7 research outputs found

    ARQ with Cumulative Feedback to Compensate for Burst Errors

    Full text link
    We propose a cumulative feedback-based ARQ (CF ARQ) protocol for a sliding window of size 2 over packet erasure channels with unreliable feedback. We exploit a matrix signal-flow graph approach to analyze probability-generating functions of transmission and delay times. Contrasting its performance with that of the uncoded baseline scheme for ARQ, developed by Ausavapattanakun and Nosratinia, we demonstrate that CF ARQ can provide significantly less average delay under bursty feedback, and gains up to about 20% in terms of throughput. We also outline the benefits of CF ARQ under burst errors and asymmetric channel conditions. The protocol is more predictable across statistics, hence is more stable. This can help design robust systems when feedback is unreliable. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: GLOBECOM'18. arXiv admin note: substantial text overlap with arXiv:1806.0577

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network

    Adaptive Causal Network Coding with Feedback for Multipath Multi-hop Communications

    Full text link
    We propose a novel multipath multi-hop adaptive and causal random linear network coding (AC-RLNC) algorithm with forward error correction. This algorithm generalizes our joint optimization coding solution for point-to-point communication with delayed feedback. AC-RLNC is adaptive to the estimated channel condition, and is causal, as the coding adjusts the retransmission rates using a priori and posteriori algorithms. In the multipath network, to achieve the desired throughput and delay, we propose to incorporate an adaptive packet allocation algorithm for retransmission, across the available resources of the paths. This approach is based on a discrete water filling algorithm, i.e., bit-filling, but, with two desired objectives, maximize throughput and minimize the delay. In the multipath multi-hop setting, we propose a new decentralized balancing optimization algorithm. This balancing algorithm minimizes the throughput degradation, caused by the variations in the channel quality of the paths at each hop. Furthermore, to increase the efficiency, in terms of the desired objectives, we propose a new selective recoding method at the intermediate nodes. We derive bounds on the throughput and the mean and maximum in order delivery delay of AC-RLNC, both in the multipath and multipath multi-hop case. In the multipath case, we prove that in the non-asymptotic regime, the suggested code may achieve more than 90% of the channel capacity with zero error probability. In the multipath multi-hop case, the balancing procedure is proven to be optimal with regards to the achieved rate. Through simulations, we demonstrate that the performance of our adaptive and causal approach, compared to selective repeat (SR)-ARQ protocol, is capable of gains up to a factor two in throughput and a factor of more than three in delay

    Goodput Analysis for Multi-Source Coded Downloads

    Get PDF
    corecore