14,231 research outputs found

    Wear Minimization for Cuckoo Hashing: How Not to Throw a Lot of Eggs into One Basket

    Full text link
    We study wear-leveling techniques for cuckoo hashing, showing that it is possible to achieve a memory wear bound of loglogn+O(1)\log\log n+O(1) after the insertion of nn items into a table of size CnCn for a suitable constant CC using cuckoo hashing. Moreover, we study our cuckoo hashing method empirically, showing that it significantly improves on the memory wear performance for classic cuckoo hashing and linear probing in practice.Comment: 13 pages, 1 table, 7 figures; to appear at the 13th Symposium on Experimental Algorithms (SEA 2014

    The universality of iterated hashing over variable-length strings

    Get PDF
    Iterated hash functions process strings recursively, one character at a time. At each iteration, they compute a new hash value from the preceding hash value and the next character. We prove that iterated hashing can be pairwise independent, but never 3-wise independent. We show that it can be almost universal over strings much longer than the number of hash values; we bound the maximal string length given the collision probability

    Tight Thresholds for Cuckoo Hashing via XORSAT

    Full text link
    We settle the question of tight thresholds for offline cuckoo hashing. The problem can be stated as follows: we have n keys to be hashed into m buckets each capable of holding a single key. Each key has k >= 3 (distinct) associated buckets chosen uniformly at random and independently of the choices of other keys. A hash table can be constructed successfully if each key can be placed into one of its buckets. We seek thresholds alpha_k such that, as n goes to infinity, if n/m <= alpha for some alpha < alpha_k then a hash table can be constructed successfully with high probability, and if n/m >= alpha for some alpha > alpha_k a hash table cannot be constructed successfully with high probability. Here we are considering the offline version of the problem, where all keys and hash values are given, so the problem is equivalent to previous models of multiple-choice hashing. We find the thresholds for all values of k > 2 by showing that they are in fact the same as the previously known thresholds for the random k-XORSAT problem. We then extend these results to the setting where keys can have differing number of choices, and provide evidence in the form of an algorithm for a conjecture extending this result to cuckoo hash tables that store multiple keys in a bucket.Comment: Revision 3 contains missing details of proofs, as appendix
    corecore