8,512 research outputs found

    Model checking probabilistic and stochastic extensions of the pi-calculus

    Get PDF
    We present an implementation of model checking for probabilistic and stochastic extensions of the pi-calculus, a process algebra which supports modelling of concurrency and mobility. Formal verification techniques for such extensions have clear applications in several domains, including mobile ad-hoc network protocols, probabilistic security protocols and biological pathways. Despite this, no implementation of automated verification exists. Building upon the pi-calculus model checker MMC, we first show an automated procedure for constructing the underlying semantic model of a probabilistic or stochastic pi-calculus process. This can then be verified using existing probabilistic model checkers such as PRISM. Secondly, we demonstrate how for processes of a specific structure a more efficient, compositional approach is applicable, which uses our extension of MMC on each parallel component of the system and then translates the results into a high-level modular description for the PRISM tool. The feasibility of our techniques is demonstrated through a number of case studies from the pi-calculus literature

    PRISM: a tool for automatic verification of probabilistic systems

    Get PDF
    Probabilistic model checking is an automatic formal verification technique for analysing quantitative properties of systems which exhibit stochastic behaviour. PRISM is a probabilistic model checking tool which has already been successfully deployed in a wide range of application domains, from real-time communication protocols to biological signalling pathways. The tool has recently undergone a significant amount of development. Major additions include facilities to manually explore models, Monte-Carlo discrete-event simulation techniques for approximate model analysis (including support for distributed simulation) and the ability to compute cost- and reward-based measures, e.g. "the expected energy consumption of the system before the first failure occurs". This paper presents an overview of all the main features of PRISM. More information can be found on the website: www.cs.bham.ac.uk/~dxp/prism

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed

    Combating corruption in international business transactions

    Get PDF
    We analyze the impact of different types of international conventions that require signatory countries to penalize domestic firms that are found to have bribed foreign public officials. We analyze enforcement of penalties under a convention styled after the OECD's 'Convention on Combating Bribery of Foreign Public Officials in International Business Transactions', in which signatory countries commit to prosecuting firms that have bribed public officials of any foreign country. We compare the results with the case in which the convention requires signatory countries to commit to prosecuting firms that have bribed public officials of signatory countries only. We argue that the second type of convention is more likely to ensure enforcement of penalties on firms found to have bribed foreign public officials.International corruption, OECD convention

    Fair and optimistic quantum contract signing

    Full text link
    We present a fair and optimistic quantum contract signing protocol between two clients that requires no communication with the third trusted party during the exchange phase. We discuss its fairness and show that it is possible to design such a protocol for which the probability of a dishonest client to cheat becomes negligible, and scales as N^{-1/2}, where N is the number of messages exchanged between the clients. Our protocol is not based on the exchange of signed messages: its fairness is based on the laws of quantum mechanics. Thus, it is abuse-free, and the clients do not have to generate new keys for each message during the Exchange phase. We discuss a real-life scenario when the measurement errors and qubit state corruption due to noisy channels occur and argue that for real, good enough measurement apparatus and transmission channels, our protocol would still be fair. Our protocol could be implemented by today's technology, as it requires in essence the same type of apparatus as the one needed for BB84 cryptographic protocol. Finally, we briefly discuss two alternative versions of the protocol, one that uses only two states (based on B92 protocol) and the other that uses entangled pairs, and show that it is possible to generalize our protocol to an arbitrary number of clients.Comment: 11 pages, 2 figure
    • …
    corecore