1,548 research outputs found

    Loss systems in a random environment

    Full text link
    We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove an if-and-only-if-condition for a product form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, e.g. from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, e.g. of queueing-inventory processes. We investigate further classical loss systems, where due to finite waiting room loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise. We further investigate the embedded Markov chains at departure epochs and show that the behaviour of the embedded Markov chain is often considerably different from that of the continuous time Markov process. This is different from the behaviour of the standard M/G/1, where the steady state of the embedded Markov chain and the continuous time process coincide. For exponential queueing systems we show that there is a product form equilibrium of the embedded Markov chain under rather general conditions. For systems with non-exponential service times more restrictive constraints are needed, which we prove by a counter example where the environment represents an inventory attached to an M/D/1 queue. Such integrated queueing-inventory systems are dealt with in the literature previously, and are revisited here in detail

    Arrival first queueing networks with applications in kanban production systems

    Get PDF
    In this paper we introduce a new class of queueing networks called {\it arrival first networks}. We characterise its transition rates and derive the relationship between arrival rules, linear partial balance equations, and product form stationary distributions. This model is motivated by production systems operating under a kanban protocol. In contrast with the conventional {\em departure first networks}, where a transition is initiated by service completion of items at the originating nodes that are subsequently routed to the destination nodes (push system), in an arrival first network a transition is initiated by the destination nodes of the items and subsequently those items are processed at and removed from the originating nodes (pull system). These are similar to the push and pull systems in manufacturing systems

    Threshold queueing describes the fundamental diagram of uninterrupted traffic

    Get PDF
    Queueing due to congestion is an important aspect of road traffic. This paper provides a brief overview of queueing models for traffic and a novel threshold queue that captures the main aspects of the empirical shape of the fundamental diagram. Our numerical results characterises the sources of variation that influence the shape of the fundamental diagram

    A Fixed-Point Algorithm for Closed Queueing Networks

    Get PDF
    In this paper we propose a new efficient iterative scheme for solving closed queueing networks with phase-type service time distributions. The method is especially efficient and accurate in case of large numbers of nodes and large customer populations. We present the method, put it in perspective, and validate it through a large number of test scenarios. In most cases, the method provides accuracies within 5% relative error (in comparison to discrete-event simulation)

    Computationally Efficient Simulation of Queues: The R Package queuecomputer

    Get PDF
    Large networks of queueing systems model important real-world systems such as MapReduce clusters, web-servers, hospitals, call centers and airport passenger terminals. To model such systems accurately, we must infer queueing parameters from data. Unfortunately, for many queueing networks there is no clear way to proceed with parameter inference from data. Approximate Bayesian computation could offer a straightforward way to infer parameters for such networks if we could simulate data quickly enough. We present a computationally efficient method for simulating from a very general set of queueing networks with the R package queuecomputer. Remarkable speedups of more than 2 orders of magnitude are observed relative to the popular DES packages simmer and simpy. We replicate output from these packages to validate the package. The package is modular and integrates well with the popular R package dplyr. Complex queueing networks with tandem, parallel and fork/join topologies can easily be built with these two packages together. We show how to use this package with two examples: a call center and an airport terminal.Comment: Updated for queuecomputer_0.8.

    Modeling and analysis to improve the quality of healthcare services

    Get PDF
    For many healthcare services or medical procedures, patients have extensive risk of complication or face death when treatment is delayed. When a queue is formed in such a situation, it is very important to assess the suffering and risk faced by patients in queue and plan sufficient medical capabilities in advance to address the concerns. As the diversity of care settings increases, congestion in facilities causes many patients to unnecessarily spend extra days in intensive care facilities. Performance evaluation of current healthcare service systems using queueing theory gains more and more importance because of patient flows and systems complexity. Queueing models have been used in handsome number of healthcare studies, but the incorporation of blocking is still limited. In this research work, we study an efficient two-stage multi-class queueing network system with blocking and phase-type service time distribution to analyze such congestion processes. We also consider parallel servers at each station and first-come-first-serve non-preemptive service discipline are used to improve the performance of healthcare service systems

    Lattice path counting and the theory of queues

    Get PDF
    In this paper we will show how recent advances in the combinatorics of lattice paths can be applied to solve interesting and nontrivial problems in the theory of queues. The problems we discuss range from classical ones like M^a/M^b/1 systems to open tandem systems with and without global blocking and to queueing models that are related to random walks in a quarter plane like the Flatto-Hahn model or systems with preemptive priorities. (author´s abstract)Series: Research Report Series / Department of Statistics and Mathematic

    Approximations for fork/join systems with inputs from multi-server stations.

    Get PDF
    Fork/join stations are commonly used to model synchronization constraints in queuing network models of computer and manufacturing systems. This paper presents an exact analysis of a fork/join station in a closed queuing network with inputs from multi-server stations with two-phase Coxian service distributions. The underlying queue length process is analyzed exactly to determine performance measures such as through put, and distributions of the queue length at the fork/join station. By choosing suitable parameters for the two-phase Coxian distributions, the effect of variability in inputs on system performance is studied. The study reveals that for several system configurations, analysis of the simpler system with exponential inputs provides efficient approximations for performance measures. Both, the exact analysis and the simple approximations of fork/join systems constitute useful building blocks for developing efficient methods for analyzing large queuing networks with fork/join stations.queueing; fork/join; synchronization; assembly systems; closed queuing networks;
    corecore