24,501 research outputs found

    An Improved Link Model for Window Flow Control and Its Application to FAST TCP

    Get PDF
    This paper presents a link model which captures the queue dynamics in response to a change in a transmission control protocol (TCP) source's congestion window. By considering both self-clocking and the link integrator effect, the model generalizes existing models and is shown to be more accurate by both open loop and closed loop packet level simulations. It reduces to the known static link model when flows' round trip delays are identical, and approximates the standard integrator link model when there is significant cross traffic. We apply this model to the stability analysis of fast active queue management scalable TCP (FAST TCP) including its filter dynamics. Under this model, the FAST control law is linearly stable for a single bottleneck link with an arbitrary distribution of round trip delays. This result resolves the notable discrepancy between empirical observations and previous theoretical predictions. The analysis highlights the critical role of self-clocking in TCP stability, and the proof technique is new and less conservative than existing ones

    Throughput analysis of Scalable TCP congestion control

    Get PDF
    Scalable TCP (STCP) has been proposed a congestion control algorithm for high speed networks. We present a mathematical analysis of STCPÂŽs congestion window through the slow start and the congestion avoidance phases. We analyse the evolution of congestion windows for single and multiple flows and for DropTail queues with and without random loss. We derive throughput formulas for the different setups and reveal the inherent unfairness between different round trip times flows. Our mathematical analysis is compared to state-of-the-art network simulator (ns) results, which verifies our modelÂŽs accuracy. With our analysis we want to adaptively control STCPÂŽs fixed parameters in order to overcome the fairness problems. These experiments are work in progress and will be presented in a sequel paper

    Don't Repeat Yourself: Seamless Execution and Analysis of Extensive Network Experiments

    Full text link
    This paper presents MACI, the first bespoke framework for the management, the scalable execution, and the interactive analysis of a large number of network experiments. Driven by the desire to avoid repetitive implementation of just a few scripts for the execution and analysis of experiments, MACI emerged as a generic framework for network experiments that significantly increases efficiency and ensures reproducibility. To this end, MACI incorporates and integrates established simulators and analysis tools to foster rapid but systematic network experiments. We found MACI indispensable in all phases of the research and development process of various communication systems, such as i) an extensive DASH video streaming study, ii) the systematic development and improvement of Multipath TCP schedulers, and iii) research on a distributed topology graph pattern matching algorithm. With this work, we make MACI publicly available to the research community to advance efficient and reproducible network experiments
    • 

    corecore