16,339 research outputs found

    Kernel Truncated Regression Representation for Robust Subspace Clustering

    Get PDF
    Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering approaches assume that input data lie on linear subspaces. In practice, however, this assumption usually does not hold. To achieve nonlinear subspace clustering, we propose a novel method, called kernel truncated regression representation. Our method consists of the following four steps: 1) projecting the input data into a hidden space, where each data point can be linearly represented by other data points; 2) calculating the linear representation coefficients of the data representations in the hidden space; 3) truncating the trivial coefficients to achieve robustness and block-diagonality; and 4) executing the graph cutting operation on the coefficient matrix by solving a graph Laplacian problem. Our method has the advantages of a closed-form solution and the capacity of clustering data points that lie on nonlinear subspaces. The first advantage makes our method efficient in handling large-scale datasets, and the second one enables the proposed method to conquer the nonlinear subspace clustering challenge. Extensive experiments on six benchmarks demonstrate the effectiveness and the efficiency of the proposed method in comparison with current state-of-the-art approaches.Comment: 14 page

    A Framework for High-Accuracy Privacy-Preserving Mining

    Full text link
    To preserve client privacy in the data mining process, a variety of techniques based on random perturbation of data records have been proposed recently. In this paper, we present a generalized matrix-theoretic model of random perturbation, which facilitates a systematic approach to the design of perturbation mechanisms for privacy-preserving mining. Specifically, we demonstrate that (a) the prior techniques differ only in their settings for the model parameters, and (b) through appropriate choice of parameter settings, we can derive new perturbation techniques that provide highly accurate mining results even under strict privacy guarantees. We also propose a novel perturbation mechanism wherein the model parameters are themselves characterized as random variables, and demonstrate that this feature provides significant improvements in privacy at a very marginal cost in accuracy. While our model is valid for random-perturbation-based privacy-preserving mining in general, we specifically evaluate its utility here with regard to frequent-itemset mining on a variety of real datasets. The experimental results indicate that our mechanisms incur substantially lower identity and support errors as compared to the prior techniques

    From the Information Bottleneck to the Privacy Funnel

    Full text link
    We focus on the privacy-utility trade-off encountered by users who wish to disclose some information to an analyst, that is correlated with their private data, in the hope of receiving some utility. We rely on a general privacy statistical inference framework, under which data is transformed before it is disclosed, according to a probabilistic privacy mapping. We show that when the log-loss is introduced in this framework in both the privacy metric and the distortion metric, the privacy leakage and the utility constraint can be reduced to the mutual information between private data and disclosed data, and between non-private data and disclosed data respectively. We justify the relevance and generality of the privacy metric under the log-loss by proving that the inference threat under any bounded cost function can be upper-bounded by an explicit function of the mutual information between private data and disclosed data. We then show that the privacy-utility tradeoff under the log-loss can be cast as the non-convex Privacy Funnel optimization, and we leverage its connection to the Information Bottleneck, to provide a greedy algorithm that is locally optimal. We evaluate its performance on the US census dataset

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019
    corecore