22,387 research outputs found

    Utilitarian Distributed Constraint Optimization Problems

    Full text link
    Privacy has been a major motivation for distributed problem optimization. However, even though several methods have been proposed to evaluate it, none of them is widely used. The Distributed Constraint Optimization Problem (DCOP) is a fundamental model used to approach various families of distributed problems. As privacy loss does not occur when a solution is accepted, but when it is proposed, privacy requirements cannot be interpreted as a criteria of the objective function of the DCOP. Here we approach the problem by letting both the optimized costs found in DCOPs and the privacy requirements guide the agents' exploration of the search space. We introduce Utilitarian Distributed Constraint Optimization Problem (UDCOP) where the costs and the privacy requirements are used as parameters to a heuristic modifying the search process. Common stochastic algorithms for decentralized constraint optimization problems are evaluated here according to how well they preserve privacy. Further, we propose some extensions where these solvers modify their search process to take into account their privacy requirements, succeeding in significantly reducing their privacy loss without significant degradation of the solution quality

    Distributed Constraint Problems for Utilitarian Agents with Privacy Concerns, Recast as POMDPs

    Full text link
    Privacy has traditionally been a major motivation for distributed problem solving. Distributed Constraint Satisfaction Problem (DisCSP) as well as Distributed Constraint Optimization Problem (DCOP) are fundamental models used to solve various families of distributed problems. Even though several approaches have been proposed to quantify and preserve privacy in such problems, none of them is exempt from limitations. Here we approach the problem by assuming that computation is performed among utilitarian agents. We introduce a utilitarian approach where the utility of each state is estimated as the difference between the reward for reaching an agreement on assignments of shared variables and the cost of privacy loss. We investigate extensions to solvers where agents integrate the utility function to guide their search and decide which action to perform, defining thereby their policy. We show that these extended solvers succeed in significantly reducing privacy loss without significant degradation of the solution quality

    DisCSPs with Privacy Recast as Planning Problems for Utility-based Agents

    Full text link
    Privacy has traditionally been a major motivation for decentralized problem solving. However, even though several metrics have been proposed to quantify it, none of them is easily integrated with common solvers. Constraint programming is a fundamental paradigm used to approach various families of problems. We introduce Utilitarian Distributed Constraint Satisfaction Problems (UDisCSP) where the utility of each state is estimated as the difference between the the expected rewards for agreements on assignments for shared variables, and the expected cost of privacy loss. Therefore, a traditional DisCSP with privacy requirements is viewed as a planning problem. The actions available to agents are: communication and local inference. Common decentralized solvers are evaluated here from the point of view of their interpretation as greedy planners. Further, we investigate some simple extensions where these solvers start taking into account the utility function. In these extensions we assume that the planning problem is further restricting the set of communication actions to only the communication primitives present in the corresponding solver protocols. The solvers obtained for the new type of problems propose the action (communication/inference) to be performed in each situation, defining thereby the policy

    Local Differential Privacy in Decentralized Optimization

    Full text link
    Privacy concerns with sensitive data are receiving increasing attention. In this paper, we study local differential privacy (LDP) in interactive decentralized optimization. By constructing random local aggregators, we propose a framework to amplify LDP by a constant. We take Alternating Direction Method of Multipliers (ADMM), and decentralized gradient descent as two concrete examples, where experiments support our theory. In an asymptotic view, we address the following question: Under LDP, is it possible to design a distributed private minimizer for arbitrary closed convex constraints with utility loss not explicitly dependent on dimensionality? As an affiliated result, we also show that with merely linear secret sharing, information theoretic privacy is achievable for bounded colluding agents

    AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems

    Full text link
    Asymmetric distributed constraint optimization problems (ADCOPs) are an emerging model for coordinating agents with personal preferences. However, the existing inference-based complete algorithms which use local eliminations cannot be applied to ADCOPs, as the parent agents are required to transfer their private functions to their children. Rather than disclosing private functions explicitly to facilitate local eliminations, we solve the problem by enforcing delayed eliminations and propose AsymDPOP, the first inference-based complete algorithm for ADCOPs. To solve the severe scalability problems incurred by delayed eliminations, we propose to reduce the memory consumption by propagating a set of smaller utility tables instead of a joint utility table, and to reduce the computation efforts by sequential optimizations instead of joint optimizations. The empirical evaluation indicates that AsymDPOP significantly outperforms the state-of-the-arts, as well as the vanilla DPOP with PEAV formulation

    Differentially Private Distributed Constrained Optimization

    Full text link
    Many resource allocation problems can be formulated as an optimization problem whose constraints contain sensitive information about participating users. This paper concerns solving this kind of optimization problem in a distributed manner while protecting the privacy of user information. Without privacy considerations, existing distributed algorithms normally consist in a central entity computing and broadcasting certain public coordination signals to participating users. However, the coordination signals often depend on user information, so that an adversary who has access to the coordination signals can potentially decode information on individual users and put user privacy at risk. We present a distributed optimization algorithm that preserves differential privacy, which is a strong notion that guarantees user privacy regardless of any auxiliary information an adversary may have. The algorithm achieves privacy by perturbing the public signals with additive noise, whose magnitude is determined by the sensitivity of the projection operation onto user-specified constraints. By viewing the differentially private algorithm as an implementation of stochastic gradient descent, we are able to derive a bound for the suboptimality of the algorithm. We illustrate the implementation of our algorithm via a case study of electric vehicle charging. Specifically, we derive the sensitivity and present numerical simulations for the algorithm. Through numerical simulations, we are able to investigate various aspects of the algorithm when being used in practice, including the choice of step size, number of iterations, and the trade-off between privacy level and suboptimality.Comment: Submitted to the IEEE Transactions on Automatic Contro

    REAP: An Efficient Incentive Mechanism for Reconciling Aggregation Accuracy and Individual Privacy in Crowdsensing

    Full text link
    Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumption on trustworthy FC and allows participatory users (PUs) to add well calibrated noise to their raw sensing data before reporting them, whereas the focus is on the equilibrium behavior of data subjects with binary data. Making a paradigm shift, this paper aim to quantify the privacy compensation for continuous data sensing while allowing FC to directly control PUs. There are two conflicting objectives in such scenario: FC desires better quality data in order to achieve higher aggregation accuracy whereas PUs prefer adding larger noise for higher privacy-preserving levels (PPLs). To achieve a good balance therein, we design an efficient incentive mechanism to REconcile FC's Aggregation accuracy and individual PU's data Privacy (REAP). Specifically, we adopt the celebrated notion of differential privacy to measure PUs' PPLs and quantify their impacts on FC's aggregation accuracy. Then, appealing to Contract Theory, we design an incentive mechanism to maximize FC's aggregation accuracy under a given budget. The proposed incentive mechanism offers different contracts to PUs with different privacy preferences, by which FC can directly control PUs. It can further overcome the information asymmetry, i.e., the FC typically does not know each PU's precise privacy preference. We derive closed-form solutions for the optimal contracts in both complete information and incomplete information scenarios. Further, the results are generalized to the continuous case where PUs' privacy preferences take values in a continuous domain. Extensive simulations are provided to validate the feasibility and advantages of our proposed incentive mechanism.Comment: 11 pages, 6 figure

    Optimal Noise-Adding Mechanism in Additive Differential Privacy

    Full text link
    We derive the optimal (0,δ)(0, \delta)-differentially private query-output independent noise-adding mechanism for single real-valued query function under a general cost-minimization framework. Under a mild technical condition, we show that the optimal noise probability distribution is a uniform distribution with a probability mass at the origin. We explicitly derive the optimal noise distribution for general ℓp\ell^p cost functions, including ℓ1\ell^1 (for noise magnitude) and ℓ2\ell^2 (for noise power) cost functions, and show that the probability concentration on the origin occurs when δ>pp+1\delta > \frac{p}{p+1}. Our result demonstrates an improvement over the existing Gaussian mechanisms by a factor of two and three for (0,δ)(0,\delta)-differential privacy in the high privacy regime in the context of minimizing the noise magnitude and noise power, and the gain is more pronounced in the low privacy regime. Our result is consistent with the existing result for (0,δ)(0,\delta)-differential privacy in the discrete setting, and identifies a probability concentration phenomenon in the continuous setting.Comment: 10 pages, 5 figures. Accepted by the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019

    Federated Learning via Over-the-Air Computation

    Full text link
    The stringent requirements for low-latency and privacy of the emerging high-stake applications with intelligent devices such as drones and smart vehicles make the cloud computing inapplicable in these scenarios. Instead, edge machine learning becomes increasingly attractive for performing training and inference directly at network edges without sending data to a centralized data center. This stimulates a nascent field termed as federated learning for training a machine learning model on computation, storage, energy and bandwidth limited mobile devices in a distributed manner. To preserve data privacy and address the issues of unbalanced and non-IID data points across different devices, the federated averaging algorithm has been proposed for global model aggregation by computing the weighted average of locally updated model at each selected device. However, the limited communication bandwidth becomes the main bottleneck for aggregating the locally computed updates. We thus propose a novel over-the-air computation based approach for fast global model aggregation via exploring the superposition property of a wireless multiple-access channel. This is achieved by joint device selection and beamforming design, which is modeled as a sparse and low-rank optimization problem to support efficient algorithms design. To achieve this goal, we provide a difference-of-convex-functions (DC) representation for the sparse and low-rank function to enhance sparsity and accurately detect the fixed-rank constraint in the procedure of device selection. A DC algorithm is further developed to solve the resulting DC program with global convergence guarantees. The algorithmic advantages and admirable performance of the proposed methodologies are demonstrated through extensive numerical results

    Distributed generation of privacy preserving data with user customization

    Full text link
    Distributed devices such as mobile phones can produce and store large amounts of data that can enhance machine learning models; however, this data may contain private information specific to the data owner that prevents the release of the data. We wish to reduce the correlation between user-specific private information and data while maintaining the useful information. Rather than learning a large model to achieve privatization from end to end, we introduce a decoupling of the creation of a latent representation and the privatization of data that allows user-specific privatization to occur in a distributed setting with limited computation and minimal disturbance on the utility of the data. We leverage a Variational Autoencoder (VAE) to create a compact latent representation of the data; however, the VAE remains fixed for all devices and all possible private labels. We then train a small generative filter to perturb the latent representation based on individual preferences regarding the private and utility information. The small filter is trained by utilizing a GAN-type robust optimization that can take place on a distributed device. We conduct experiments on three popular datasets: MNIST, UCI-Adult, and CelebA, and give a thorough evaluation including visualizing the geometry of the latent embeddings and estimating the empirical mutual information to show the effectiveness of our approach.Comment: accepted in ICLR 2019 SafeML worksho
    • …
    corecore