17 research outputs found

    An AFPTAS for Bin Packing with Partition Matroid via a New Method for LP Rounding

    Get PDF
    We consider the Bin Packing problem with a partition matroid constraint. The input is a set of items of sizes in [0,1], and a partition matroid over the items. The goal is to pack the items in a minimum number of unit-size bins, such that each bin forms an independent set in the matroid. This variant of classic Bin Packing has natural applications in secure storage on the Cloud, as well as in equitable scheduling and clustering with fairness constraints. Our main result is an asymptotic fully polynomial-time approximation scheme (AFPTAS) for Bin Packing with a partition matroid constraint. This scheme generalizes the known AFPTAS for Bin Packing with Cardinality Constraints and improves the existing asymptotic polynomial-time approximation scheme (APTAS) for Group Bin Packing, which are both special cases of Bin Packing with partition matroid. We derive the scheme via a new method for rounding a (fractional) solution for a configuration-LP. Our method uses this solution to obtain prototypes, in which items are interpreted as placeholders for other items, and applies fractional grouping to modify a fractional solution (prototype) into one having desired integrality properties

    AFPTAS results for common variants of bin packing: A new method to handle the small items

    Full text link
    We consider two well-known natural variants of bin packing, and show that these packing problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). In bin packing problems, a set of one-dimensional items of size at most 1 is to be assigned (packed) to subsets of sum at most 1 (bins). It has been known for a while that the most basic problem admits an AFPTAS. In this paper, we develop methods that allow to extend this result to other variants of bin packing. Specifically, the problems which we study in this paper, for which we design asymptotic fully polynomial time approximation schemes, are the following. The first problem is "Bin packing with cardinality constraints", where a parameter k is given, such that a bin may contain up to k items. The goal is to minimize the number of bins used. The second problem is "Bin packing with rejection", where every item has a rejection penalty associated with it. An item needs to be either packed to a bin or rejected, and the goal is to minimize the number of used bins plus the total rejection penalty of unpacked items. This resolves the complexity of two important variants of the bin packing problem. Our approximation schemes use a novel method for packing the small items. This new method is the core of the improved running times of our schemes over the running times of the previous results, which are only asymptotic polynomial time approximation schemes (APTAS)

    A classification scheme for bin packing theory

    Get PDF
    Classifications of published research place new results in a historical context and in so doing identify open problems. An example in wide use classifies results in scheduling theory according to a scheme originated by Graham, Lawler, Lenstra and Rinnooy Kan [10]. A similar effort was made by Dyckhoff [6] for cutting and packing problems. Such classification schemes can be combined with comprehensive bibliographies, e.g., the one provided for scheduling theory by Bruckner 1. This paper describes a novel classification scheme for bin packing which is being applied by the authors to an extensive (and growing) bibliography of the theory. Problem classifications are supplemented by compact descriptions of the main results and of the corresponding algorithms. The usefulness of the scheme is extended by an online search engine. With the help of this software, one is easily able to determine whether results already exist for applications that appear to be new, and to assist in locating the cutting edge of the general theory

    Bounds for online bin packing with cardinality constraints

    Get PDF
    Abstract We study a bin packing problem in which a bin can contain at most k items of total size at most 1, where k ≥ 2 is a given parameter. Items are presented one by one in an online fashion. We analyze the best absolute competitive ratio of the problem and prove tight bounds of 2 for any k ≥ 4 . Additionally, we present bounds for relatively small values of k with respect to the asymptotic competitive ratio and the absolute competitive ratio. In particular, we provide tight bounds on the absolute competitive ratio of First Fit for k = 2 , 3 , 4 , and improve the known lower bounds on asymptotic competitive ratios for multiple values of k. Our method for obtaining a lower bound on the asymptotic competitive ratio using a certain type of an input is general, and we also use it to obtain an alternative proof of the known lower bound on the asymptotic competitive ratio of standard online bin packing

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    Online Bin Packing with Cardinality Constraints Resolved

    Get PDF
    Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin packing problem. In the online version with the parameter k >= 2, items having sizes in (0,1] associated with them are presented one by one to be packed into unit capacity bins, such that the capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online problem in the sense that we prove a lower bound of 2 on the overall asymptotic competitive ratio. This closes the long standing open problem of finding the value of the best possible overall asymptotic competitive ratio, since an algorithm of an absolute competitive ratio 2 for any fixed value of k is known. Additionally, we significantly improve the known lower bounds on the asymptotic competitive ratio for every specific value of k. The novelty of our constructions is based on full adaptivity that creates large gaps between item sizes. Thus, our lower bound inputs do not follow the common practice for online bin packing problems of having a known in advance input consisting of batches for which the algorithm needs to be competitive on every prefix of the input. Last, we show a lower bound strictly larger than 2 on the asymptotic competitive ratio of the online 2-dimensional vector packing problem, and thus provide for the first time a lower bound larger than 2 on the asymptotic competitive ratio for the vector packing problem in any fixed dimension
    corecore