4 research outputs found

    Re-verification of a Lip Synchronization Algorithm using robust reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm.This lip synchronization protocol is an interesting case because timing aspect are crucial for the correctness of the protocol. Several versions of the model are considered, with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Re-verification of a Lip Synchronization Protocol using Robust Reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm. This lip synchronization protocol is an interesting case because timing aspects are crucial for the correctness of the protocol. Several versions of the model are considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Quantitative Robustness Analysis of Flat Timed Automata

    No full text
    Whereas formal verification of timed systems has become a very active field of research, the idealized mathematical semantics of timed automata cannot be faithfully implemented. Recently, several works have studied a parametric semantics of timed automata related to implementability: if the specification is met for some positive value of the parameter, then there exists a correct implementation. In addition, the value of the parameter gives lower bounds on sufficient resources for the implementation. In this work, we present a symbolic algorithm for the computation of the parametric reachability set under this semantics for flat timed automata. As a consequence, we can compute the largest value of the parameter for a timed automaton to be safe
    corecore