fine drowsiness. The performance increased from .90 using temporal Gabors
(Eye closure) to .96 by employing all 5 action units using temporal Gabors.
Temporal Gabor model achieved .96 A’ by employing 5 action units whereas
the raw action unit model achieved .92 A’ with the same 5 action units. Thus
the temporal Gabors increased the overall performance.
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Figure 4.32: Bar graph displaying the performances for 5 best performing
action units with the raw action unit output and the best model of Gabor
Filter outputs.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions
This is the first study that uses a large set of spontaneous facial expressions
for the detection of drowsiness. Previous approaches to drowsiness detec-
tion primarily make pre-assumptions about the relevant behavior, focusing
on blink rate, eye closure, and yawning. Here we employ machine learn-
ing methods to datamine actual human behavior during drowsiness episodes.
Spontaneous expressions have a different brain substrate than posed expres-
sions. They also typically differ in morphology and dynamics. This study
reveals that facial expressions are very reliable indicators of driver drowsiness
and facial expressions can be used to do fine discrimination in the different
levels of drowsiness and reliably predict the time to crash. In laboratory
conditions computer vision expression recognition systems can be used to re-
liably detect drowsiness and predict crash with high reliability. Field studies
are needed to evaluate the performance of these systems in actual driving
environments. Spontaneous facial expressions under drowsiness are very dif-
ferent from posed expressions of drowsiness. We confirmed that some facial
behavior previously reported in the literature (e.g., eye closure) is a reliable
indicator of fatigue. However there are other expressions that are as reliable
as eye closure and can be combined to improve detection. For discrimination
of alertness vs drowsiness we found out that the Nose Wrinkle (AU 9), Eye-
brow Raise (AU2), Eye Closure (AU 45), Chin Raise (AU 17), Yawn (AU 26),
Head Roll were some of the most discriminative action units. When com-
bined these facial expressions can discriminate alert from drowsiness with
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0.98 area under the ROC curve performance for a temporal window of 12
seconds and saturates to 0.99 for 30 seconds or above. Yawning, actually
occurred less often in the critical 60 seconds prior to a crash. We found that
yawning does not tend to occur in the final moments before falling asleep.
Finer discrimination, differentiating moderately drowsy from acutely drowsy,
is a much more challenging task than differentiation of alert from drowsy. We
found that the markers for different levels of drowsiness change : Notice that
some of these markers may also be related to subject-wise differences as the
two studies use different set of subjects. When differentiating acutely drowsy
from moderately drowsy the most discriminative action units are :Eye Clo-
sure, Head Roll, Lip Puckerer, Lid Tightener, Nose Wrinkle. Some features
are good at discrimination of both alert from acutely drowsy and moderately
drowsy from acutely drowsy. For example eye closure is one of these action
units. However some features are good at discriminating alert from acutely
drowsy but are not good at discriminating moderately drowsy from acutely
drowsy. Smile and yawning are examples of these action units. There are also
subject-wise differences. In discriminating acutely drowsy from moderately
drowsy brow raise(AU2) increases in acutely drowsy conditions in some sub-
jects decreases in one subject and is neutral in others. With UYAN-2 dataset
we saw that there are variabilities among subjects for the AU2. In the first
study preliminary results indicated that Head Roll is an important measure
for some subjects in discriminating alert from drowsy. For Study II head
roll was a good predictor of drowsiness consistent with the finding that most
subjects move their heads in the roll dimension as they get more drowsy. For
Study II using temporal properties of the signal and using Gabor representa-
tion increased the performance. By combining other action units in addition
to eye closure (AU45) the error can be cut in half even for a harder task of
discrimination of fine drowsiness. Combining other action units also provides
extra information for the detection of drowsiness in the case of occlusions of
the eye such as sun-glasses.

5.2 Future Work
In this study we built reasonable classifiers using feature extraction methods
such as Gabor features and iterative feature selection approaches. Here Ga-
bor filters are used to analyze temporal structure but other methods such as
ICA or power spectrum could also be used instead. In addition other feature
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selection methods such as PCA could have been used instead of iterative fea-
ture selection method. In the future these feature extraction and selection
methods are planned to be further explored.

This study indicates that some of the action units like AU2 and AU10 is
discriminative in increasing or decreasing intensity value directions for some
subjects and non-discriminative for others. This information is planned to
be used in the future for a person dependent system. We do not report the
results of our study for adaptive drowsiness detection however person depen-
dent approach was explored in a preliminary study. Individual differences in
the way drowsiness is expressed are investigated and how to automatically
adapt detection of drowsiness to individual drivers is researched partially. In
the future the analysis will be further extended to understand the pros and
cons of a person dependent, adaptive and a person independent drowsiness
detection system.

We reported some preliminary results for coupling between eye closure
and eye brow raise and head movement and steering signals for Study I.
Coupling of behaviours is not studied for Study II. This is planned be ex-
plored in a future study.

In study I we classified segments into two classes such as acutely drowsy
versus alert. In the future classes in Study II and Study I can be expanded
into three classes as alert, moderately drowsy, and acutely drowsy and thus
the two studies can be further compared. In addition for both studies the
problem can be further extended and handled as a regression problem. Thus
we plan to predict continuous measure such as time to crash using facial and
movement measures.

The results obtained for both studies in this thesis might be subject or
dataset dependent. In the future both studies need to be repeated with an
expanded set of subjects to verify these results.

Although it is not reported in this thesis we also worked on brain waves
and we could predict fatigue based on raw EEG signal. However we discov-
ered that we are actually using the motion artifacts to predict drowsiness.
Motion artifacts are a big unsolved problem in EEG. In the future new tech-
niques can be explored to eliminate motion artifacts from EEG.

For the UYAN-2 upper torso movement measures are collected as a sep-
arate measure. This measure is planned to be analyzed in detail as a future
work.

For the UYAN-2 dataset subjective measures of drowsiness is collected
from two human labelers labeling the video in a continuous manner. The
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video clips are labeled by two labelers by moving the sliding bar using arrow
key while watching the video at full speed. The labels were discrete and
ranged from -5 (very alert) to 5 (very drowsy). In the future, how humans
perceive fatigue and how the human labels correlate with the the action units
is planned to be investigated.
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