16 research outputs found

    A Secure and Fair Protocol that Addresses Weaknesses of the Nash Bargaining Solution in Nonlinear Negotiation

    Get PDF
    Negotiation with multiple interdependent issues is an important problem since much of real-world negotiation falls into this category. This paper examines the problem that, in such domains, agent utility functions are nonlinear, and thereby can create nonconvex Pareto frontiers. This in turn implies that the Nash Bargaining Solution, which has been viewed as the gold standard for identifying a unique optimal negotiation outcome, does not serve that role in nonlinear domains. In nonlinear domains, unlike linear ones, there can be multiple Nash Bargaining Solutions, and all can be sub-optimal with respect to social welfare and fairness. In this paper, we propose a novel negotiation protocol called SFMP (the Secure and Fair Mediator Protocol) that addresses this challenge, enabling secure multilateral negotiations with fair and pareto-optimal outcomes in nonlinear domains. The protocol works by (1) using nonlinear optimization, combined with a Multi-Party protocol, to find the Pareto front without revealing agent’s private utility information, and (2) selecting the agreement from the Pareto set that maximizes a fair division criterion we call approximated fairness. We demonstrate that SFMP is able to find agreements that maximize fairness and social welfare in nonlinear domains, and out-performs (in terms of outcomes and scalability) previously developed nonlinear negotiation protocols

    Privacy Guarantees through Distributed Constraint Satisfaction

    Get PDF
    The reason for using distributed constraint satisfaction algorithms is often to allow agents to find a solution while revealing as little as possible about their variables and constraints. So far, most algorithms for DisCSP do not guarantee privacy of this information. This paper describes some simple techniques that can be used with DisCSP algorithms such as DPOP, and provide sensible privacy guarantees based on the distributed solving process without sacrificing its efficiency

    Decentralized Resource Scheduling in Grid/Cloud Computing

    Get PDF
    In the Grid/Cloud environment, applications or services and resources belong to different organizations with different objectives. Entities in the Grid/Cloud are autonomous and self-interested; however, they are willing to share their resources and services to achieve their individual and collective goals. In such open environment, the scheduling decision is a challenge given the decentralized nature of the environment. Each entity has specific requirements and objectives that need to achieve. In this thesis, we review the Grid/Cloud computing technologies, environment characteristics and structure and indicate the challenges within the resource scheduling. We capture the Grid/Cloud scheduling model based on the complete requirement of the environment. We further create a mapping between the Grid/Cloud scheduling problem and the combinatorial allocation problem and propose an adequate economic-based optimization model based on the characteristic and the structure nature of the Grid/Cloud. By adequacy, we mean that a comprehensive view of required properties of the Grid/Cloud is captured. We utilize the captured properties and propose a bidding language that is expressive where entities have the ability to specify any set of preferences in the Grid/Cloud and simple as entities have the ability to express structured preferences directly. We propose a winner determination model and mechanism that utilizes the proposed bidding language and finds a scheduling solution. Our proposed approach integrates concepts and principles of mechanism design and classical scheduling theory. Furthermore, we argue that in such open environment privacy concerns by nature is part of the requirement in the Grid/Cloud. Hence, any scheduling decision within the Grid/Cloud computing environment is to incorporate the feasibility of privacy protection of an entity. Each entity has specific requirements in terms of scheduling and privacy preferences. We analyze the privacy problem in the Grid/Cloud computing environment and propose an economic based model and solution architecture that provides a scheduling solution given privacy concerns in the Grid/Cloud. Finally, as a demonstration of the applicability of the approach, we apply our solution by integrating with Globus toolkit (a well adopted tool to enable Grid/Cloud computing environment). We also, created simulation experimental results to capture the economic and time efficiency of the proposed solution

    Privacy in Cooperative Distributed Systems: Modeling and Protection Framework

    Get PDF
    A new form of computation is emerging rapidly with cloud computing, mobile computing, wearable computing and the Internet-of-Things. All can be characterized as a class of “Cooperative Distributed Systems” (CDS) in open environment. A major driver of the growth is the exponential adoption by people and organizations within all aspects of their day-to-day matters. In this context, users’ requirements for privacy protection are becoming essential and complex beyond the traditional approaches. This requires a formal treatment of “privacy” as a fundamental computation concept in CDS paradigm. The objective is to develop a comprehensive formal model for “privacy” as base to build a CDS based framework and platform in which various applications allow users to enjoy the comprehensive services in open environments while protecting their privacy seamlessly. To this end, this thesis presents a novel way of understudying, modeling and analyzing privacy concerns in CDS. A formal foundations and model of privacy is developed within the context of information management. This served as a base for developing a privacy protection management framework for CDS. It includes a privacy-aware agent model for CDS platform with the ability to support interaction-based privacy protection. The feasibility of the proposed models has been demonstrated by developing an agent-based CDS platform using JIAC framework and a privacy-based Contract Net Protocol. It also included the application scenarios for the framework for privacy protection is Internet-of-Tings, cloud-based resource scheduling and personal assistance
    corecore