
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

3-22-2013 12:00 AM

Decentralized Resource Scheduling in Grid/Cloud Computing Decentralized Resource Scheduling in Grid/Cloud Computing

Ra'afat O. Abu-Rukba
The University of Western Ontario

Supervisor

Hamada Ghenniwa

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Ra'afat O. Abu-Rukba 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Abu-Rukba, Ra'afat O., "Decentralized Resource Scheduling in Grid/Cloud Computing" (2013). Electronic
Thesis and Dissertation Repository. 1153.
https://ir.lib.uwo.ca/etd/1153

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ir.lib.uwo.ca%2Fetd%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1153?utm_source=ir.lib.uwo.ca%2Fetd%2F1153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Decentralized Resource Scheduling in Grid/Cloud Computing

(Thesis format: Monograph)

by

Ra’afat Abu-Rukba

Graduate Program in Engineering Science
Department of Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Ra’afat Abu-Rukba 2013

ii

Abstract

In the Grid/Cloud environment, applications or services and resources belong to different

organizations with different objectives. Entities in the Grid/Cloud are autonomous and self-

interested; however, they are willing to share their resources and services to achieve their

individual and collective goals. In such open environment, the scheduling decision is a

challenge given the decentralized nature of the environment. Each entity has specific

requirements and objectives that need to achieve. In this thesis, we review the Grid/Cloud

computing technologies, environment characteristics and structure and indicate the

challenges within the resource scheduling. We capture the Grid/Cloud scheduling model

based on the complete requirement of the environment. We further create a mapping between

the Grid/Cloud scheduling problem and the combinatorial allocation problem and propose an

adequate economic-based optimization model based on the characteristic and the structure of

the Grid/Cloud. By adequacy, we mean that a comprehensive view of required properties of

the Grid/Cloud is captured. We utilize the captured properties and propose a bidding

language that is expressive where entities have the ability to specify any set of preferences in

the Grid/Cloud computing environment. The language is to also enable entities to express

structured preferences directly. We propose a winner determination model and mechanism

that utilizes the proposed bidding language and finds a scheduling solution. Our proposed

approach integrates concepts and principles of mechanism design and classical scheduling

theory. Furthermore, we argue that in such open environment privacy concerns by nature is

part of the requirement in the Grid/Cloud. Hence, any scheduling decision within the

Grid/Cloud computing environment is to incorporate the feasibility of privacy protection of

an entity. Each entity has specific requirements in terms of scheduling and privacy

preferences. We analyze the privacy problem in the Grid/Cloud computing environment and

propose an economic based model and solution architecture that provides a scheduling

solution given privacy concerns in the Grid/Cloud. Finally, as a demonstration of the

applicability of the approach, we apply our solution by integrating with Globus toolkit (a

well adopted tool to enable Grid/Cloud computing environment). We also, created simulation

experimental results to capture the economic and time efficiency of the proposed solution.

iii

Keywords

Grid/Cloud computing Scheduling, Decentralized Environment, Combinatorial Auction,

Grid/Cloud Bidding Language, Winner determination, Grid/Cloud Privacy Model.

iv

Dedication

To my parents Dr. Omar Aburukba and Mrs. Tharwat Almadhoun, who gave me everything,

including their love, inspiration, support, and heartfelt prayers.

v

Acknowledgments

First and foremost, I would like to thank and praise Allah almighty, the only One God, for the

opportunities and support I was given along the way. This work would not have been

possible otherwise.

I would like to express my gratitude to my supervisor Professor Hamada Ghenniwa for his

encouragement, guidance, and support. I value his respect towards professionalism and the

desire to excel higher and higher. He has made me competent in organizing and managing

research activities and projects within the CDS Group and in applying them within the

industry environment.

I wish to express my gratitude to my co-supervisor Dr. Weiming Shen for his support and for

being there whenever I needed his help and feedback.

I am also very grateful to the members of the examining board for their recommendations

and suggestions. Their feedback was quite valuable to the final revisions and editing of this

work.

I would also like to acknowledge the support of:

 EK3 technologies for providing me the opportunity to work with their team to apply my

research within their domain and environment;

 Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial

support over the years;

 Afshan and Adrian for the collaborative work of Privacy and the Grid implementation;

 wise people who inspired my thinking through many discussions and collaborative

projects in the Cooperative Distributed Systems Engineering Group (Dr. Abdulmutalib,

Dr. Chun, Dr. Yunjiao, Dr. Daisy, Wafa, Mohammed, Sherif) and EK3 technologies

(Nick, Ed, Ken, Dennis, David, Weiping, Mark, Justin, Kevin, George, Shawn, Adam).

My wholehearted thanks to my parents (Dr. Omar Aburukba and Mrs. Tharwat Almadhoon),

my wife (Raghdah Eldaour), and my children (Marya and Omar) for their continuous love,

patience, and encouragement.

vi

Table of Contents

Dedication .. iv

Acknowledgments... v

Table of Contents ... vi

List of Tables .. x

List of Figures .. xi

List of Models .. xiii

Chapter 1 ... 1

1 Introduction .. 1

 Overview ... 1 1.1

 Scheduling Problem in the Grid/Cloud ... 3 1.2

 Problem Scope and Issues ... 4 1.3

 Outline of the Thesis ... 6 1.4

Chapter 2 ... 7

2 Related Work ... 7

 Scheduling Structures Overview... 7 2.1

 Scheduling Objective .. 8 2.2

 Entities Coordination in the Grid/Cloud ... 8 2.3

2.3.1 Coordination Mechanism .. 9

2.3.2 Coordination Structure .. 9

 Economic-Based Approaches Background... 10 2.4

 Price-Taking/Competitive Equilibrium Approaches .. 11 2.5

2.5.1 General Equilibrium Market Mechanisms .. 11

2.5.2 Commodity Market ... 12

vii

2.5.3 Auction Market ... 13

 Grid/Cloud Scheduling Approaches ... 18 2.6

2.6.1 Economic-based Scheduling Approach .. 18

2.6.2 Heuristics .. 22

2.6.3 Other Scheduling Approaches in the Grid/Cloud 23

 Privacy in the Grid/Cloud ... 24 2.7

Chapter 3 ... 27

3 Grid/Cloud Computing System .. 27

 The Grid/Cloud System: High-Level View .. 28 3.1

 The Grid/Cloud Scheduling Phases .. 30 3.2

3.2.1 Phase 1: Resource Discovery .. 32

3.2.2 Phase 2: System Selection .. 33

3.2.3 Phase 3: Task Execution ... 34

 Characteristics of the Grid/Cloud System... 34 3.3

Chapter 4 ... 38

4 Scheduling Problem in the Grid/Cloud .. 38

 Overview ... 38 4.1

 Grid/Cloud Providers .. 39 4.2

 Grid/Cloud Consumers ... 40 4.3

 Formulation ... 41 4.4

4.4.1 Completion Time Formulation ... 41

4.4.2 Resource Utilization Formulation ... 44

 Grid/Cloud Scheduling Problem and Structure .. 45 4.5

 Privacy: a Required Attribute in the Grid/Cloud .. 46 4.6

 Privacy Protection Level in the Grid/Cloud.. 47 4.7

viii

 Economic-Based Model: a Proposed Model for the Grid/Cloud Scheduling 4.8

Problem ... 52

4.8.1 Mapping to the Combinatorial Allocation Problem.................................. 54

4.8.2 Combinatorial Auction Model .. 56

Chapter 5 ... 60

5 Requirement Based Bidding Language for Resource Scheduling in the Grid/Cloud .. 60

 Grid/Cloud Scheduling Properties .. 61 5.1

5.1.1 Time-based Requirements and Availability.. 61

5.1.2 Support for Requirements ... 62

5.1.3 Support for Allocation constraints .. 63

5.1.4 Reserve Value on bundles ... 63

5.1.5 Consumer’s expressiveness on bundles of items and Resource Composites

... 64

5.1.6 Sell, Consume Multiple Identical Units of items 64

5.1.7 Multiple consumers and multiple goods expressiveness 65

5.1.8 Trade of Resources ... 65

 Related work on Bidding Language ... 65 5.2

 Tree Based Specification Bidding Language .. 68 5.3

 Bidding Language Expressiveness ... 70 5.4

 Bidding Language Expansion for the Grid/Cloud Scheduling with Privacy 5.5

Concerns ... 73

 Proposed Bidding Language Conciseness .. 75 5.6

Chapter 6 ... 79

6 Winner Determination .. 79

 Market Mechanism Properties .. 79 6.1

 The Winner Determination Problem: Formulation ... 80 6.2

 The Winner Determination Problem: Formulation with Privacy Concerns 81 6.3

ix

 The Winner Determination Algorithm.. 83 6.4

6.4.1 Providers’ Resource Insertion ... 83

6.4.2 Consumers’ Bids Insertion .. 84

6.4.3 Auction clear ... 87

Chapter 7 ... 88

7 Implementation and Validation .. 88

 Proposed Grid/Cloud Scheduling Architecture .. 88 7.1

 Proposed Grid/Cloud Scheduling Architecture with Privacy Concerns 90 7.2

 Bidding Language Representation .. 91 7.3

 Implementation Environment ... 94 7.4

 Experimentation Environment and Results .. 98 7.5

7.5.1 Economic Efficiency ... 99

7.5.2 Run Times Results .. 101

Chapter 8 ... 102

8 Summary and Conclusion .. 102

 Summary of Contributions .. 102 8.1

 Conclusions ... 104 8.2

 Directions for Future Research ... 104 8.3

Bibliography ... 107

Curriculum Vitae .. 120

x

List of Tables

Table 1 Grid/Cloud Definitions and Characteristics ... 35

xi

List of Figures

Figure 1: Supply and demand curves and equilibrium point. Image from the economic blog:

http://enthusiasm.cozy.org/ ... 4

Figure 2: Grid Layered Architecture in relationship to the Grid Process Execution. 29

Figure 3: Logical Grid Scheduling Architecture. ... 31

Figure 4: Grid Scheduling Phases. .. 32

Figure 5: Expressiveness to CPU quantity and time. .. 70

Figure 6: Expressiveness of CPU quantity and time to be consecutive. 71

Figure 7: Expressiveness of Service Requirements that has precedence constraints. 71

Figure 8: Expressiveness of a Trade Case. ... 72

Figure 9: Provider Expressiveness using the bidding language.. 73

Figure 10: Grid/Cloud Tree Bidding Specification Language with Privacy Attributes

Requirement Example. .. 75

Figure 11: TBBL Representation for the case in Figure 5. ... 76

Figure 12: TBBL Representation for the case in Figure 6. ... 76

Figure 13: Continuous time requirement for items. .. 77

Figure 14: Discontinuous time requirement for items. ... 78

Figure 15: Time-Based Bin Architecture Example. ... 85

Figure 16: High-level Architecture. .. 89

Figure 17: High-level view of the allocation of resource given the privacy concerns. 91

Figure 18: Implementation Logical Architecture. .. 96

xii

Figure 19: Economic Efficiency for 9 random runs. .. 100

Figure 20: Run times of the propose WD and CPLEX for 9 problem sets. 101

xiii

List of Models

Model 1: Minimizing the completion time of the workflow. ... 43

Model 2: Resource Utilization Provider’s Objective. ... 44

Model 3: Auction Model ... 58

Model 4: Winner Determination Problem Formulation. .. 81

Model 5: Winner Determination Model with the Privacy Concerns. 82

1

Chapter 1

1 Introduction

This chapter introduces the context of the research explored in this thesis. It starts with

the fundamental motivations behind decentralized and coordinated organization of

Grid/Cloud systems; including resource allocation systems. The chapter thereafter

provides discussion on the problem and the issues scope of the work and the outline of

the thesis.

 Overview 1.1

In the last few years, we have seen the emergence of a new generation of business that

operates over the Internet. The Internet has become a medium for organizations,

businesses and individuals to collaborate because of technological and economic benefits.

The complexity of these networks is increasing given their assets of the sub-networks that

provide access to services and resources. These networks serve to strengthen business-

customer relationships, increases profitability and customer satisfaction. Grid/Cloud

computing paradigm has quickly become to realization. However, the integration of

decentralized services and resources over the internet is still a challenge.

In the mid-1990s, the term Grid was coined to describe technologies that would allow

consumers to obtain computing power on demand. Ian Foster [Foster et al., 2002] and

others proposed that by standardizing the protocols used to request computing power, the

creation of a Computing Grid could happen, analogous in form and utility to the electric

power grid. Standards organizations (e.g., OGF, OASIS) defined relevant standards. The

term was also adopted by industry as a marketing term for clusters. But no viable

commercial Grid Computing providers emerged, at least not until recently.

In early 2008 the term “cloud computing” was created. Many definitions exist in the

literature about Grid and Cloud computing. However, the vision of both the cloud and the

Grid is the same which is to reduce the cost of computing, increase reliability, and

increase flexibility by transforming computers from something that we buy and operate

2

ourselves to something that is operated by a third party [Foster et al., 2008]. We view the

“cloud” term as another marketing term hype of the Grid computing as they share the

same vision, fundamental characteristics and challenges. A similar view is given by many

experts defined in [Geelan, 2009].

Grid/Cloud computing is a computational paradigm that utilizes networked computing

systems in which applications or services plug into a “power Grid” or “Internet Cloud” of

computation for execution. A Network computing system is a virtual system that is

formed by processors and networks that agree to work together by pooling their

resources. Grid/Cloud computing is a generalized networked computing system that

scales to internet levels and handles data and computation seamlessly.

Traditional computational models include three elements: computational power

(processors and memory), storage, and software (services). The overall goal of

Grid/Cloud computing is to allow applications to utilize computational power, storage,

and services as exchangeable commodities. Utilizing such computational power from

multiple sources increases the system throughput.

The Grid/Cloud systems can be classified depending on the type of usage. Similar to

traditional computation model, those computation elements are the main elements in the

Grid/Cloud system. However, instead of the traditional centralized node that does all the

computation, the Grid/Cloud has different nodes that are distributed. The Grid/Cloud

computing systems can be classified into:

 Computational: denotes a system that has a high aggregate capacity of distributed

processors. It harnesses machines in “cycle-stealing” mode to have higher

computational capacity than the capacity of any constituent machine in the system.

 Data: provides an infrastructure for creating information from data repositories such

as data warehouses.

 Service: refers to systems that provide services that are not provided by any single

local machine. An aggregate of services can compose a new service.

3

This thesis focuses on the Grid/Cloud systems, where participants have the will to

collaborate with others in contributing their resources within the environment. In such

setting, users provide their resources to be utilized.

 Scheduling Problem in the Grid/Cloud 1.2

This thesis focuses on the scheduling problem within the Grid/Cloud environment. In

traditional scheduling, a central decision maker is equipped with all the relevant

knowledge of the problem, and would be asked to derive a solution that fulfills all the

necessary side constraints, optimizing a global performance criterion. The nature of the

Grid/Cloud environment is that decisions are taken by several independent entities and

those entities might be aiming at optimizing their own objectives rather than the

performance of the system as a whole. Entities in this environment are self-interested and

willing to share their resources. Such environment calls for models and techniques that

take the strategic behavior of individual units into account, and simultaneously keep an

eye on the global performance of the system. Strategic situations are traditionally

analyzed in Economic theory. In classical economic theory, there are several market

models for specific trading situations and structural behaviors. We view Grid/Cloud

environment as a marketplace with several participants whose behavior is bound and

determined by a diverse set of specialized services, resources and objectives. Economic

theory proposed the use of markets to govern and provide efficient allocation of

resources.

The MIT Dictionary of Modern Economics [Pearce, 1986] defines a market as a context

in which the sale and purchase of goods and services take place.

The Dictionary of economics [Rutherford, 1992] suggests a definition by which market is

a medium of exchanges between buyers and sellers. A good is the economic abstraction

for a thing that imparts utility to its possessor or recipient.

[Tucker, 1998], "a market is a medium in which autonomous agents exchange goods

under the guidance of price in order to maximize their own utility".

4

Market-based resource allocation systems rely on consumers to set values on resources

that they require. Market mechanism is to provide an allocation that is optimal. The

fundamental principle is that resources are priced based on the aggregated supply and

demand. Consumers seek a quantity of resource that maximizes their utility given the

current market price. Trade occurs at a clearing price that balances supply and demand as

shown in Figure 1. Such allocations are economically efficient. This means no

reallocation can make one better off without making another worse. Applying the

economic-based framework offers an effective way to solve the issues of scheduling

problems in the Grid/Cloud environment such as decentralization, autonomy, resource

sharing, heterogeneity, and quality of solution.

Figure 1: Supply and demand curves and equilibrium point. Image from the economic

blog: http://enthusiasm.cozy.org/

 Problem Scope and Issues 1.3

In this thesis, we address the challenges related to modelling and developing a practical

architectural solution for resource scheduling in the Grid/Cloud environment that

supports both economic efficiency and allocation adequacy based on the characteristics

of the environment. Moreover, there is an emergent demand for expressive mechanisms

in the Grid/Cloud computing environment. For example, the ability to express time and

quality as well as co-allocation constraints. It is recognizable that any adoption of auction

http://enthusiasm.cozy.org/

5

mechanisms must support a bidding language with the ability to express complicated

valuations over multiple attributes. The design of a bidding language plays a key role in

the allocation problem, preference elicitation and winner-determination [Lehmann et. al.

2006]. A well-known expressive mechanism is a combinatorial auction (CA) [Benisch et.

al. 2008][Lubin et. al., 2008], which allows participants to express valuations over

bundles of items. In this thesis, we develop a tree-based requirement specification

language (TBRSL) that allows bidders to directly express their requirements, such as

time boundaries, resource requirement specification, and valuations. The proposed

bidding language addresses challenges related to expressiveness as the ability to specify

any set of preferences in the Grid/Cloud; ease-of-use as the ability to express structured

preferences directly; computational-efficiency as the ability to support computationally

tractable winner-determination algorithms. In addition to the computational efficiency,

we address other attributes that are essential to the winner determination mechanism in

the Grid/Cloud. Such attributes are: allocative efficiency, strategy-proofness, and

individual rationality.

Moreover, in an open environment such as the Grid/Cloud, it is inadequate to assume that

entities consider privacy of information. It is essential that entities receive privacy

protection in order to safely coordinate with each other. The work in [Samani et. al.,

2012] identifies the elements of privacy situations and proposes a risk assessment model

for evaluating the risk of interactions of two entities. This includes elements such as trust

level, severity of operation on information, negotiated agreement between entities,

relevancy of the type of the requested information and the type of the offered service,

sensitivity, cost and criticality of information and the information gain of exposing the

information to other entities. The risk assessment model considers all these elements and

calculates the risk of privacy violation in a specific interaction [Samani et. al., 2012].

Utilizing the risk assessment procedure facilitates quantifying privacy interactions. It can

lead to evaluate privacy interactions in terms of Privacy Protection Level (PPL). In this

thesis, we provide a scheduling solution given privacy concerns requirements. We

analyze the privacy concerns to be applied to the Grid/Cloud computing scheduling

problem and utilize the proposed solution to the bidding language proposed in Chapter 5

6

and the winner determination mechanism proposed in Chapter 6 within the solution for

the scheduling problem given privacy concerns.

 Outline of the Thesis 1.4

The rest of the thesis is structured as follows. Chapter 2 reviews scheduling problem

models and related solution approaches for the Grid/Cloud environment. Chapter 3

presents an overview of the Grid/Cloud computing system. Chapter 4 analyzes the

scheduling problem in the Grid/Cloud and formulates models based on the completion

time of consumers and resource utilization or providers and describes the mapping of the

scheduling problem in the Grid/Cloud to economic based models. Chapter 5 describes the

proposed Grid/Cloud based bidding language. Chapter 6 proposes a winner determination

algorithm for the Grid/Cloud scheduling problem. Chapter 7 presents the implementation

architecture, integration with Globus, and results validation. Chapter 8 provides a brief

conclusion.

7

Chapter 2

2 Related Work

Effective scheduling is a key challenge for performance and quality driven requirements

of Grid/Cloud computing requests. Scheduling is a process of finding the capable

resources that can execute the Grid/Cloud requests (tasks) at specific times that satisfy

specific performance quality measure such as execution time minimization, as specified

by Grid/Cloud users. In this chapter, we review scheduling algorithms, techniques, and

frameworks used for scheduling tasks on the Grid/Cloud.

 Scheduling Structures Overview 2.1

The architecture of a scheduling infrastructure is very important with regards to

scalability, autonomy, and performance of the system [Hamscher, 2000]. It can be

divided into three categories: centralized, distributed and decentralized.

In a centralized scheduling architecture [Yu and Buyya, 2009], scheduling decisions are

made by a central controller for all the tasks. The scheduler maintains all information

about the tasks and keeps track of all available resources in the system. Centralized

scheduling organization is simple to implement and easy to deploy. However, it is not

adequate for the Grid/Cloud because of the nature of the Grid/Cloud computing

environment.

In distributed scheduling, there is a central manager and multiple lower-level entities.

This central manager is responsible for handling the complete execution of a task and

assigning the individual tasks to the low-level providers. Each lower-level entity

scheduler is responsible for mapping the individual tasks into Grid/Cloud resources. Such

approaches are not adequate since it requires entities to deploy different scheduling

policies to the central manager [Hamscher, 2000]. The failure of the central manager

results in entire system failure.

In contrast, decentralized scheduler [Ranjan et. al., 2008] negates the limitations of

centralized or distributed structures with respect to fault-tolerance, scalability, autonomy,

8

and most importantly the adequacy for the Grid/Cloud computing environment as it will

be analyzed in Chapter 3. A decentralized scheduling approach assumes that each entity

is autonomous and has its own control that derives its scheduling decision based on its

policies. However, if the decisions are taken by several independent units, it might be the

case that these units aim at optimizing their own objectives rather than the performance

of the system as a whole. Such situations call for models and techniques that take the

strategic behavior of individual units into account, and simultaneously keep an eye on the

global performance of the system. Strategic situations are traditionally analyzed in Game

Theory as well as certain areas of Economic Theory.

 Scheduling Objective 2.2

Generally, schedulers generate the mapping of tasks to resources based on some

particular objectives. Schedulers employ a function that takes into account the necessary

objectives to optimize a specific outcome. The commonly used scheduling objectives in a

Grid/Cloud computing environment are related to the tasks completion time and resource

utilization.

The scheduler uses a specific strategy for mapping the tasks to suitable Grid/Cloud

resources in order to satisfy user requirements. However, the majority of these scheduling

strategies are static in nature [Topcuoglu et al. 2002]. They produce a good schedule

given the current state of Grid/Cloud resources and do not take into account changes in

resource availability. On the other hand, dynamic scheduling [Rahman et. al., 2007]

considers the current state of the system. It is adaptive in nature and able to generate

efficient schedules, which eventually minimizes the completion time of tasks as well as

improves the overall performance of the system.

 Entities Coordination in the Grid/Cloud 2.3

Entities in the Grid/Cloud are viewed as independent entities that are able to perform

some functionality and have their own will in sharing their capabilities. The challenge

with such systems is how to manage the interdependencies among the entities having no

global control. The effectiveness of managing interdependencies of entities in the

9

Grid/Cloud depends on the coordination among different entities in the environment.

Lack of coordination results in communication overhead and eventually reduces

performance of the system. The process of coordination with respect to

application/service scheduling and resource management in the Grid/Cloud involves

dynamic information exchange between various entities in the system.

2.3.1 Coordination Mechanism

Coordination mechanism reduces and resolves the problems associated with

interdependencies. Hence, a coordination mechanism contains a set of decision points

(coordinated-control) and interaction protocols directed to deal with the interdependency

problems. Interaction protocols are the mean by which an entity interacts with another

entity through some communication protocol. Effective coordination amongst entities in

the Grid/Cloud requires adequate coordination mechanisms and negotiation policies.

Market-based coordination mechanisms are well adopted in the Grid/Cloud environment.

A Market based mechanism views the Grid/Cloud computing environment as a virtual

marketplace in which economic entities interact with each other through buying and

selling computation, storage resources, and services. Such a coordination mechanism is

used to facilitate efficient resource allocation. In such mechanism, the resource provider

works as a manager that exports its local resources to contractors, and resource brokers

are responsible for decision regarding admission control based on negotiated Service

Level Agreements (SLA).

2.3.2 Coordination Structure

Coordination structure is the pattern of decision making and communication that are

required while resolving problems associated with interdependencies between entities.

The interaction among entities is coordinated by the utilization of some particular

communication devices that can be divided into two types: One-to-one and One-to-many.

One-to-many broadcast communication is simple but very expensive in terms of the

number of messages and network bandwidth usage. This overhead can be drastically

10

reduced by adopting One-to-one among the resource providers and consumers through

establishment of a Service Level Agreement.

 Economic-Based Approaches Background 2.4

The economic approaches are based on microeconomic theories, particularly general

equilibrium theory and mechanism design. The economic based approaches take the

assumption that agents chose their own strategies. In other words, agents have control of

their own behavior. In microeconomics, there are two approaches to modeling agent

behavior:

1. Price-taking/competitive equilibrium: In this model the equilibrium state is defined

by the condition that an agent plays a best-response to the current price and allocation

in the market, without modeling either the strategies of other agents or the effect of its

own actions on the future state of the market.

2. Game-theoretic/mechanism design: In this model the equilibrium state is defined by

the condition that agents play a best-response strategy to each other and cannot

benefit from a unilateral deviation to an alternative strategy.

Mechanism design theory and game-theoretic modeling is most relevant when one or

both of the following conditions hold:

 the equilibrium solution concept makes weak game-theoretic assumptions about

agent behavior, such as when a mechanism can be designed with a dominant

strategy equilibrium, in which agents have a single strategy that is always optimal

whatever the strategies and preferences of other agents; or

 there are a small number of agents and it is reasonable to expect agents to be

rational and well-informed about the likely preferences of other agents.

Competitive equilibrium theory and price-taking modeling is most relevant in:

 large systems in which the effect of an agent’s own strategy on the state of a

market is small, or

 when there is considerable uncertainty about agent preferences and behaviors and

no useful mechanism with a dominant strategy equilibrium.

11

Hence, competitive equilibrium approaches is more relevant for the Grid/Cloud systems

given its nature. In the next sections, we review the different approaches within the

competitive equilibrium theory.

 Price-Taking/Competitive Equilibrium Approaches 2.5

Markets provide a level of abstraction based on which desirable global effect can be

achieved, such as fair allocation of resources, through coordination, i.e. buying and

selling, among individual agents. Market-based approaches can provide several

advantages [Wellman et al., 2001]. Markets are naturally decentralized. This means that

agents in the market have their own knowledge and control where agents are capable to

making decisions about how to bid based on the prices and their own relative valuations

of the goods. The bids and valuations reflect the agent’s strategies to achieve its goal.

This implies that agents are autonomous and rational in its decision whenever it is

feasible. Communication is limited to exchange decisions (bids and prices) between

agents. Negotiation mechanisms can elicit the information necessary to achieve Pareto

and global optimal. Pareto optimal solution implements outcomes for which no

alternative outcome is strongly preferred by at least one agent, and weakly preferred by

all other agents.

Several economic models that support distributed rational decision making have been

studied in [Sandholm, 1999]. Some of them, including general equilibrium market

mechanisms, and auctions. In the rest of this section, we review these models.

2.5.1 General Equilibrium Market Mechanisms

In economics, the concept of a set of interrelated goods in balance is called general

equilibrium [Wellman, 1993]. General equilibrium theory provides a distributed method

for efficiently allocating goods and resources among agents based on market prices. This

model assumes agent behaviour as price-taking or myopic best-response. The equilibrium

state is defined by the condition that an agent plays a best-response to the current price

and allocation in the market, without modeling either the strategies of other agents or the

effect of its own actions on the future state of the market. The model is most relevant in

large systems in which the effect of an agent’s own strategy on the state of a market is

12

small, or when there is considerable uncertainty about agent preferences and behaviors

and no useful mechanism with dominant strategy equilibrium. In other words, producers

are sharing their goods (such as capabilities) by putting specific price values based on

their strategy, and consumers must have the goods from the producers to achieve their

goals.

One of the first general equilibrium based approaches is called market-oriented

programming (MOP) [Wellman, 1993]. In MOP, agent activities are defined in terms of

resources required and produced, reducing an agent’s decision problem to evaluating the

tradeoffs of acquiring different resources [Wellman et. al., 2001]. These tradeoffs are

represented in terms of market prices, which define a common scale of value across the

various resources. The problem for designers of computational markets is to specify the

configuration of resources traded, and the mechanism by which agent interactions

determine prices. The advantages of utilizing market approaches for decentralized

scheduling problems are:

 Markets are naturally decentralized. Agents make their own decisions about how to

bid based on the prices and their own relative valuations of the goods.

 Communication is limited to the exchange of bids and prices between agents and the

market mechanism. In particular settings, it can be shown that price systems minimize

the dimensionality of messages required to determine Pareto optimal allocations.

 In some well-characterized situations, some mechanisms can elicit the information

necessary to achieve Pareto and global optima.

2.5.2 Commodity Market

In a commodity market various suppliers and consumers register in the commodity

market. Each participant decides upon a course of action, which may consist of the sale

of some commodities and the purchase of others. Thus supply and demand functions for

each commodity can be defined as the aggregate behavior of all participants. These are

determined by the set of market prices for the various commodities. Equilibrium for the

economy is established when supply is equal to demand (i.e., the excess demand function

13

has a zero value). Practically, it will be sufficient to find approximate equilibrium in the

sense of finding a price that makes the values of the excess demands close to zero.

The commodity market governs the trading behavior of the participant entities in the

session. The market recognizes three types of entities, namely, market-mediators,

consumers, and suppliers. Each market session is assigned to a mediator to coordinate the

actions taken by consumers and suppliers in a way that will eventually clear its respective

market. There is a one-to-one correspondence between market mediators and

commodities. Initially, a mediator is assigned to a specific commodity market and

broadcasts a randomly chosen initial price vector to all registered participants in its

market. Then, each participant computes the demand function for each of its commodities

of interest. Each demand function specifies the net quantity demanded of a commodity

(which for a net supply is negative) as a function of its price, assuming that the prices for

the remaining commodities are constant. The mediator, upon receiving the demand and

supply from all participants, computes the clearing price, for which the aggregate excess

demand is zero. The mediator then notifies the participants of the new price. Upon seeing

new prices, the consumers and suppliers compute revised demand functions as necessary

based on these new prices. This process continues until the prices’ changes are within a

specified threshold. Then the process terminates and the mediator reports the final state of

the price vector as the equilibrium.

2.5.3 Auction Market

The three key players involved in auctions are: resource owners (providers), auctioneers

(mediators), and buyers (consumers). The auctioneer sets the rules of auction which is

agreed by both consumers and the providers. Auctions basically use market forces to

negotiate a clearing price for the service. Usually auctions are used particularly for selling

goods/items within a set duration. Auctions can be classified into two types, single

auctions and double auctions.

The single auction model supports one-to-many negotiation, between a provider (seller)

and consumers (buyers), and reduces negotiation to a single value (i.e. price). The types

14

of auctions related to the one-to-many negotiation are: English Auction, First-price

sealed-bid auction, Vickrey auction, and Dutch auction.

In the double auction model, buyers (bids) and sellers (asks) may be submitted at anytime

during the trading period. If at any time there are open bids and asks that match or are

compatible in terms of price and requirements (e.g., quantity of goods or shares), a trade

is executed immediately. In this auction orders are ranked highest to lowest to generate

demand and supply profiles. From the profiles, the maximum quantity exchanged can be

determined by matching asks (starting with lowest price and moving up) with demand

bids (starting with highest price and moving down). All auctions can be classified as open

or closed (sealed) auctions.

Closed Auction

The closed auction uses the direct-revelation principle which states that it is sufficient to

restrict attention to incentive compatible mechanisms related to collecting bids from

participants only once. In a single-bid mechanism each agent is simultaneously asked to

report its valuation. In an incentive-compatible (IC) mechanism each agent finds it in

their own best interest to report its valuation truthfully. The mechanism design problem

defines functions that map valuations to outcomes, subject to constraints that ensure that

the mechanism is incentive-compatible.

The single-bid mechanism does not imply that incentive-compatibility is given. The

single-bid principle conditions that if a particular set of properties can be implemented in

the equilibrium of some mechanism, then the properties can be implemented in an

incentive-compatible mechanism. On the other hand, the single-bid principle ignores

computation and communication complexity.

Open Auction

The open auction type uses the indirect-revelation principle. The principle is based on

mechanisms, in which agents are not required to submit (and compute) complete and

exact information about their private valuations Indirect mechanisms, such as those based

on prices, also go some way to distributing the calculation of the outcome of a

15

mechanism across agents rather than requiring the mechanism infrastructure (such as the

auctioneer) to compute the winners and the payments.

An example of indirect mechanisms include ascending-price auctions, in which agents

submit bids in response to prices and the auctioneer maintains a provisional allocation

and adjusts prices. For example, the English auction is an ascending-price auction for a

single item in which the price increases until there is only one bidder left in the auction.

For the open auction market to happen there must be at least two agents in the bidding

process to make progress towards the outcome and agents can follow the equilibrium

strategies.

2.5.3.1 Auction Mechanisms

Vickrey Auction

The GVA is a sealed bid auction. Each bidder submits one bid without knowing the

others’ bids. The highest bidder wins the item at the price of the second highest bidder

[Sandholm et al., 2005]. The dominant strategy in Vickrey is for bidders to report its true

valuation function.

The auctioneer agent

 Calculates the allocation
 that maximizes the sum of the bids subject to the

items constraint.

 Calculates the allocation
 that maximizes the sum of the bids other than that

of bidder agent i such that it excludes all items allocated to agent i.

 Announces the winners and their payment given by

 ∑
 ∑

 .

Under the assumption of quasilinear preferences, each bidder agent calculates its utility.

For bidder agent i the utility will be

 ∑

 ∑
 .

16

First-price sealed-bid auction

This auction is a single-bid type where each bidder submits one bid without knowing the

others’ bids. The highest bidder wins the item at the price of his bid. The best strategy is

bid less than its true valuation and it might still win the bid, but it all depends on what

others bid.

Call Market

Call market is a double auction type of market in which each transaction takes place at

predetermined intervals and where all of the bids and asks are aggregated and handled at

once. The exchange determines the market clearing price based on the number of bids

and asks. In call market, orders are filled as soon as a buyer/seller is found for any given

order at an agreed price.

 English Auction

This auction is an outcry type where all bidders are free to increase their bids exceeding

other offers. When none of the bidders are willing to raise the price anymore, the auction

ends, and the highest bidder wins the item at the price of his bid.

The dominant strategy for English auction is to always bid a small amount “higher” than

the current highest bid, and stop when its private value price is reached. In correlated

value auctions, the policies are different and allow the auctioneer to increase the price a

constant rate or at a rate the entity wishes. Entities that are not interested in bidding

anymore can openly declare so (open-exit) without re-entry possibility. This information

helps other bidders and gives a chance to adjust their valuation.

Dutch Auction

This auction is an outcry type where the auctioneer starts with a high bid/price and

continuously lowers the price until one of the bidders takes the item at the current price or

a predetermined reserve price (the seller's minimum acceptable price) is reached. The

winning participant pays the last announced price.

17

Continuous Double Auction

Continuous Double Auction allows for many buyers and sellers to continuously submit

bids for the purchase and sale of a commodity.

Iterative Bundle Auction

The iterative bundle auction has the similar strategy as the GVA mechanism with the

exception of allowing iteration. Iterative bundle auctions are indirect implementations of

GVA [Parkes and Ungar, 2000, Parkes and Kalagnanam, 2005, Bikhchandani and Ostroy,

2006]. This class of auction has practical significance change in the agents behaviour

from GVA since it allows agents to reveal their preference information as necessary as

the auction proceeds, and agents are not required to submit (and compute) complete and

exact information about their private valuations.

Agents can use bundle bids to directly express contingent demands for items. However, a

direct implementation of GVA cause prohibit computation and communication cost. To

avoid this, indirect implementations of GVA have been proposed. This class of auction,

called iBundle, has practical significance because it addresses the computational and

informational complexity of bundle auctions and allows a tradeoff between performance

and computation.

Sequential and Simultaneous Auctions

Sequential and simultaneous auctions price bundles as the sum price of the individual

items. Sequential auctions suppose that the set of resources of interest are auctioned in

sequence. Agents bid for resources in a specific, known order, and can choose how much

(and whether) to bid for a resource depending on past successes, failures, and prices.

Sequential auctions are particularly useful in situations where setting up a combinatorial

or simultaneous auctions are infeasible.

Simultaneous auctions sell multiple goods in separate markets simultaneously. Agents

have to interact with simultaneous but distinct markets in order to obtain a combination

of resources sufficient to accomplish their task. Real-world markets typically operate

18

separately and concurrently despite significant interactions in preferences or costs

[Wellman et al., 2004].

 Grid/Cloud Scheduling Approaches 2.6

2.6.1 Economic-based Scheduling Approach

Mechanisms inspired in economic principles come from observing of how economies

allocate resources. The work in [Nakai et al., 2003] made a critical analysis of the

General Equilibrium theory and the applicability of markets to global scheduling in

Grid/Cloud. Their conclusion is that General Equilibrium fails due to the perfect

competition that drives an economy. Certainly, competition in a market does not lead to

finding an equilibrium solution. In other words, the optimal scheduling solution can not

be reached when entities do not cooperate. For that reason mechanism design has been

studied to enable entities to participate cooperatively in a market.

Market-based models for resource allocation can bring benefits to Grid/Cloud

infrastructures. The work in [Shneidman et al., 2005] points out that many computer

systems have reached a level where the goal is not always to maximize utilization;

instead, when demand exceeds supply and not all needs can be met, a policy for making

resource allocation decisions is required. Hence, market-based approaches are a good

choice to carry out policy-directed resource allocation. It is natural to consider

mechanisms based on economic principles for the Grid/Cloud because it comprises

multiple entities, established by different communities that are heterogeneous in terms of

goals, priorities and quality of service requirements.

OurGrid [Andrade et al., 2003]: is a resource sharing system organized as a P2P network

of sites that share resources fairly forming a Grid to which they all have access. OurGrid

provides connected sites with access to the Grid resources with the minimal guarantees

needed. OurGrid supports the execution of Bag-of-Tasks (BoT) applications; parallel

applications composed of a set of independent tasks that do not communicate with one

another during their execution. OurGrid does not require offline negotiations if a resource

owner wants to offer their resources to the Grid. The three participants in OurGrid’s

protocol: clients, consumers, and providers. A client requires access to the Grid resources

19

to run their applications, the consumer receives requests for resources from clients,

proceeds to find the resources able to serve the request, and then executes the tasks on the

resources, and the provider manages the resources shared in the community and makes

them available to consumers. OurGrid uses a resource exchange mechanism termed

network of favors. A participant A is doing a favor for participant B when A allows B to

use A’s resources. According to the network of favors, every participant does favors for

other participants expecting the favors to be reciprocated. In conflicting situations,

participants prioritize those who have done them favors in the past. The more favors

participants do, the more rewards they expect. The participants account locally for their

favors, and cannot profit from them other than expecting other participants to do favors

for them in return. Experiments demonstrated that the mechanism performs more fairly

when the network is large. This approach does not support other Grid/Cloud

characteristics such as QoS. Moreover, tit-for-tat mechanism is expensive with respect to

communication between entities in a distributed system.

Nimrod-G: [Buyya et al.,2000a] [Buyya et al.,2000b] is a Grid resource broker that

allows managing and routing task applications on computation Grids. It employed the

commodity market for resource management and scheduling. Several algorithms called

deadline and budget constrained (DBC) scheduling algorithms are presented which

consider the cost and makespan of a job simultaneously. These algorithms implement

different strategies. For example, guaranteeing the deadline and minimizing the cost or

guaranteeing the budget and minimizing the completion time. The difficulties to optimize

these two parameters in an algorithm lie in the fact that the units for cost and time are

different, and these two goals usually have conflicts (for example, high performance

resources are usually expensive).

The Time Optimization scheduling algorithm attempts to complete as quickly as possible,

within the available budget. The algorithm initially considers the next available

completion time given the current assigned jobs. The resources are sorted by the next

completion time and then one job is assigned to the first resource for which the cost per

job is less than or equal to the job budget.

20

The Cost Optimization scheduling algorithm attempts to find a schedule as economically

as possible within the deadline. The algorithm sorts the resources by increasing cost, then

for each resource assign jobs to the resources without exceeding the deadline.

The Conservative Time Optimization scheduling algorithm attempts to complete the

schedule as quickly as possible within specific budget constraint. It ensures that a

minimum of “the budget-per-job” from the total budget is available for each unprocessed

job. The algorithm splits a resource by whether the cost per job is less than or equal to the

budget per job. Then for the cheaper resources, assign jobs in inverse proportion to the

job completion time (e.g. a resource with completion time = 5 gets twice as many jobs as

a resource with completion time = 10).

The work experiments with the commodity market. We believe market approaches is a

suitable approach, however, with it comes other challenges that need to be addressed

such as communication, strategic, and winner determination complexities. Entities in the

Grid are autonomous. Market mechanisms provide a way for entities to coordinate,

however, they are not necessarily cooperating. The reason we need entities to cooperate

is that by doing so we are guaranteed to find a pareto optimal solution in the

decentralized environment. Otherwise, a market mechanism is not guaranteed to work

effectively.

[Ernemann et al., 2005] proposed a scheduling model that is not restricted to a single

central scheduling instance. Each domain can act independently and may have individual

objective policies. Also, each task request can include an individual objective function.

They defined a description language to formulate objective functions that are then

evaluated to scalar values at run time. The scheduling system combines the different

objective functions to find the equilibrium between supply and demand. The work used

two heuristics: one to fix a job size and another to estimate start times. They divide the

job into several smaller parts as specified using two parameters, the minimum and

maximum number of resources a job part may be allowed to use. The second heuristic

estimates the start times for the entire job. All job parts must be executed at the same

time, but the initiating scheduler may have only limited information about the schedules

21

on the other resources. The work used the commodity market model. The result of this

work showed that the economic scheduling outperforms the conventional first-come first-

served strategy.

This approach utilizes commodity market and specified a description language for users

to describe their requirement to achieve specified criterions. In a decentralized

environment criterions are not common between entities and we believe that a bidding

language is required to gather entities requirements, yet does not interfere with the

entities’ private information such as entities’ objectives. A mechanism is also required to

induce entities not to miss represent their requirements. We believe more studies need to

be conducted to find the suitability of the approach given the other types of markets

instead of comparing to the first-come first-served strategy.

[Young et. al 2003] compared game theory approach (static game of complete

information) with the simulated annealing under the criteria of time and cost

optimization. The proposed game theory algorithm uses a list structure and iterates

through every single strategy within the list without having a specific search heuristic.

Their results show that the simulated annealing approach achieved better quality than

game theory approach. Their claim is that game theory approach has proved

disappointing, being outperformed by simulated annealing approach. This is due to the

implementation limitation of uncooperative game theory.

Those two approaches are not suitable since both approaches require entities to provide

information to the center that provides the scheduling solution. The Grid environment on

the other hand, is decentralized and entities are autonomous. Moreover, they focused on

non-cooperative entities. As mentioned earlier if entities do not cooperate, the outcome of

the scheduling solution can be far away from the optimal.

[Wang et al., 2007] This work presented an auction-based winner determination

formulation and algorithm for the decentralized scheduling problem. The work used the

mathematical modeling of the winner determination. The proposed approach consists of

an iterative bidding protocol, requirement-based bidding languages, and a constraint-

based winner determination approach. The proposed requirement-based bidding language

22

allow bidders to bid for the processing of a set of jobs with constraints by imposing a

time window discretization on resources. The winner determination algorithm uses a

depth first branch and bound search. Also, the work used a constraint directed scheduling

procedure at each node to verify the feasibility of the allocation. The work employed an

experiment against the commercial optimization engine CPLEX 10.0 and showed that the

proposed algorithm is faster on average over a set of winner determination problems of

decentralized scheduling generated based on job shop constraint satisfaction benchmark

problems.

2.6.2 Heuristics

Since the Grid/Cloud computing scheduling is an NP-hard problem, we rely on heuristic

based strategies to achieve near optimal solutions within polynomial time. The following

subsections present some of the well-known heuristics for scheduling.

Min-Min

This approach prioritizes tasks and generates a schedule based on the priority. This

priority is generated based on the task’s Expected Completion Time on a resource. The

approach arranges the tasks into several independent tasks groups. Those groups are then

scheduled iteratively. Every iteration takes the set of unmapped independent tasks and

generates the Minimum Expected Completion Times (MECT) for each task. The task that

has the smallest MECT value over all tasks is selected to be scheduled first at this

iteration to the corresponding resource. This continues until all tasks are scheduled. This

approach was proposed by Maheswaran et al. [Maheswaran et. al.,1999] and has been

employed for scheduling tasks in Grid projects such as vGrADS [Blythe et. al., 2005] and

Pegasus [Mandal et. al., 2005].

Max-Min

This approach is similar to the Min-Min approach, however, Max-Min sets the priority to

the task that requires the longest execution time. Every iteration takes the set of

unmapped independent tasks and generates the Maximum Expected Completion Times

(MECT) for each task. The expectation is to complete the task at the earliest time by

23

assigning longer tasks to comparatively best resources. The approach is proposed in

[Maheswaran et. al.,1999] and [Mandal et. al., 2005]

HEFT

Heterogeneous Earliest Finish Time (HEFT) [Topcuoglu et al. 2002] gives higher priority

to the tasks having higher rank value. The rank value is calculated by utilizing average

execution time for each task and average communication time between resources of two

successive tasks, where the tasks in Critical Path get comparatively higher rank values.

Then it sorts the tasks by decreasing order of their rank values and the task with higher

rank value is given higher priority. In the resource selection phase, tasks are scheduled

based on their priorities. Each task is assigned to the resource that can complete the task

at the earliest time. This approach considers the entire workflow tasks rather than

unmapped independent tasks. This approach was used by [Topcuoglu et al. 2002]

[Wieczorek et. al, 2005] [Fahringer et. al., 2005].

2.6.3 Other Scheduling Approaches in the Grid/Cloud

Condor-G: Condor-G [Frey et al., 2001] employs components from Globus [TGA, 2013]

and Condor [Wright, 2003] to allow users to utilize resources spanning multiple domains

as if they all belong to one personal domain. Condor-G uses Condor mechanisms to

match locally queued jobs to the resources advertised in a FIFO strategy without any

long-term optimization.

Sun Grid Engine (SGE) [Bulhoes et al., 2004]: a resource management and scheduling

system from Sun Microsystems that is used to optimize the utilization of software and

hardware resources. Tasks submitted to the master node in and SGE cluster are held in a

spooling area until the scheduler determines that the task is ready to run. SGE matches

the available processors/resources to a task’s requirements such as, available memory,

CPU speed, which are periodically collected by the execution node. Once a

processor/resource becomes available for execution of a new task, SGE dispatches the

task with the highest priority and matching the requirements. SGE uses two sets of

criteria to schedule tasks: task priorities, and equal share.

24

The task priority criterion concerns the order of the scheduling of different tasks, a first-

in-first-out (FIFO) rule is applied by default. All pending tasks are inserted in a list, with

the first submitted task being at the head of the list, followed by the second submitted

task and so on. The FIFO rule sometimes leads to issues, especially when a series of tasks

are submitted at almost the same time. All the tasks that are submitted in this case are

assigned within the same queue and have to potentially wait a very long time before

execution.

The Portable Batch System (PBS) [Li and Baker, 2005]: a resource management and

scheduling system in a cluster-based computing environment. PBS uses a master node,

and an arbitrary number of execution and tasks submission nodes. The master node is the

central manager of a PBS cluster. PBS supports the following constraints of the tasks:

 Tasks can be sequential or individual tasks.

 Tasks can have a list of required processors (speed, capabilities)

 Tasks can have priority constraints

 Tasks can have a duration for execution

 Tasks can have dependencies with other tasks

 Tasks can be suspended and later resumed

Jobs submitted to PBS are put in job queues. Two main queue types are defined: routing

and execution queues. Jobs in the execution queue are candidates for execution. Jobs in

the routing queue are candidates for routing to a new destination.

 Privacy in the Grid/Cloud 2.7

Privacy is a subjective concept and would be treated differently within entities in the Grid

[Dey et. al., 2002]. Privacy is a concept that has a major focus in several fields of

research. However, because of the subjective nature of privacy, it is difficult to define it.

It varies from one perspective to another and from one context to another. There are

several theories in privacy such as “the right to be left alone”, “limited access to self” and

control over personal information [Solove, 2008]. However, in the Grid/Cloud

environment, privacy is typically addressed in the context of “information privacy”. The

focus of information privacy is on the operation that is applied on information. It can be

25

categorized as information collection, information processing and information

dissemination. One of the challenges in information privacy is identification which is

applying any operation that relates sensitive information to entities [Schwartz and Solove,

2011]. Information or attributes can be classified based on their ability to identify

entities. There are attributes that are identifiers to entities such as SIN numbers, personal

number and identification information in scheduling tasks and resources. There are also

attributes that can be used in combination with others to identify an entity; for example,

combination of date of birth, gender, name and zip code. In another example,

combination of attributes such as computer design, processor type, vendor and delivering

site of a computer can identify super computers. The attributes that directly identify the

entities are called “identified” and the attributes that can result in identifying an entity are

called “Personally Identifiable Information” (PII). The challenge is that due to improving

technology and information processing by which the non PII attributes can be converted

to PII attributes, it becomes not possible to directly identify the personally identifiable

information [Schwartz and Solove, 2011].

Among the approaches for resolving PII complications, there are rule-based and standard-

based approaches. In the context of PII, rule-based approaches are not sufficiently

effective. Usually, the rule-based approaches are convenient when the area of social and

technological development have reached a fairly stable state [Schwartz and Solove,

2011]. Therefore, in the setting of the Grid/Cloud, a standard (architectural) based

privacy management system is required.

Considering the non-clear barrier between PII and non PII information, there are

approaches to resolve the PII problem.

 Reduction: focuses on “identified” attributes and concerns only with information

about identified entities. The “identifiable” concept has been eliminated from this

approach [Schwartz and Solove, 2011].

 Expansion: In this approach, the identifiable information is considered as critical as

identified information. However, from the practical point of view, almost any kind of

information can be attributed to an identity. This approach treats the identified and

identifiable information equally. This can be considered flawed [Schwartz and Solove,

2011].

26

 PII 2.0: It has been observed that not all of identifiable information has the same risk

level of privacy violation. This introduces the concept of risk of revealing information.

If the risk of a set of identifiable information is high, then information should not be

disclosed [Schwartz and Solove, 2011]. Based on the possibility of conversion of non-

PII to PII class and similarly for identifiable information to be converted to identify

information, a dynamic risk re-evaluation becomes essential.

Considering the existing scheduling solutions in the Grid/Cloud, attending to privacy

issues is lacking. There have been attempts to resolve privacy concerns in DCOP

(Distributed Constraint Optimization Problem) [Greenstadt, 2008][Greenstadt et. al.,

2006]. DCOP consists of entities that set and control valuation of variables. Entities

decide which valuation of the variables has more benefit for them. However, the setting

of the problem is based on the assumption that all entities are aware of the constraints of

other entities and only the valuation of variables is the private information [Greenstadt et.

al., 2006]. Moreover, there is no matching process between what they need and what is

offered [Greenstadt, 2008][Greenstadt et. al., 2006]. In contrary, the context of

scheduling problem in the Grid/Cloud contains providers that have capabilities and

consumers that have requirements. Entities in this configuration are not willing to share

their constraints. Therefore, the solutions in DCOP are not fully compatible with the

setting of scheduling problem in the Grid/Cloud and are designed for less complicated

configurations. Additionally, privacy solutions in DCOP are from an information

theoretic perspective [Greenstadt et. al., 2006]. They can be categorized as utility-trade

off solutions for privacy [Such et. al., 2012]. For confronting privacy issues in the

Grid/Cloud, considering information gain is necessary. However, the social aspects of

relationships between entities have a significant role in evaluating privacy [Such et. al.,

2012][Dey et. al., 2002].

27

Chapter 3

3 Grid/Cloud Computing System

Grid/Cloud computing is a computational paradigm that utilizes networked computing

systems in which applications plug into a “power Grid” of computation for execution. A

Network computing system is a virtual system that is formed by processors and networks

that agree to work together by pooling their resources. Grid/Cloud computing is a

generalized networked computing system that scales to internet levels and handle data

and computation seamlessly.

The traditional computational model includes three elements: computational power

(processors and memory), storage, and software (services). The overall goal of

Grid/Cloud computing is to allow applications to utilize computational power, storage,

and services as exchangeable commodities. Utilizing such computational power from

multiple sources increases the system throughput.

The Grid/Cloud systems can be classified depending on the type of usage. Similar to the

traditional computation model, those computational elements are the main elements in the

Grid/Cloud system. However, instead of the traditional centralized node that does all the

computation, the Grid/Cloud has the elements distributed among different nodes. We can

classify the Grid/Cloud computing systems as:

 Computation: denotes a system that has a high aggregate capacity of distributed

processors. It harnesses machines in “cycle-stealing” mode to have higher

computational capacity than the capacity of any constituent machine in the system.

 Data: provides an infrastructure for creating information from data repositories such

as data warehouses. Applications for these systems would be special purpose data

mining that correlates information from multiple different high volume data sources

 Service: refers to systems that provide services that are not provided by any single

local machine. An aggregate of services can compose a new service.

28

 The Grid/Cloud System: High-Level View 3.1

The Grid/Cloud is made up of a number of components that expose computation, storage,

and services to the network. A layered logical architecture of the Grid/Cloud is shown in

Figure 2b and in relationship to the Internet Protocol architecture Figure 2a. The

Grid/Cloud logical architecture in Figure 2b includes additional protocols and services

that are built on the Internet protocols and services to support the creation and use of

computation and data-enriched environments. Any resource that is on the Grid/Cloud is

also, by definition, on the Net. The Grid/Cloud layers as shown in Figure 2b are:

 Fabric: Traditionally in the internet architecture, the link layer connects different

computation nodes together through different types of mediums such as physical

media which includes coaxial cable, and copper wire. The Fabric layer in the

Grid/Cloud architecture consists of distributed processors, storage resources that

utilize the link layer and are connected by high-bandwidth networks. Each processor

runs system software such as operating systems, resource management systems, and

relational database management systems. With this mapping, logically, we move

traditional computing from being done from the node to being done at the network

level.

 Resource and Connectivity Protocols: consists of protocols that are built on the

core communication protocol (TCP/IP) and used to query entities in the Grid/Cloud

Fabric layer and to conduct collaboration between them. Cryptographic protocols

allow verification of users’ identities and ensure security and integrity of transferred

data. These security mechanisms form part of the Grid/Cloud Security Infrastructure

(GSI) [Foster et al. 1998]. This layer defines core communication and authentication

protocols required for the Grid/Cloud transactions. Communication protocols enable

the exchange of data between Fabric layer resources. Authentication protocols build

on communication services to provide cryptographically secure mechanisms for

verifying the identity of users and resources.

 Collective Services: This includes service monitoring and discovery such as the

Brokering service, Monitoring and Diagnostic services for managing and scheduling

applications for execution on the processors and resources in the Grid/Cloud.

29

 User Applications: specific services that cater to users by invoking services provided

by the layers below and customizing them to suit the target domains.

Figure 2: Grid Layered Architecture in relationship to the Grid Process Execution.

In this work, we focus on the Grid/Cloud scheduling component located in the collective

service layer. Scheduling in the Grid/Cloud is the process that executes inter-dependent

tasks on capable distributed resources at specific times. In addition to the allocation of

tasks to capable resources at specific times, the scheduling problem in the Grid/Cloud

requires the allocation to satisfy the tasks, as well as the resources objective functions.

Figure 2c depicts the high-level Grid/Cloud process of executing tasks and mapping this

process to the Grid/Cloud layered architecture. At the top level of the figure, there are

different domains that have specific tasks to be executed. Those tasks are modeled

through the workflow application with specific QoS that is required to achieve. Modeling

the workflow of the domain belongs in the application layer of the Grid/Cloud. This

generated workflow is pushed to the scheduling engine for processing. This scheduling

engine belongs in the collective service layer of the Grid/Cloud. The scheduling engine

considers the different resources in the environment for executing the tasks. Those

resources also have specific quality measures to be achieved when processing tasks. The

scheduling engine connects to those resources through the connectivity protocols shown

Application

Transport

Internet

Link
(Grid Fabric)

Diverse resources such as processors and storage

Figure 2b Grid Layered Architecture

Secure access to resources and services

Directory Brokering, Diagnostics, and Monitoring
(Collective Services)

Tools and Applications

(User Applications)

(Resource/Connectivity Protocols)

Figure 2a Internet

Protocol
Figure 2c High-level Grid

Process of execution

30

in Figure 2b that enable the connectivity to those resources that live in the Grid/Cloud

fabric layer.

 The Grid/Cloud Scheduling Phases 3.2

This work we focus on the Grid/Cloud scheduling. In this section, we introduce the

Grid/Cloud scheduling logical architecture as shown in Figure 3. The Grid/Cloud

scheduler (GS) receives tasks from Grid/Cloud users, selects feasible resources for these

tasks according to acquired information from the Grid/Cloud Information Service

module, and finally generates tasks-to-resource mappings, based on certain objective

functions and predicted resource performance. Unlike traditional parallel and distributed

systems, the Grid/Cloud scheduler does not control Grid/Cloud resources directly, but

works as a broker [Berman et al., 2003].

Several challenges are presented while scheduling tasks with QoS and constraints in

Grid/Cloud computing. A Grid/Cloud environment consists of a large number of

resources owned by different organizations or providers with varying functionalities and

able to guarantee differing QoS levels. Therefore, multiple criteria must be considered to

optimize the execution performance measure. A scheduler cannot always assign tasks

onto resources with the highest QoS levels. Instead, it may use cheaper resources with

lower QoS that are sufficient enough to meet the requirements of the tasks. Moreover,

completing the execution with a required QoS not only depends on the Grid/Cloud

scheduling decision of the scheduler, but also depends on the local resource allocation

model of each execution site.

A Local Resource Manager (LRM) is mainly responsible for two tasks: local scheduling

inside a resource domain, where not only tasks from exterior Grid/Cloud users, but also

tasks from the domain’s local users are executed, and reporting resource information to

Grid Information Service (GIS). Within a domain, one or multiple local schedulers run

with locally specified resource management policies. Examples of such local schedulers

include OpenPBS [Openpbs, 2012] and Condor [Condor, 2012]. The Local Resource

Manager also collects local resource information by using tools such as Network Weather

31

Service [Wolski, 1999], and Ganglia [Sacerdoti et al., 2003], and reports the resource

status information to GIS.

Figure 3: Logical Grid Scheduling Architecture.

Moreover, [Zhu, 2003] proposed a common Grid scheduling architecture. Grid/Cloud

scheduling involves three main phases: resource discovery, which generates a list of

potential resources; information gathering about those resources and selection of a best

set; and task execution, which includes file staging and cleanup. These phases, and the

steps that make them up, are shown in Figure 4.

32

Figure 4: Grid Scheduling Phases.

3.2.1 Phase 1: Resource Discovery

The first stage in any scheduling interaction involves the discovery of the available

resources. This involves selecting a set of resources to be considered in Phase 2.

The potential resource selected is the set that has the minimum feasibility requirements.

The resource discovery phase is done in three steps: authorization filtering, task

requirement definition, and filtering to meet the minimal task requirements.

33

1) Authorization Filtering: The initial step of resource discovery for Grid/Cloud

scheduling is to determine the set of resources that exist. At the end of this step the

user will have a list of resources to access.

2) Application Requirement Definition: The user is to be able to specify the

minimum task requirements in order to further filter the set of feasible resources. The

set of possible task requirements can include static details such as the operating

system or hardware, or the specific architecture as well as dynamic details such as a

minimum RAM requirement, connectivity, or space.

3) Minimal Requirement Filtering: Given a set of resources to which a user has

access and a set of task requirements, the third step in the resource discovery phase is

to filter out the resources that do not meet the minimum task requirements. At the

end of this step, the user acting as a Grid/Cloud scheduler will have a reduced set of

resources to explore.

3.2.2 Phase 2: System Selection

Given the possible resources, all of which meet the minimum requirements for the task,

resources must be selected on which to schedule the task. This selection is generally done

in two steps: gathering knowledge and making a decision.

4) Dynamic Information Gathering: Information about the status of available

resources is very important for a Grid/Cloud scheduler to make a proper schedule

given the heterogeneous and dynamic nature of the Grid/Cloud computing

environment. The role of the Grid/Cloud information service (GIS) is to provide such

information to Grid/Cloud schedulers. GIS is responsible for collecting and

predicting the resource state information, such as CPU capacities, memory size,

service availabilities, network bandwidth, and load of a site in a particular period.

GIS can answer queries for resource information or push information to subscribers.

An example of a GIS is the Globus Monitoring and Discovery System (MDS)

[Czajkowski et al., 2001].

5) System Selection: utilizes the gathered information and decides on which resources

to use.

34

3.2.3 Phase 3: Task Execution

The third phase of Grid/Cloud scheduling is running a task.

6) Advance Reservation (Optional): Depending on the resource, an advance

reservation may be done through some mechanisms or human means.

7) Task Submission: Once resources are chosen, the application can be submitted to

the resources.

8) Preparation Tasks: The preparation stage may involve setup, staging, claiming a

reservation, or other actions needed to prepare the resource to run the application.

9) Monitoring Progress: Depending on the service and its running time, users may

monitor the progress of their services.

10) Task Completion: When the task is finished, the user needs to be notified.

11) Cleanup Tasks: After a task is run, the user may need to retrieve files from that

resource in order to analyze the data. Any of the current systems that do staging

(Step 8) also handle cleanup. Users generally do this manually after a task is run, or

by including clean-up information in their task submission.

 Characteristics of the Grid/Cloud System 3.3

There are two major entities in the Grid/Cloud environment: consumers (requesters) who

submit tasks, and providers who share their computation power and services to execute

the requests. Those two entities usually have different objectives to be achieved. For

example, providers are concerned with the performance of their processors, such as

processor utilization, and the consumers are concerned with having their tasks completed

as soon as possible.

We explore different definitions of the Grid/Cloud environment and extract the

Grid/Cloud characteristics from each definition as presented in Table 1.

35

Table 1 Grid/Cloud Definitions and Characteristics

Definition Characteristic

“A type of parallel and distributed system that enables the sharing,

exchange, selection, and aggregation of geographically distributed

“autonomous” resources depending on their availability, capability,

cost, and user QoS requirements”. [Buyya, 2002]

Resource Sharing,

Autonomy,

Scalability,

Dynamic, QoS

“Cloud Computing is a type of parallel and distributed system

consisting of a collection of interconnected and virtualized computers

that are dynamically provisioned and presented as one or more

unified computing resources based on a service-level agreement”.

[Buyya et. al., 2008].

Autonomy,

Scalability,

Dynamic, Resource

Sharing, QoS

“Computational grids are large-scale high-performance distributed

computing environments that provide dependable, consistent, and

pervasive access to high-end computational resources” [Foster and

Kesselman, 1998]

Scalability

“The real and specific problem that underlies the Grid concept is

coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organizations” [Foster et al., 2001]

Resource Sharing,

Autonomy

“A distributed network computing (NC) system is a virtual computer

formed by a networked set of heterogeneous machines that agree to

share their local resources with each other. A Grid is a very large

scale, generalized distributed NC system that can scale to Internet-

size environments with machines distributed across multiple

organizations and administrative domains” [Krauter et. al., 2002]

Heterogeneity,

Resource Sharing,

Reliable,

Scalability,

Autonomy

“Grid technologies and infrastructure support the sharing and

coordinated use of diverse resources in dynamic, distributed virtual

organizations - that is, the creation, from geographically distributed

components operated by distinct organizations with differing

policies, of virtual computing systems that are sufficiently integrated

to deliver the desired QoS” [Foster et al. 2002]

Resource Sharing,

Dynamic

Decentralized,

Autonomy, QoS

“A Grid is a system that coordinates resources that are not subject to

a centralized control using standard, open, general-purpose protocols

and interfaces to deliver nontrivial qualities of service” [Grimshaw,

2002]

Resource Sharing,

Decentralized,

Heterogeneity,

QoS, Autonomy

“Cloud Computing, in which not just our data but even our software

resides within the Cloud, and we access everything not only through

our PCs but also Cloud-friendly devices, such as smart phones,

PDAs... the megacomputer enabled by virtualization and software as

a service.” [McFedries, 2008]

Heterogeneity,

multi-tendency,

Resource Sharing,

Autonomy

36

In this work we focus on the scheduling problem in the Grid/Cloud environment. The

scheduling problem is the allocation of tasks to capable processors at specific time and

satisfies specific criterion. From Table 1, we present the characteristics of the Grid/Cloud

environment in the context of the scheduling problem.

 Autonomy: Grid/Cloud entities are autonomous which means decisions cannot be

imposed upon entities. Hence, the scheduler control is distributed among different

entities which means that the scheduling solution is distributed among different entities.

 Heterogeneity: a Grid/Cloud involves a multiplicity of entities that are heterogeneous

in nature. Grid/Cloud nodes both software and hardware can vary. In the context of

scheduling, approaches and techniques can be different. For example, an entity in the

Grid/Cloud can derive its scheduling solution using the revised simplex optimization

technique, where other entity can use other heuristic techniques such as the min-max

search to find a solution.

 Dynamic: in a Grid/Cloud, entities availability can change at any given time. This

means that the scheduling problem model is changing. The number m for processors

(provider entities), and n of tasks (requests) are often changing which means the

objective and the constraints in the model are also changing.

 Resource sharing: entities have capabilities and power that are shared with other

entities in the Grid/Cloud. This means that each entity has the will to provide

knowledge as well as sharing the capabilities with other entities.

 Decentralized: the knowledge and control of the entities in the Grid/Cloud are

distributed. This means that entities hold parts of the scheduling problem model.

Moreover, the control is also distributed where parts of the scheduling solution is

derived by different entities.

 QoS: a Grid/Cloud must assure the delivery of services under established Quality of

Service (QoS) requirements. This means that the tasks (requesters), as well as

processors (service providers) have quality measures that can be different and

sometimes conflicting.

 Scalability: the Grid/Cloud has no predetermined number of providers and requesters.

This requires the scheduler to scale for a large number of providers and requesters.

37

 Reliability: the Grid/Cloud must be reliable when confronted with requests. This

means processing requests must function without failure under given conditions, such

as some processors not being available during a given time period.

38

Chapter 4

4 Scheduling Problem in the Grid/Cloud

The Grid/Cloud as described in the previous sections is a decentralized environment. This

means that the scheduling decision making is distributed among entities in the

environment. In other words, the knowledge of the scheduling problem and the control

are distributed. The Grid/Cloud has two main types of entities: Providers and Consumers.

This section introduces the categories of entities in the Grid/Cloud and their

characteristics, a static view of the Grid/Cloud model, and the approach of modeling the

Grid/Cloud scheduling problem as an economic-based model.

 Overview 4.1

We view the representation of requests within the Grid/Cloud using workflows, where

tasks are linked according to service dependencies, data flow and computation

dependencies. We can classify a workflow as computation intensive when the

computational requirements for tasks are high. Similarly, we can classify a workflow as

data intensive when data requirements such as storage space or data size are high.

Scheduling a workflow is a process of finding the mapping of tasks in a workflow to the

suitable resources so that the execution can be completed with the satisfaction of

objective functions, such as execution time minimization. Existing workflow scheduling

approaches are non-coordinated, where workflow schedulers perform scheduling related

activities independent of the other schedulers in the system. They directly submit their

tasks to the underlying Grid/Cloud resources without taking into account the current load,

priorities, and utilization. This leads to over-utilization or a bottleneck on some valuable

resources, while leaving others largely under-utilized. Further, brokering approaches do

not have a coordination mechanism. This worsens the load sharing and utilization

problems of Grid/Cloud resources. Cooperative decision making for scheduling in an

open environment enables an optimized workflow execution considering the dynamic

resource behavior in the Grid/Cloud.

39

Workflows are executed using distributed resources, where services, computation, and

data required by the workflow can be retrieved from several hosts where this is

possibility of existing multiple hosts that provide similar services or there exist replicas

of data files and multiple sources for computational power. Looking at data for example,

it has to be staged to a compute resource before any task associated with the data can be

executed at the resource. During or at the end of execution of a task, output data is

produced. Such data are to be stored for subsequent tasks requiring them. The sites where

the output data are stored could be potential sources of data depending on the policy of

retaining or deleting the output data.

The computation requirements of these tasks cannot be totally ignored. After the set of

candidate data-hosts are found, the tasks have to be assigned to compute-hosts for

execution. The mapping of the tasks to compute hosts depends on the objective function.

Scheduling of the tasks in the workflow primarily focuses on some of the objective

functions or combination of them: workflow completion time, and maximize the resource

utilization.

 Grid/Cloud Providers 4.2

In the Grid/Cloud, we have a set of m provider sites denoted by { }. Each

provider site () is contributing their resources to the Grid/Cloud. A resource

is a physical device where tasks are scheduled and processed.

Each site has its resource description, which contains definition of the resource that the

provider is willing to contribute.

 Computational resource which includes the number of

processors , processor architecture such as the dual core, processor speed ,

installed operating system type , and available memory .

 Data resources

 : contain information about the storage speed
 , and

capacity
 .

 Services : includes capabilities related to services that a provider site can deliver.

We denote the service capabilities as where . The capability set can

40

be presented formally as {

 } where
 is service k in ,

 and is the number of services belonging to .

 Grid/Cloud Consumers 4.3

Grid/Cloud consumers have requests to be processed by the Grid/Cloud providers.

Consumers visualize requests in the form of workflow. A workflow is represented by a

directed acyclic graph G = (V, E), where { } represent the vertices and E

represents edges of the graph. Each vertex represents a task t and there are n tasks in the

workflow. The edges maintain execution precedence constraints. Having a directed edge

from to mean that cannot start to execute until is completed. The elements

within the edges can be described as follows:

 A set of tasks { }

 Computational resources { }

 Services { }

 Data { }

The workflow defines a collection of required requests to be fulfilled by the Grid/Cloud

such as specific service invocation, or computation requirement to be performed at

specific time in a specific order.

The workflow definition includes the following attributes that define the requirements for

executing the tasks on the Grid/Cloud environment.

 Processor speed (
): the required processor clock speed to process the task.

 Processor architecture requirement (): the required processor architecture such

as: a 64-bit AMD processor, a 64-bit Intel processor, a 32-bit Intel processor

 Number of processors (): the required number of processors to execute the task.

 Operating system (): the required operating system to execute the task.

 Memory size (): the required memory capacity.

 Task set (): set of tasks or services (capabilities) that are required to be

executed.

 Deadline (): the time that the task to be completed.

41

 Setup time () may be used to designate the time required for retrieving

(copying) input data or the time for linking to a needed library. This may be

dependent on the sequence of tasks. In this case, denotes the setup time

needed to compute task j’ after task j where .

 Start time (): is a time when the task starts processing.

 Ready time (): the time at which task is ready to be processed.

 Storage capacity(): the required storage capacity for specific task.

 Storage speed (
): the required storage speed by the task.

 Formulation 4.4

The mathematical model is to include the mentioned characteristics from the consumers

and the characteristics of the providers to model the completion time of the workflow,

and to maximize the resource utilization. The completion time of the workflow objective

deals with minimizing the total time taken for the completion of all the tasks in the

workflow. This depends on both the communication time involved in staging the input

and output files and the computation time to execute them.

4.4.1 Completion Time Formulation

Formulation Notations:

 – Provider i.

 – Resource k that belong to provider i.

 – decision variable where its value is either 0 or 1. if task that

belongs to workflow is processed on resource k that belongs to provider .

 – Idle time of Resource k that belongs to provider i.

 – The completion time of the task j in workflow l on resource k that belongs to

Provider i.

 – The completion time of the last task on resource k that belongs to Provider i.

 – Execution time of task j in workflow l on resource k that belongs to

provider i.

 – Ready time requirement for task j in workflow l.

42

 – Deadline requirement of task j in workflow l.

 – start time of task j in workflow l on resource k that belongs to provider i.

 – is a provider where .

 – storage capacity required by task j.

 – provided storage capacity by resource k on provider i.

 – provided number of processors by resource k on provider i.

 – required number of processors by task j in workflow l.

 – provided computation speed by resource k on provider i.

 – required computation speed by task j in workflow l.

 – provided memory by resource k on provider i.

 – required memory capacity by task j in workflow l.

 – provided data fetching speed by resource k in provider i.

 – required data fetching speed by task j in workflow l.

 – execution time of task j in resource k that belongs to provider i.

Model 1 focuses on the consumers’ objective related to minimizing the completion time

of the workflow.

43

Model 1: Minimizing the completion time of the workflow.

𝑚𝑖𝑛{∑ 𝑥𝑗 𝑙 𝑘 𝑖𝑐𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= } ∀𝑙 𝑘 𝑖 (1)

s.t.

𝑐𝑗 𝑙 𝑘 𝑖 𝑠𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 + 𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 𝑠𝑡𝑖𝑚𝑒𝑗+ 𝑙 𝑘 𝑖′ (1.1)

𝑠𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 + 𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 𝑠𝑡𝑖𝑚𝑒𝑗+ 𝑙 𝑘 𝑖′ ∀𝑗 and 𝑖 ≥ 𝑖 (1.2)

𝑠𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 + 𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗 𝑙 ∀𝑗 (1.3)

𝑠𝑡𝑖𝑚𝑒𝑙 𝑖 ≥ 𝜎𝑗 (1.4)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= 𝑞𝑘 𝑖 ≥ 𝑞𝑗 𝑙 (1.5)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= 𝑒𝑅𝑘 𝑖 ≥ 𝑒𝑅𝑗 𝑙 (1.6)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= 𝜇𝑘 𝑖 ≥ 𝜇𝑗 𝑙 (1.7)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= 𝑒𝑑𝑘 𝑖 ≥ 𝑒𝑑𝑗 𝑙 (1.8)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= 𝛾𝑘 𝑖 ≥ 𝛾𝑗 𝑙 (1.9)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑛
𝑗= (1.10)

𝑥𝑗 𝑙 𝑘 𝑖 ∈ {0 } 𝑗 𝑛 𝑖 𝑚 𝑘 𝑧 (1.11)

𝑠𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 ≥ 0 𝑗 𝑛 𝑖 𝑚 𝑘 𝑧 (1.12)

𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑘 𝑖 ≥ 0 𝑗 𝑛 𝑖 𝑚 𝑘 𝑧 (1.13)

𝛾𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.14)

𝜇𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.15)

𝑞𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.16)

𝑒𝑅𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.17)

𝑒𝑑𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.18)

𝑒𝑑𝑘 𝑖 ≥ 0 𝑖 𝑚 𝑘 𝑧 (1.19)

𝑒𝑅𝑘 𝑖 ≥ 0 𝑖 𝑚 𝑘 𝑧 (1.20)

𝑞𝑘 𝑖 ≥ 0 𝑖 𝑚 𝑘 𝑧 (1.21)

𝜎𝑗 𝑙 ≥ 0 𝑗 𝑛 (1.22)

44

Constraint 1.1 defines the completion time to minimize. It is based on the execution time

of the task j on the workflow l and the wait time to execute the next task within the

workflow. The objective is to minimize the execution of the whole workflow.

Constraints 1.2 ensure the precedence constraints between tasks within the workflow

where the completion time of the parent task j happens before the start of the execution of

the child task j+1. Constraint 1.3 ensures the completion time of the tasks on the

workflow is completed before the required deadline. Constraint 1.4 ensures the

executions of the tasks are started by the ready time. Constraint 1.5 ensures that the

required number of processors is met. Constraint 1.6 ensures that the required processor

speed is met. Constraint 1.7 ensures that the required memory size is met. Constraint 1.8

ensures that the required data fetching speed is met. Constraint 1.9 ensures that the

required storage capacity is met.

4.4.2 Resource Utilization Formulation

The formulation presented in Model 2 focuses on the providers’ resource utilization in

the Grid/Cloud by minimizing the idle time.

Model 2: Resource Utilization Provider’s Objective.

Constraint (2.1) finds the idle time of resource k in provider i. It is based on the

completion time of the last task j* on workflow l subtracted by the sum of the execution

of all tasks in the workflow. Constraint (2.2) ensures that a task is scheduled only once.

min∑ 𝐼𝑘 𝑖𝑥𝑗 𝑙 𝑘 𝑖 ∀𝑖
𝑧
𝑘= (2)

s.t.

𝐼𝑘 𝑖 𝑐𝑗 𝑘 𝑖 ∑ 𝜀𝑗 𝑘 𝑖
𝑛
𝑗= ∀𝑘 ∈ 𝑃𝑖 (2.1)

∑ 𝑥𝑗 𝑙 𝑘 𝑖
𝑧
𝑘= (2.2)

𝑥𝑗 𝑙 𝑘 𝑖 ∈ {0 } 𝑖 𝑚 𝑘 𝑧 𝑗 𝑛 𝑙 ℎ

 (2.3)

45

 Grid/Cloud Scheduling Problem and Structure 4.5

The proposed optimization model of minimizing the completion time presents a

formulation based on the local decision making independent from any collective decision

related to the Grid/Cloud environment. This is based on the entity’s local knowledge.

The entities (providers and consumers) in the Grid/Cloud environment are autonomous

and responsible for their own decision making. In such case, the scheduling problems

have an additional characteristic derived from the nature of the environment, i.e. the

overall problem knowledge is not common knowledge. This problem is called

distribution of knowledge in the sense that no entity in the environment has a global view

of the problem. Accordingly we introduce the following definition.

Definition 1: A Distributed Scheduling Problem is characterized by the knowledge of the

problem is distributed among entities and no entity has a global view of the problem.

Further, the nature of the entities in the Grid/Cloud being autonomous requires also

decision making capabilities. This means that entities are driven by its objectives and no

entity has control over it. We refer to this type of scheduling problem where the

knowledge and control being distributed as a decentralized scheduling problems.

Definition 2: A Decentralized Scheduling Problem is a Distributed Scheduling Problem

consisting of self-interested entities and are autonomous in their decision making.

An essential characteristic of decentralized scheduling problems is the distribution of

control meaning that the strategies of entities cannot be controlled by outside parties,

such as other entities in the environment. This characteristic derives from the self-

interested nature of an entity in the environment. However, it does not make them non-

cooperative. In most cases, self-interested entities have to cooperate to achieve their

respective objectives, but any cooperation must be self-enforcing and not enforced by

binding agreements through third parties.

A decentralized environment is constructed from entities that are able to perform some

functions independently and exercise some degree of authority in sharing such

46

capabilities. Such entities are put to work in the same spatial-time domain to achieve

either a common or separate goals. Moreover, the knowledge is distributed among

entities. For example, when entities are geographically separated and/or owned by

different people or organizations, each of them have partial knowledge about the global

problem to be solved. Clearly, in these cases, the scheduling problems have an additional

characteristic derived from the decentralized environment, i.e. the overall problem

knowledge does not reside in one entity. We call it the distribution of knowledge in the

sense that no entity in the environment has a global view of the problem.

 Privacy: a Required Attribute in the Grid/Cloud 4.6

Consider the following example in the Grid/Cloud where we have two entities, A and B.

Each entity has its own resources that can be used to achieve a goal based on private

objective and knowledge to the specific entity. In some cases, for entity A to achieve a

specific goal, it needs to use resources from entity B. In such setting, entity B must

coordinate with entity A to reach an agreement. In this example, we observe the

interdependency between entity A and entity B to achieve a specific goal.

Interdependency is viewed as a goal relevant interrelationship among actions performed

by various entities. For instance, interdependency may exist between two or more entities

when each has a specific knowledge or data acquisition that can only be achieved through

the use of a shared resource. Another interdependency that may exist is when an entity

attempts to acquire specific knowledge or data that is beyond its capability, but it can be

achieved with the help of another entity. The solution to this interdependency problem is

known as coordination [Ghenniwa, 1996]. Coordination between entities is a class of

solutions that provide structure and mechanism to the system to deal with the

interdependency problem. Structure refers to the entities pattern of communication and

decision-making that are related to coordination. Mechanism is a composition of decision

points, coordinated control and interaction devices directed to resolve problems

associated with interdependencies. Given such environment, it is essential that entities

receive privacy protection in order to safely coordinate with each other. In our everyday

interactions, we have a conceptual privacy model that evaluates interactions in order to

protect our privacy [Dey et. al., 2002]. PII 2.0 introduces the concept of risk for

47

evaluating the privacy aspect of interactions. There are multiple influential factors in

privacy situations. The work in [Samani et. al., 2012] identifies the elements of privacy

situations and proposes a risk assessment model for evaluating the risk of interactions of

two entities. This includes elements such as trust level, severity of operation on

information, negotiated agreement between entities, relevancy of the type of the

requested information and the type of the offered service, sensitivity, cost and criticality

of information and the information gain of exposing the information to other entities. The

proposed risk assessment model considers all these elements and calculates the risk of

privacy violation in a specific interaction [Samani et. al., 2012]. Utilizing the risk

assessment procedure facilitates quantifying privacy interactions. It can lead to evaluate

privacy interactions in terms of Privacy Protection Level (PPL).

 Privacy Protection Level in the Grid/Cloud 4.7

Generally, to find a scheduling solution in the Grid/Cloud environment entities require to

interact. Through the interaction, information is shared between entities. There are

several levels of information: information collection, information processing and

information dissemination. The input of the scheduling system are information related to

tasks, tasks requirements (such as deadline and storage capacity), and resource

specification (such as computational resources processor speed and storage resource

capacity). The output is information related to the schedule for executing tasks on

resources at specific time.

Within this context, information collection happens when the scheduling system collects

information about tasks requirements and resources specifications of providers.

Information processing refers to all operations such as matching of the capable resources

to tasks. Information dissemination on the other hand occurs when the tasks along with

their information (such as requirements related to deadline) are sent to the providers for

execution. Such setting implies a series of interactions between entities within the

Grid/Cloud where sensitive information is exchanged. Hence, privacy protection of

entities within those interactions is essential.

48

In any interaction, consumers in the Grid/Cloud evaluate the privacy aspect of

interactions by calculating the Privacy Protection Level (PPL). The amount of PPL

within a consumer interaction (for instance 8 PPLs) shows that the provider has to

provide 8 PPL to protect the privacy of the consumer. The provider also evaluates the

maximum PPL they can provide for receiving the information of the consumer. In the

Grid/Cloud environment, information is used to build up the knowledge about the

scheduling problem. Such information can be tasks requirements, resource specification

and final schedules. Privacy protection is required within such information being

exchange within the scheduling problem. We measure the privacy protection based on the

PPL. Computing the privacy protections level (PPL) is beyond the scope of this thesis,

however, we touch into the PPL concept.

In this work, we utilize the few notations to formulate the privacy concept that PPL

relates to them. Members of sets in privacy context have a “Type” value. It is used to

classify different members of a set in a subset and addresses the subset with a unique

name. “Type” in our model is a predicate. checks if the type of x is A. Since,

it is a predicate, it returns true or false. Accordingly:

 “.” Is a function. “.”(A,B) returns all the members that belong to A and their type is B.

Formally, “.” Can be expressed as ∈ . For ease of

usage, . (A, B) can be written as or
→

. This function can be used in multiple

levels. Therefore, it is a valid statement to write A.B.C. it returns the subset of A that

has the type B and type C.

 “=” (A,B) or A=B is a predicate to check the equality of the values of A and B.

 “ ” (x, A) is a function that shows x is equivalent to A. it can be written as x A.

→ is used for defining the concepts of the model.

We formally denote the Grid/Cloud environment that includes all the providers and

consumers that are interacting to solve the scheduling problem as . We abstract an

entity’s model in this environment by defining the tuple .

 I is a set of scheduling information. It can be tasks, resource specification, and

scheduling outputs. Also, we abstract the information related to the attributes within

49

the scheduling problem by <Attributes, Value>. For example, the value of the attribute

“execution time” can be 30 minutes; <execution time, 30>.

 G is a set of Goals of an entity. Goal is defined at the entity level as a state of the

feasible solution that defines the quality of satisfaction of an entity. The information

that define the goal can be presented by a set of attributes in the from <attribute,

value>. This set is called Desired Attribute Set (DAS). Goals have preconditions that

must be satisfied and hence, if preconditions are not satisfied, the goal is not

achievable. For example, if the goal is to minimize the completion time. To

accomplish this goal, we need to have a computation resource with 5GHz or higher.

The existence of a resource with such specifications is a precondition for this goal. If

such resource does not exist, then no solution is found to schedule such task.

 Op is a set of Operations. They are functions that receive information as an input and

generate new information as output. Operations refer to processing scheduling

information. For example, matching task requirements to resource specifications and

generating schedules for entities can be the examples of operations. For instance,

when task is sent to scheduling system in which includes information about

providers P={P1, ,Pm} and their resource specifications , applying operations such

as matching on and in can identify the potential providers for . Applying

operations such as finding the providers that task will be assigned to them (e.g

winner determination) generates new information about what provider can execute

which task.

When applying OP (operations) on scheduling information, the generated information is

sensitive and requires privacy protection. Within this section we continue with an

elaboration of the PPL concept within the Grid/Cloud scheduling.

In evaluating interaction among entities based on privacy, one of the influential factors is

Purpose of collecting information [Singh and Bawa, 2007][Dey et. al., 2002]. Purpose

refers to a set of operations that are applied on information. We formally present purpose

in (2) in Text Box 1. For example, the goal of the provider is to finish before

 . Achieving this goal requires having operations for processing the task

specification such as identifying the providers that are eligible for executing the task and

50

to deliver the result within the requested . In this case, the purpose of

collecting task specification is to apply matching operations on and of (as the

providers).

Exposure in the context of privacy refers to revealing some information to others. It can

occur by willingly sharing the information. Also, it is possible by directly or indirectly

observing the information. Observation of information has specific information gain

[Bezzi, 2007]. In other words, it is possible to obtain more information by observing

information. We formally define Exposure in (3) in Text Box 1. For instance, an entity

can receive the task specification of another entity directly from the owner of the task. It

may also collect this information from a third party entity that has the information of an

entity. In all of these cases, task specification is exposed.

Privacy violation prevents an entity from achieving their goals. In this context, the focus

is on goals that have no conflicts. For example, assuming there is a provider that is

capable of executing task and there are consumers and that are competing

for in If exposes to an entity to utilize its service (such as resource

discovery service within the brokering paradigm to discover the potential providers for

executing), and the entity (such as the broker) shares with . It is possible that

 generates a task that causes that in be allocated to and no longer be

available for executing . In this scenario, another goal of which is executing

within its deadline is not achievable anymore. Hence, if exposing some information is the

precondition of achieving a goal and it causes another goal of the entity not to be

achieved, then their privacy is violated. We formally define privacy violation in (4) in

Text Box 1.

 Entities are concerned about their sensitive information. When having specific

information facilitates privacy violation of an entity, then that information is considered

as sensitive. We formally present sensitive information in (5) in Text Box 1. For instance,

because exploiting task information can result in privacy violation of consumers, task

specifications are sensitive information. Similarly, information such as task specifications

resource specification, capability and result of scheduling are considered as sensitive

information.

51

In order to avoid privacy violation, there are several privacy protection techniques. For

instance anonymization, signing the contracts that support privacy right. Operations

owned by a provider can be facilitated with these techniques. Therefore, Privacy

protection is applying operations that prohibit privacy violation. This is formally defined

in (6) in Text Box 1. However, these operations might not cover all aspects of privacy.

As an example, K-anonymity is an anonymization technique that is utilized in publishing

data sources [Sweeny, 2002]. This technique concentrates on information dissemination

and do not address information collection and processing. Moreover, it can be

circumvented, if it is used in environments such as the Grid/Cloud. Therefore, there is a

probability that an operation that is equipped with privacy protection techniques will

prevent privacy violation.

Privacy Protection Level is the minimum probability of privacy protection in operations

of a provider. We formally present PPL in equation 7 in textbox 1. The risk assessment

procedure [Samani et. al., 2012] identifies the influencing element of privacy in

interactions that ultimately can be utilized and result in evaluating PPL.

In this work, we assume that utilizing PPL as the unit of evaluating privacy in

interactions is acceptable by all entities and they use PPL as a standard measure for

expressing their privacy preferences.

52

Text Box 1: Privacy Concepts and Principals.

 Economic-Based Model: a Proposed Model for the 4.8
Grid/Cloud Scheduling Problem

In this section, we map the scheduling problem model on the Grid/Cloud environment

into an economic model. This is because of the decentralization nature of the Grid/Cloud

environment. In an economy, decentralization is modeled in the context of self-interested

rational agents that attempt to achieve their own goals.

In the Grid/Cloud, there are two types of entities, providers and consumers. A consumer

attempts to optimize its individual performance objectives only by obtaining the services

it requires. Similarly, providers allocate its services and resources to consumers based on

its individual satisfaction to their objective. In an economic model of the Grid/Cloud, the

applications or service requests belong to consumers. Resources such as CPU, memory,

storage and services provided are owned by providers. Scheduling is to allocate the

resources (owned by providers) to tasks (belong to consumers) at a specific time.

𝑋 [𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑉𝑎𝑙𝑢𝑒] 𝐷𝐴𝑆 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑆𝑒𝑡 ∈ 𝑋

𝐼𝑛𝑓𝑜 𝑡𝑎𝑠𝑘𝑠 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑑𝑑𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠

 3 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐼𝑛𝑓𝑜 𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝑠
𝑑𝑒𝑓
→ [∀ 𝑅𝑒𝑐 ∈ 𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡 𝑅𝑒𝑐 𝐼 𝑅𝑒𝑐 𝐼𝐵𝑒𝑓𝑜𝑟𝑒𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

→
∪ 𝑡𝑎𝑠𝑘𝑠]

[∃ 𝑜𝑡ℎ𝑒𝑟 ∈ 𝑂𝑡ℎ𝑒𝑟𝑠 ∧ ∃ 𝑔 𝑔2 ∈ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐺 𝑔 ℎ𝑎𝑠 𝑛𝑜 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑤𝑖𝑡ℎ 𝑔2 𝐼𝑛𝑓𝑜 ∈ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐼 ∧ ∃ 𝑖 ∈ 𝐼𝑛𝑓𝑜 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑖 𝑜𝑡ℎ𝑒𝑟 → 𝐷𝐴𝑆 ∉ 𝑔2 ∨ 𝑔2 𝑖𝑠 𝑐𝑜𝑠𝑡𝑙𝑦 𝑎𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒] 𝑖𝑓 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 𝑖𝑠 𝑁𝑖𝑙

∃ 𝑝𝑢 ∈ 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑜𝑡ℎ𝑒𝑟𝑠 𝑝𝑢 𝐼𝑛𝑓𝑜 𝑛𝑖𝑙 𝑇𝑅𝑈𝐸 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 5 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒_𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐼𝑛𝑓𝑜
𝑑𝑒𝑓
→ 𝐼𝑛𝑓𝑜 ⊂ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐼 ∧ ∃ 𝑖 ∈ 𝐼𝑛𝑓𝑜 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐸 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝐼𝑛𝑓𝑜
 6 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑂𝑡ℎ𝑒𝑟𝑠 𝐼𝑛𝑓𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ¬ 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑂𝑡ℎ𝑒𝑟 𝑜𝑝 𝐼𝑛𝑓𝑜 𝑛𝑖𝑙
 7 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝐿𝑒𝑣𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝐼𝑛𝑓𝑜

 𝑀𝑖𝑛
𝑃𝑟𝑜𝑏 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝐼𝑛𝑓𝑜 𝑜𝑝 𝑇𝑅𝑈𝐸

 ∀ 𝑜𝑝 ∈ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑂𝑃 𝐼𝑛𝑓𝑜 ∈ 𝑜𝑝𝐷𝑜𝑚𝑎𝑖𝑛
→

 𝑊 𝐸 𝑋 𝐸 {𝑒𝑖 𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 2 𝑊 𝑖𝑠 𝐺𝑟𝑖𝑑 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑒𝑖 𝑖𝑠 𝐸𝑛𝑡𝑖𝑡𝑦 𝑋 𝑖𝑠 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐷𝑜𝑚𝑎𝑖𝑛

 𝑒𝑖 𝐺 𝑂𝑃 𝐼 . 𝐺 [𝑔 ∈ 𝑋 𝐷𝐴𝑆 ⊂ 𝑔] ,
G is a set of Goals, Op is a set of Operations, and I is a set of Information

 2 𝐸 𝑒𝑖 𝑃𝑢𝑟𝑝𝑜𝑠𝑒
𝑑𝑒𝑓
→ ∃ 𝑠 𝐴𝑡𝑡 𝑉𝑎𝑙 ∧ ∃ 𝑔 ∈ 𝐸 𝑒𝑖 𝐺 ∧ 𝑠 ⊂ 𝑔 ∧ ∃ 𝑝𝑢 ∈ 𝐸 𝑒𝑖 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 𝑝𝑢 𝐸 𝑒𝑖 𝐼 → 𝑠 ⊂

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒_𝑜𝑓_𝑡ℎ𝑒_𝑤𝑜𝑟𝑙𝑑 (operation)

 4 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑂𝑡ℎ𝑒𝑟𝑠 𝐼𝑛𝑓𝑜 𝑃𝑢𝑟𝑝𝑜𝑠𝑒
𝑑𝑒𝑓
→

53

Consumers on the Grid/Cloud have requirements for the tasks to be considered for

execution such as, deadline and precedence constraints between tasks in a workflow. On

the other hand, items or resources owned by providers have reserve values related to the

time of when a task is executed, resource specifications and the capacity to be consumed.

The reserve value is a real number that presents the preference of provider based on

specific measure such as resource utilization. Consumers might prefer some requirements

over others. The preferences are represented by utility functions. These functions map the

requirements of the consumer to a real number. For example, a consumer can prefer a

task to be executed on an earlier time than a later time, or resources with higher

capacities.

Let denote the set of task requirements and a value for requirement set , and

denote the reserve value for the providers for some resources in . We present a feasible

schedule ℎ that satisfies and resource R is capable of achieving the task’s

requirements and ≥ .

Let present the utility function and let ℎ and ℎ be two schedules that satisfy

both the consumer and providers objectives and reserve value. An agent (consumer and

provider) prefer ℎ ℎ , when ℎ ℎ . An agent has a preference on

schedules, such that ℎ ℎ , which implies that schedule ℎ is preferred to

schedule ℎ , where ℎ ℎ ∈ ℎ, and ℎ is all possible schedules. An agent has

an indifferent preferences to the schedules ℎ and ℎ if ℎ ℎ . Preferences are

transitive, if ℎ ℎ and ℎ ℎ , implies ℎ ℎ (where ℎ ∈ ℎ).

Each schedule ℎ ℎ ∈ ℎ contains different allocation of the workflow to

resources that belong to providers. We present each allocation of a vertex on the

workflow as a partial schedule of ℎ .

To formally present partial schedules for an agent, we define the variable to

present the starting time for executing task ∈ on resource ∈ in a schedule.

We can express a schedule by a set of tasks starting time on a resource assignment for

each task as:

54

 ℎ { ∈ ∈ ∈ ∈ } ∀ ∈ (Equation 1)

To present each schedule for an agent ∈ : ℎ ⋃ ⋃ ∈ ∈
 and hence

we have: ℎ ⋃ ℎ ∈

where ℎ is a subset of ℎ, call it a partial schedule of

agent .

A partial schedule can be defined as a subset of schedule ℎ. If a set ℎ ℎ ⊂

 ℎ ∈ contains only the starting time for executing a task on a resource for a

workflow of agent g , we refer to ℎ as a partial schedule for consumer agent .

To expand the partial schedule to include the privacy protection level, we expand the

definition of sch to also include the privacy protection level. Hence, we have:

 ℎ { ∈ ∈ ∈ ∈ ≥ } ∀ ∈ (Equation 2)

If all constraints of agent g are satisfied in a partial schedule ℎ , then ℎ is a feasible

partial schedule for agent g. The formulation presented by Equation 2 presents the

feasibility by also considering the Privacy Protection Level (PPL) value to be achieved

by provider entities. The overall feasible schedule to in the Grid/Cloud scheduling

problem is the union set of feasible partial schedules.

4.8.1 Mapping to the Combinatorial Allocation Problem

In the Combinatorial Allocation Problem (CAP) there is a set of agents N and a set of

items M, held by each provider. Let n = |N| and m = |M| be the numbers of agents and

items respectively. A bundle is a subset of items . Let where be a bundle

allocated to agent . An allocation is feasible if for .

Each agent has a valuation function over bundles 2
 → + . 2 denote the set of all

subsets of M. The set of all bundles including the empty bundle. Valuations are defined

over bundles rather than just items. This permits complements and substitutes. Items are

complements when their value together is more than the sum of their individual values,

and they are substitutes when the reverse holds.

55

In the Grid/Cloud, items are the processing times supplied by providers. In CAP, items or

goods are discrete, where the concept of time in scheduling is continuous. To map the

resource processing time to the set of distinct items, we impose a discretization on time

horizon of resources to be scheduled. Assume that all time related parameters in the

Grid/Cloud scheduling problem, such as the release times, deadlines and processing

times, are of integer value of a basic time unit, denoted by . Formally, let [0] be a

time horizon of the resources being scheduled. For each resource k the time units

associated is presented as , . The set of all resource specific time units

within the time horizon can be seen as the set of items I to be sold in CAP,

{ ∈ } where is the a resource that belongs to provider .

Furthermore, we can also present the privacy protection level as items in the marketplace

as: { ∈ } where presents the privacy level protection

level given by resource k at specific time unit . Any subset is called a bundle.

Feasible partial schedules are mapped into the concept of bundles in CAP. Agents in the

Grid/Cloud value specific allocations not just for items but bundles of items which

signifies the preference among partial schedules. In other words, the value function of an

agent defines the values that the agent has over the combinations of items. For agent ,

the value function in the CAP is defined as: the value of a bundle B is set to the value

of the optimal partial schedule for agent covered by the bundle B, denoted by ℎ

.

That is ℎ

 . If no feasible partial schedule is covered by B, is set to

zero.

To find the global scheduling solution in the Grid/Cloud, we need to compute the

solution to the social choice function ℎ ℎ → , that selects the optimal

schedule ℎ based on the preferences of all agents. The social choice function

selects an outcome to maximize total valuation over agents.

 ℎ m ∈ ∑ ℎ

56

4.8.2 Combinatorial Auction Model

The approach to the Grid/Cloud scheduling problem is to adopt an integrated solution.

Auction theory has been applied to the design of a number of real-world markets. In

particular, a considerable body of research has been devoted to designing auctions for

combinatorial allocation problems (CAPs). As we have mapped the Grid/Cloud

scheduling problem to a class of CAPs, it is natural to think of applying combinatorial

auctions to the Grid/Cloud scheduling problem. An auction provides a protocol that allow

agents to indicate their interest in one or more resources and that uses these indications of

interest to determine both an allocation of resource and a set of payments by the agents.

In an auction, we have a set of bidders { } and a set of goods { }.

Let denote the valuation functions of the different bidders.

CAPs are decentralized problems which involve the complexities at knowledge

distribution and control distribution levels. By modeling a CAP as an auction, the levels

of complexities are transformed to computational constraints in combinatorial auction

design. Kalagnanam and Parkes reviewed four areas of computational constraints, which

restrict the space of feasible combinatorial auction mechanisms, including, strategic

complexity, communication complexity, valuation complexity, and winner determination

complexity [Kalagnanam and Parkes, 2004].

Modeling the resource allocation needs to consider the problem of allocating (discrete)

resources among agents using Auction since it provides a general theoretical framework

for resource allocation problem among self-interested agents. The nature of the

Grid/Cloud market environment is that we have multiple bidders and multiple providers.

Hence we establish a formulation in Model 3 that fulfills such characteristics of the

market structure and the Grid/Cloud environment providers and consumers.

Formulation Notation:

 l – Item

 l* -- Last item to be processed in the bundle

 l’ – Item to be executed after item l

57

 – Execution time of item l that belongs to bundle j executed on

resource k owned by provider i

 – start time of the item l of bundle j to be executed on resource k

owned by provider i

 – Ready time for bundle j

 – Deadline of bundle j

 – Provider Agent

 – Consumer Agent

 – reserve value provider agent

The formulation provided by Model 3 presents the auction model. The auction objective

is to maximize the valuation of both providers and consumers. Constraint 3.1 ensures that

the bundle of items satisfies the ready time. Constraint 3.2 ensures that the bundle is

executed before the deadline. Constraint 3.3 ensures the bundle satisfies the number of

processors requirements. Constraint 3.4 ensures that the bundle satisfies the processing

speed requirements. Constraint 3.5 ensures that the bundle satisfies the memory capacity

requirements. Constraint 3.6 ensures that the bundle satisfies the required data fetching

speed. Constraint 3.7 ensures the data capacity requirement. Constraint 3.8 ensures that a

bundle is not assigned more than once. Constraint 3.10 ensures the required precedence

constraints. The rest of the constraints ensure that all variables are greater than or equal to

0.

58

Model 3: Auction Model

m ∑ 𝑣𝑔𝑐 𝐵𝑗 𝑥 𝐵𝑗 𝑔 𝑔𝑐∈𝑁 + ∑ 𝑣𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑔𝑝 𝐵𝑗 𝑥𝑗 𝑔𝑝 𝑔𝑝∈𝑁 (3)

s.t.

∑ 𝑠𝑡𝑖𝑚𝑒 𝐵𝑗 𝑔 ≥ 𝜎𝑗𝐵 𝐼 , ∀𝑔 ∈ 𝑁 (3.1)

∑ 𝑠𝑡𝑖𝑚𝑒 𝐵𝑗 𝑔 + 𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑔𝑝 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗𝐵 𝐼 (3.2)

∑ 𝑥 𝐵𝑗 𝑔 𝑞𝑔 ≥ 𝑞𝑙𝐵 𝐼 (3.3)

∑ 𝑥 𝐵𝑗 𝑔 𝑒𝑅𝑔 ≥ 𝑒𝑅𝑙𝐵 𝐼 (3.4)

∑ 𝑥 𝐵𝑗 𝑔 𝑟𝑔 ≥ 𝑟𝑙𝐵 𝐼 (3.5)

∑ 𝑥 𝐵𝑗 𝑔 𝑒𝑑𝑔 ≥ 𝑒𝑑𝑙𝐵 𝐼 (3.6)

∑ 𝑥 𝐵𝑗 𝑔 𝛾𝑔 ≥ 𝛾𝑙𝐵 𝐼 (3.7)

∑ ∑ 𝑥 𝐵 𝑔 𝑔∈𝑁𝐵 𝐼 , ∀𝑙 ∈ 𝐼 (3.8)

𝑥 𝐵 𝑔 {0 }, ∀𝑔 ∈ 𝑁 𝐵 𝐼 (3.9)

𝑠𝑡𝑖𝑚𝑒𝑗 𝑙 𝑔𝑝 + 𝑒𝑡𝑖𝑚𝑒𝑗 𝑙 𝑔𝑝 𝑠𝑡𝑖𝑚𝑒𝑗 𝑙′ 𝑔𝑝 𝑗 𝑛 𝑙 𝑙 (3.10)

𝑠𝑡𝑖𝑚𝑒𝑙 𝑔𝑝 ≥ 0 𝑙 𝑛 (3.11)

𝑒𝑡𝑖𝑚𝑒𝑙 𝑔𝑝 ≥ 0 𝑙 𝑛 (3.12)

𝛾𝑙 ≥ 0 𝑙 𝑛 (3.13)

𝑟𝑙 ≥ 0 𝑙 𝑛 (3.14)

𝑞𝑙 ≥ 0 𝑙 𝑛 (3.15)

𝑒𝑅𝑙 ≥ 0 𝑙 𝑛 (3.16)

𝑒𝑑𝑙 ≥ 0 𝑙 𝑛 (3.17)

𝑒𝑑𝑔 ≥ 0 𝑔 ∈ 𝑁 (3.18)

𝑒𝑅𝑔 ≥ 0 𝑔 ∈ 𝑁 (3.19)

𝑞𝑔 ≥ 0 𝑔 ∈ 𝑁 (3.20)

𝜎𝑗 ≥ 0 (3.21)

59

Model 3 by default includes the items through the bundles in the objective. Since, the

privacy protection level (PPL) value is defined as an item, it is automatically included in

the objective. We still need however to define the PPL constraint to be satisfied in the

model. Hence, the following constraint is required in the Auction model to satisfy the

expansion of the model to include the privacy requirement in the Grid/Cloud.

∑ ≥

60

Chapter 5

5 Requirement Based Bidding Language for Resource
Scheduling in the Grid/Cloud

In the Grid/Cloud environment, consumers need to be able to describe their preferences

for resources that are sold in the marketplace. Furthermore, provider agents need to set

their reserve values to be traded in the market. A bid in an auction is an expression of the

bidder’s preference for various outcomes. In this chapter, we propose a bidding language

that is adequate for the Grid/Cloud participants bid/offer specification that facilitates

bid/offer description independent from the market mechanism, yet, governs the winner

determination mechanism.

In combinatorial auctions, in addition to single items, bidders are allowed to bid on

multiple items simultaneously as bundles. This bidding capability presents a challenge to

bidders in terms of expressing their values since goods might not have additive value to

the bidder. Instead, goods could either be complements or substitutes. Two items are

complements when their combined value is larger than the sum of their independent

values. For example, service execution requires processing resources and storage

resource. On the other hand, if two goods are substitutes, it means they are each worth

more when you have just one instead of two. In the Grid/Cloud this can happen when the

required computation and services are geographically far apart.

Therefore in a combinatorial auction, a bidder gives the mechanism information

regarding the relationship between items. A bidder expresses which items are

complements and substitutes by specifying how their value changes for the different

bundles. The most straightforward way for the bidder to specify their valuations would be

to tell the mechanism the value for every possible bundle. However, specifying a

valuation in a combinatorial auction of m items requires providing a value for each of the

possible 12 m non-empty bundles of items. This representation challenge raises the need

for bidding languages that provide some short-hand for placing bids.

61

Different choices within existing bidding languages vary in expressiveness and

simplicity. A well-chosen bidding language aims to strike a balance of the two goals.

 Expressiveness: the ability to express preferences of the entities. The

expressiveness is to be short as well as simple of bidders to express their bids.

 Simplicity: the expressed bids should be computationally easy to handle as well as

it should be easily understood.

 Grid/Cloud Scheduling Properties 5.1

Based on the attribute of the Grid/Cloud environment, we identify the properties that

enable an adequate bidding language design. The adequacy is identified based on the

properties and requirements of the Grid/Cloud participants (providers and consumers)

and the nature of the scheduling problem.

5.1.1 Time-based Requirements and Availability

Consumers have time-based requirements on executing the tasks. Tasks that are executed

after the deadline are not desired and may have no value. Hence, the bidding language is

to enable the consumers to express their preferences on the time related constraint on

their tasks. For example, a consumer requires “Service X” and two CPUs with dual core

processors 1Ghz and 4GB of memory, this is to be executed between 12p.m., and 5p.m.

The consumers value the service and its execution within this time range at $50.

However, they value the execution of the service at $20 between 5p.m., and 11p.m.

Moreover, providers as well can have their resources available at specific time ranges.

Based on provider’s objectives they can value specific time ranges to utilize their

resources differently. For example, a computational resource between 12am and 7am is

valued at $2/hour, and valued at $10/hour between 8am and 5pm.

The bid (and offer) must be able to specify the time ranges within which resources are

required and provided, along with the unit of the duration required/provided (i.e. hours,

minutes, etc.).

We formally define the time range of requirement by two variables:

62

 Start time (for tasks and for providers): denotes the

feasible start time of the task j for workflow l. denotes the start time on

resource k owned by provider i.

 End time (for tasks and for resources): denotes the

latest time of when the task are to finish execution as a requirement for task j on

workflow l. denotes the end time of execution on resource k owned by

provider i.

5.1.2 Support for Requirements

The Grid/Cloud consumers have specific requirements towards services, computational

resources, and storage resources. Those requirements are to be satisfied when the request

is being executed. Such requirements are: computation based (memory, operating system,

speed), and storage based (capacity).

We formally define the resource type as a set of attributes denoted by:

 { }.

 defines the resources owned by provider i such as computational resources and

storage. denotes the attributes for the required resource such as computation

speed, memory requirement, etc. for computational resources. Similarly, we denote the

required resources for task j in workflow l by .

For example, a service in a workflow requires a storage service with at least 25 GB of

space, and a computational resource of dual core with the speed of at least 1 GHz, and at

least 4 GB memory. We can formalize this as follow:

 { 4 } and {25 }

The bidding Language is to support consumers to express the preferences based on the

requirements, as well as providers to describe their reserve values on the capabilities of

the resources.

63

5.1.3 Support for Allocation constraints

Workflows in the Grid/Cloud require a correct execution sequence for the workflow tasks

provided by consumers, i.e., an execution that obeys the constraints that embody the logic

of the workflow. Such constraint logic is typically of the form, tasks 1 and 2 must both

execute (with a possible variation that task 2 executes after task 1) or if task 1 executes

then tasks 2 and 3 must execute as well (with the variations that task 3 and task 2 must

come after task 1). We define precedence requirements between tasks as . This

variable is defined by 0 or 1. It is assigned 1 if there is a precedence constraint between

tasks and which means is to be executed after . If no precedence constraint

between the tasks exists, 0 is assigned to .

5.1.4 Reserve Value on bundles

Providers in the Grid/Cloud own computational power, software services, and storage

resources. In the Grid/Cloud market we denote computational processing time, software

services, and the storage resources as goods. The providers value those goods based on

their objectives. For example, a provider that operates on the resource utilization

objective may set the reserve value of the resources lower when the resources are

underutilized, and set the reserve value more when there is high demand on the resources.

A reserve value is a number that identifies the minimum acceptable value for the good

provided by providers.

Providers in the Grid/Cloud may have multiple goods that can be of the same or different

types. Providers can set the reserve values on combinations of resources when consumed

as a bundle lower than when consumed separately. For example, the provider’s reserve

value for the combination of a computational resource with 1 GHz CPU speed, 4gb of

memory, and a storage space of 40gb is $40. If sold separately, computational resource’s

reserve value is $35 and the storage space reserve value is $15 which would cost $50 if

consumed separately.

We define the resources attributes as { } where R presents the type of

resource (computation, storage, service), k is the resource index and i is the provider

64

index. For example, { ℎ 3 7} this denotes a

computation resource that belongs to provider 1 with the attributes: dual core, 1Ghz, 3gb

of memory, and Windows 7 operating system. The reserve value of a resource can be

formally presented as:
 A reserve value of a bundle

of resources can be formally presented as:

 ()

5.1.5 Consumer’s expressiveness on bundles of items and
Resource Composites

Consumers in the Grid/Cloud usually demand a combination of different Grid/Cloud

resources with the specific attributes as a bundle in order to execute tasks at

specific time. For example, to execute service X, the consumer requires dual core 1 GHz

of CPU power, 3GB of memory, and 100GB of storage within a specific time window. If

the providers cannot have all resources required within the required time window, then

the execution of the task is not feasible. Generally, bundling does not require the

resources to belong to the same provider or the same computational node. However, the

resources can be distributed across different nodes in the Grid/Cloud.

Another type of bundling is that the required resources are to be composed in one node.

For example, the required service, computational power, and storage capabilities are to be

in one specific provider. We denote composite requirements as . This is a

binary variable. It is assigned 1 if the resources required and are to be

allocated to the same provider i and 0 otherwise.

5.1.6 Sell, Consume Multiple Identical Units of items

In the Grid/Cloud, it is possible to have identical resource specifications that can be

provided where ′
, as well as, identical resource requirements needed by

consumers where ′. For example, a provider that has a set of identical

computational resources (processing speed and memory size). Also, a consumer that

requires five computational resources with the exact CPU requirements and memory.

65

We denote the number of identical resources required or provided by the notation .

The bidding language is to handle such setting with identical resources for both providers

and consumers to enable conciseness and expressiveness to the Grid/Cloud bidding

language.

5.1.7 Multiple consumers and multiple goods expressiveness

The Grid/Cloud environment by nature includes multiple consumers that require

consuming multiple goods that are provided by multiple providers. A Grid/Cloud

middleware provides a global directory enabling multiple service providers to publish

their resources and multiple consumers’ requests to discover them. A market mechanism

is to utilize those services and establishes a market structure that enables multiple buyers

that consumes multiple goods owned by multiple providers. A bidding language is

required to enable the expressiveness for such market structure (multiple goods and

multiple consumers).

5.1.8 Trade of Resources

Entities in the Grid/Cloud environment can play different roles. A computation provider

becomes a consumer when it requires specific service consumption from another

provider. Also, a service provider may require computational resources to execute its

services. Trades between entities enables flexibility for entities to utilize their resources

and at the same time acquire the resources required within a specific budget.

A bidding language is to enable the expressiveness of providers and consumers of the

resources to trade.

 Related work on Bidding Language 5.2

Bidding languages addresses valuation complexity portion in the overall market structure.

There is a tradeoff in choosing a bidding language between the ease of agent’s

representation of its preferences, as well as, ease of mechanism’s ability to compute an

outcome.

66

Boutilier and Hoos classify the logical biding languages in the literature into two kinds

based on the structures of their atomic propositions, namely and [Boutilier and

Hoos, 2001]. languages allow bids that are logical formulae where items are taken as

atomic propositions and combined using logical connectives. languages use bundles

of items with associated prices as atomic propositions and combines them using logical

connectives.

Basic bidding languages include OR and XOR or a combination. OR and XOR are

logical connectives which can be used to combine atomic propositions of bidding

languages. In the OR bidding language every given bundle has an associated value. Bids

can be formed by combining any possible bundles and adding their valuations. This is

how it would be done if there were no complements or substitutes. For example:

 , which states that the agent wants or or both, has a linear space

representation of this valuation function. In the XOR bidding language, a bid is formed

by connecting bundle using XOR. For example: , which essentially

allows an agent to enumerate its value for all possible sets of items. This bidding

language is simple to interpret, in fact given a bid b in the XOR language, the auctioneer

can compute the value B(S) for any bundle in polynomial time [Nisan, 2000]. However,

this bidding language is not very expressive. XOR bids for this valuation function are

exponential in size (explicitly enumerating the value for all possible bundles) [Parkes,

1999b].

[Nisan, 2000] observes that other combinations, such as XOR-of-OR languages and OR-

of-XOR languages, allow compact representations of certain preference structures and

make tradeoffs across expressiveness and conciseness. The work also proposes an OR*

bidding language, which is expressive enough to be able to represent arbitrary

preferences over discrete items, and as compact a representation as both OR-of-XOR and

XOR-of-OR representations. The work also examines a variety of bidding languages and

their properties. For example, we see there that OR (‘‘additive-or’’) bids, which allow the

bidder to make non-exclusive offers on bundles, can capture all, and only, the super-

additive valuations. In contrast, XOR (‘‘exclusive-or’’) bids, which allow the bidder to

make exclusive offers on bundles, can capture all valuations, though they may require an

67

exponentially longer expression than the OR bids. However, asking an agent to disclose a

full valuation function is often not necessary, because many parts of it might be irrelevant

for computing the allocation.

The TBBL approach proposed by [Cavallo et. al. 2005] shares some structural elements

with the language but has differences in its semantics. In , the semantics are those

of propositional logic, with the same items in an allocation to satisfy a tree in multiple

places. This can make more concise in some settings, however the semantics TBBL

provides is better expressiveness where the value of a component in a tree can be

understood independently from the rest of the tree. , , TBBL languages target

combinatorial auctions in general. However, they cannot be applied directly to the

Grid/Cloud scheduling problems because they are designed based on an assumption: the

goods to be auctioned are discrete items. Nevertheless, in Grid/Cloud scheduling,

“goods” are processing times on computational resources and services, which exhibit

continuity. To deal with this issue, a common approach adopted in the literature is to

restrict the continuity of time by imposing a discretization on the scheduling time

windows [Wellman et al, 2001].

Nisan [Nisan, 2000] describes the expressiveness of a language, which is a measure of

the size of a message for a particular family of valuation functions, and the simplicity of a

language, which is a measure of the complexity involved in interpreting a language and

computing values for different outcomes.

The expressiveness of a bidding language, or the compactness of representations that it

permits, becomes even more important when one considers the agent's underlying

valuation problem. Suppose that an agent must solve an NP-hard constrained

optimization problem to compute its value for a set of items, with objective function G

and constraints C. In the XOR representation the agent must solve this problem once for

every possible input , i.e. requiring an exponential number of solutions to an NP-

hard problem.

68

 Tree Based Specification Bidding Language 5.3

We formally define the bidding structure that includes the specifications of consumers

and providers. The specifications define both the consumers and providers feasible

bundles (partial schedules). We define the resources attributes as { }. We

denote the required bundle characteristics for a consumer as: Start time , end time

 , required resource , required resource attributes , number of resources ,

coupling requirements ′ if resources are required to be coupled within the

same provider, and precedence requirements . We formally define the bundle

based on the required specifications to execute the task.

 (′) The valuation of the

bundle is presented by
 .

On the other hand, we define the reserve value of the provider based on the provider’s

resource capabilities and the time interval availability. We denote the reserve value as:

 ()

In this work, we apply the Tree Based Bidding Language (TBBL) proposed in [Cavallo

et. al. 2005]. TBBL enables the market combinatorial exchange requirement. However,

the Grid/Cloud scheduling requires an addition to the nodes on the TBBL to include

specifications related to consumers and providers. Consumers and providers are able to

value and trade items in the market based on specifications.

In the Grid/Cloud bidding language we have a tree from bidder i. Let ∈

denote a node in the tree, and let ∈ denote the value specified at node N. Let

 be the subset of nodes representing the leaves of and let

 ℎ denote the children of node N. All nodes except the leaves are labeled

with the interval operator
 that is imposed on a node to be satisfied based on the

ub (upper bound) and lb (lower bound) values. The node that has the operator
 has

two partitions:

69

 The operator – which is satisfied if at least lb of the child nodes are satisfied and at

most ub of the child nodes are satisfied. The use of logical operators is relevant for the

bidding language since it enables the users’ preferences elicitation. Specially, for the

case of bidding specification for Grid/Cloud resources since Grid/Cloud services

usually have complex resource requirements. This concludes, if some node N is not

satisfied, then none of its children may be satisfied. Along with the operator, we

include the time interval in which the execution of the children nodes is feasible.

Given n number of children, there are three different interval operator types:

-
 – This means that all children must be satisfied.

-
 – This means that at least one child node is satisfied and at most all children are

satisfied.

-
 – This means that at least and at most one child is satisfied.

 Value – this expresses the valuation of executing the leaves that satisfy the operator

conditions and the workflow requirements. Both the parents and the leaf nodes can

express valuations this is to allow complements and substitutes within the bidding

language.

Leaf-nodes contain specification of bidder’s requirements. Each leaf-node provides

expressiveness to capture either buyers’ requirements or sellers’ offers. Each leaf N has

three partitions.

 The first partition includes a label for the item to either buy or sell.

 The second partition includes the requirement of a consumer if the first partition is

labeled as “buy” or the items that are to be sold in the market if the first partition is

labeled as “sell”.

 The third partition includes the value.

- For a consumer the value is related to the expressed requirements.

- For a provider, the value is a reserve value of the items.

For example, considering an application that requires more than one type of resource

(CPU and storage), and multiple quantities of each type of resource, bids should be able

to convey preferences on bundles of resources.
 operator permit the expression of

substitute bids. By means of
 operators bidders indicate their willingness to accept

70

partial satisfaction whilst
 operators indicate their requirement for complete

satisfaction.

 Bidding Language Expressiveness 5.4

In this section we explore different scheduling problem structures in the Grid/Cloud

environment from both consumers and providers and demonstrate the expressiveness of

the proposed bidding language in the Grid/Cloud.

Preference in quantity and time: as shown in Figure 5 the bidder requires five CPUs

with a speed of 1Ghz, Intel dual core CPU architecture, at least 2Gb of memory, and

storage resource of at least 100Gb SSD drive for 3 hours between 10a.m. and 5p.m., that

is, the bidder is asking for a precise time range.

Figure 5: Expressiveness to CPU quantity and time.

Preference in quantity and time to be consecutive: as shown in Figure 6 the bidder

requires 5 CPUs with a speed of at least 1ghz, Intel dual core CPU architecture, at least

2gb of memory, and storage resource of at least 100Gb SSD drive for 3 consecutive hours

between 10a.m. and 5p.m., that is, the bidder is asking for a precise time duration to

utilize the resources within a specific time range. The “consecutive” specification is

identified through the pre-emption attribute. This means that once the execution starts,

71

the CPU processing not to be interrupted. The valuation is placed on the root node to

specify the value for the bundle.

Figure 6: Expressiveness of CPU quantity and time to be consecutive.

Services with precedence constraints that require specific computation and storage:

Figure 7 shows the expressiveness of the bidding language for such Grid/Cloud scenario.

In the parent node, the prec attribute is defined to satisfy the precedence attribute defined

in the child node.

Figure 7: Expressiveness of Service Requirements that has precedence constraints.

72

Expressiveness to trade resources based on time:

Figure 8 considers two bidders. Bidder 1 potentially sells one of his computation or

storage resources that has the specifications shown in Figure 8, if he can get Bidder 2’s

item (scheduling service) at the right price. Bidder 2 is interested in buying one or both of

Bidder 1’s items and also in selling his own item. We consider each of the possible

trades: If Bidder 1 trades its computation resources for the scheduling service he gets $2

of value and Bidder 2 gets $7. If Bidder 1 trades storage resource for the scheduling

service he gets $-2 of value and Bidder 2 gets $2. If no trade occurs, both bidders get $0

value. Therefore the efficient trade is to swap the computational resource for the

scheduling service.

Figure 8: Expressiveness of a Trade Case.

Provider expressiveness to sell services and computation based on time constraints:

Figure 9 shows the provider expressiveness example using the bidding language. The

root node expresses that the provider is offering three different bundles that can be

consumed. A consumer can purchase all bundles during a specific time window with the

reserve value of $38. A consumer can also consume bundles individually since the root

node expresses the lower bound to be 1. For instance, a consumer can buy the first bundle

that has the reserve value of $7. This bundle includes specific computation and storage

specifications expressed on its leaf nodes. Since the lower bound of consuming the leaf

nodes is also 1, it is possible to get either the computation or the storage for a reserve

73

value of $4 for the storage or $6 for the computation. Similar idea is applied to the rest of

the nodes on the example.

Figure 9: Provider Expressiveness using the bidding language.

 Bidding Language Expansion for the Grid/Cloud 5.5
Scheduling with Privacy Concerns

In Section 5.1, we discussed the required properties of the bidding language given the

nature of the Grid/Cloud environment without considering the privacy attribute. In this

section, we expand on the properties to enable the adequacy of the scheduling problem

with privacy concerns in the Grid/Cloud environment.

We additionally add the privacy requirement as part of the bidding language properties.

Consumers have privacy requirements to execute its services by service providers.

Similarly, providers are expected to provide the privacy protection level within the

Grid/Cloud environment. Providers within the Grid/Cloud environment are expected to

provide at least the required privacy protection level (PPL) as mentioned in the analysis

in Chapter 4. Formally the privacy protection level requirement is defined as . It is

an integer value that describes the privacy level requirement by agent .

74

We formally refine the bidding attributes presented in Section 5.3 that includes the

specifications of consumers and providers. The specifications define both the consumers

and providers feasible bundles (partial schedules). Recall, the definition of the resource

attributes as { }. We denote the required bundle characteristics for a

consumer as: Start time , end time , required resource , required

resource attributes , number of resources , coupling requirements ′ ,

precedence requirements , and additionally we include the privacy level

protection value PPL. We formally define the bundle based on the required specifications

to execute the task. ′

The valuation of the bundle is presented by
 .

In addition, we refine the reserve value of the provider based on the provider’s resource

capabilities, the time interval availability, and the privacy protection level value. We

denote the reserve value as:

 (

)

Accordingly we modify the attributes within the proposed bidding language in

Section 5.3 to include the consumer’s requirement of the privacy protection level (PPL)

and the provider’s privacy protection level to requests being processed. Figure 10 shows

an example of the addition of the PPL attribute to the proposed bidding language. The

PPL value is presented in the parent node to reflect on the privacy requirement for the

“Buy” leave nodes or the provided PPL for the “Sell” leave nodes.

75

Figure 10: Grid/Cloud Tree Bidding Specification Language with Privacy Attributes

Requirement Example.

 Proposed Bidding Language Conciseness 5.6

In this section we show the conciseness in comparison with the some of the cases shown

in the previous section using the TBBL language. To do this, we first need to divide the

time units into slots. We define the time slots that the provider is selling as 1 hour time

slots of CPU or Storage. The consumer requires expressing their bidding based on the

slots and time requirements. We express the case depicted in Figure 5 using TBBL as

shown in Figure 11. Also the case depicted in Figure 6 is expressed using TBBL in

Figure 12. We observe that the discretization of the time slots increases the size of the

tree and requires expressing all possible time combinations in the feasible space. Figures

11 and 12 show a portion of those combinations. With our approach, we express

preferences within a time interval. This cuts down on the size of the tree and makes it

more concise.

76

Figure 11: TBBL Representation for the case in Figure 5.

Figure 12: TBBL Representation for the case in Figure 6.

 $2
 Buy Computation

 10am
 $2 Buy Computation

11am $2 Buy Storage
10am $2 Buy Storage

 11am

𝕀

 $2 Buy Storage
 3pm $2 Buy Computation

 3pm

𝕀

𝕀

𝕀

 $2 Buy Comp.

 10am

𝕀

 $2 Buy Comp.

 11am $2 Buy Comp.

 12pm $2 Buy Comp.

 2pm $2 Buy Comp.

 1pm $2 Buy Comp.

 3pm

𝕀

 $2
 Buy Stor.

1pm $2 Buy Stor.

10am

𝕀

 $2 Buy Stor.
12pm $2 Buy Stor.

11am $2 Buy Stor.
2pm

𝕀

𝕀

𝕀

77

Figure 13 and Figure 14 show the comparison based on the number of nodes

(conciseness) between the proposed Grid/Cloud Tree Based Bidding Specification

Language (TBBSL) and the Tree Based Bidding Language (TBBL). Figure 13 shows the

number of tree nodes increase as the number of item requests increase. Figure 13 focuses

on 2 hours continuous time requirement within a time interval of 7 hours. It shows that

the TBBL number of nodes highly increases as we increase the number of resources

required when comparing with our proposed TBBSL. The reason is that the TBBSL

includes in the parent node the properties related to the time requirements which cuts

from the representation of the children nodes.

Figure 13: Continuous time requirement for items.

Similarly, we experiment with the representation of the bidding languages with time

discontinuous case requirement as shown in Figure 14. In this experimentation, we

evaluate based on a time interval of 7 hours and 2 hours of the resources are required

without having to be continuous. For example, a resource usage can be from 5 to 6 and

again from 10-11. We found that TBBSL is more concise from the TBBL as we increase

the number of resource requirement.

0

20

40

60

80

100

120

1 2 3 4 5 6

TBBL

TBBSL

78

Figure 14: Discontinuous time requirement for items.

0

10

20

30

40

50

60

1 2 3 4 5 6

TBBL

TBBSL

79

Chapter 6

6 Winner Determination

In the Grid/Cloud environment, system designers impose an interaction protocol and

independent nodes choose their own strategies which cannot be imposed by an outside

entity. Hence, negotiation protocols need to be designed assuming the entities have their

own private goals to achieve. In such environment, the aim is on the social outcome

given adequate information that enables autonomous entities to achieve optimal resource

allocation for the individual and for the society.

Generally, Winner Determination (WD) problem is known as an NP-hard [Rothkopf,

Pekec, and Harstad, 1998]. In this chapter, we formulate the WD problem as an Integer

program, and propose and adequate mechanism for the Grid/Cloud.

 Market Mechanism Properties 6.1

An essential phase in designing a market is to understand the nature of the trading within

the environment. The adequacy of the market mechanism for the Grid/Cloud environment

is measured based on the following properties:

 Allocative efficiency: An allocation is efficient if the sum of individual utilities is

maximized. A mechanism can only attain allocative efficiency if the market

participants report their valuation truthfully. This requires incentive compatibility

in equilibrium.

 Incentive compatibility: A mechanism is incentive compatible if every

participant's expected utility maximizing strategy in equilibrium with every other

participant is to report his true preferences.

 Individual rationality: The constraint of individual rationality requires that the

utility following participation in the mechanism must be greater than or equal to

the previous utility.

 Computational tractability: Computational tractability considers the complexity of

computing a mechanism's outcome. With an increasing number of participants,

80

the allocation problem can become very demanding and may delimit the design of

choice and transfer rules.

 The Winner Determination Problem: Formulation 6.2

Based upon this bidding language proposed in Chapter 5, the winner determination

problem is formulated as an integer program.

Given , let ∈ denote node ∈ that is satisfied by trade . We

formulate the Requirement-based Tree Bidding Language proposed in Chapter 5 of the

WD problem for bid tree :

 – decision variable of selecting node N within tree i. Its value is either 0 or 1. It is

assigned value 1 if selected and 0 otherwise

 – valuation of node N within tree i

 – decision variable on allocating node N within time t

 – quantity of item across Node N

 – required quantity of resource specifications of node N

 – quantity of resources sold of node N with specifications

 – lower bound of child nodes to be satisfied

 – upper bound of child nodes to be satisfied

leaf – presents the leaf node

child – presents child node

81

Model 4: Winner Determination Problem Formulation.

Constraint (4.1) enforces the interval operator on the parents’ nodes. It ensures that no

more and no less than the appropriate number of children is satisfied for any node that is

satisfied.

Constraint (4.2) enforces the execution of the nodes is within the required time window

described in the parent node.

Constraint (4.3) ensures that the quantity of each item across all satisfied leaves is no

greater than the total number of units awarded in the trade. This works for providers as

well as consumers: for providers a trade is negative, and this requires that the total

number of items indicated as sold in the tree to be at least the total number of items

traded from the bidder in the trade.

Constraint (4.4) ensures the minimum requirements of the consumers are achieved.

 The Winner Determination Problem: Formulation with 6.3
Privacy Concerns

Based on the revised property within the bidding language to include the privacy

protection level (PPL) mentioned in Section 5.5 and the mapping of the privacy attribute

𝑚𝑎𝑥∑ ∑ 𝑣𝑖 𝑁 𝑥𝑖 𝑁 𝑁∈𝑇𝑟𝑒𝑒𝑖𝑖 (4)

s.t.

𝑙𝑏 𝑥𝑖 𝑁 ∑ ∑ 𝑥𝑖 𝑁
 𝑁′∈𝑐ℎ𝑖𝑙𝑑 𝑁 𝑖 𝑢𝑏 𝑥𝑖 𝑁 𝑁 ∈ {𝑇𝑟𝑒𝑒𝑖\𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖 } (4.1)

𝑠𝑡𝑖𝑚𝑒𝑖 𝑥𝑖 𝑁 𝑧𝑡 𝑁 𝑒𝑡𝑖𝑚𝑒𝑖 𝑥𝑖 𝑁 𝑁 ∈ {𝑇𝑟𝑒𝑒𝑖\𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖 } (4.2)

∑ 𝑄𝑖 𝑁 𝑥𝑖 𝑁 𝜆𝑖 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖
 (4.3)

∑ 𝑞𝑏𝑢𝑦 𝑁 𝐴𝑅 𝑥𝑖 𝑁 ∑ 𝑥𝑖 𝑁 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖
 𝑞𝑠𝑒𝑙𝑙 𝑁 𝐴𝑅 ≥ 0 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖

 (4.4)

𝑥𝑖 𝑁 ∈ {0 } 𝑧𝑡 𝑁 ∈ {0 } 𝜆𝑖 ∈ ℤ (4.5)

𝑄𝑖 𝑁 0 𝑙𝑏 0 𝑢𝑏 0 (4.6)

82

in Section 4.8 to the economic-based modeling, we expand the winner determination

model as shown in Model 5.

 – denotes the amount of privacy protection level is required by the consumer

for node N

 – denotes the amount of privacy protection level that can be provided by the

provider for node N

Model 5: Winner Determination Model with the Privacy Concerns.

Constraint (5.1) enforces the interval constraints on the parents’ nodes. It ensures that no

more and no less than the appropriate number of children is satisfied for any node that is

satisfied.

Constraint (5.2) enforces the execution of the nodes is within the required time window

described in the parent node.

Constraint (5.3) ensures that privacy protection level concern required by the consumer is

met by the provider.

𝑚𝑎𝑥∑ ∑ 𝑣𝑖 𝑁 𝑥𝑖 𝑁 𝑁∈𝑇𝑟𝑒𝑒𝑖𝑖 (5)

s.t.

𝑙𝑏 𝑥𝑖 ∑ ∑ 𝑥𝑖 𝑁
 𝑁′∈𝑐ℎ𝑖𝑙𝑑 𝑁 𝑖 𝑢𝑏 𝑥𝑖 𝑁 𝑁 ∈ {𝑇𝑟𝑒𝑒𝑖\𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖 } (5.1)

𝑠𝑡𝑖𝑚𝑒𝑖 𝑥𝑖 𝑁 𝑧𝑡 𝑁 𝑒𝑡𝑖𝑚𝑒𝑖 𝑥𝑖 𝑁 𝑁 ∈ {𝑇𝑟𝑒𝑒𝑖\𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖 } (5.2)

𝑃𝑃𝐿𝑏𝑢𝑦 𝑁 ≥ 𝑃𝑃𝐿𝑠𝑒𝑙𝑙 𝑁 𝑁 ∈ {𝑇𝑟𝑒𝑒𝑖\𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖 } (5.3)

∑ 𝑄𝑖 𝑁 𝑥𝑖 𝑁 𝜆𝑖 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖
 (5.4)

∑ 𝑞𝑏𝑢𝑦 𝑁 𝐴𝑅 𝑥𝑖 𝑁 ∑ 𝑥𝑖 𝑁 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖
 𝑞𝑠𝑒𝑙𝑙 𝑁 𝐴𝑅 ≥ 0 𝑁∈𝑙𝑒𝑎𝑓 𝑇𝑟𝑒𝑒𝑖

 (5.5)

𝑥𝑖 𝑁 ∈ {0 } 𝜆𝑖 ∈ ℤ (5.6)

𝑧𝑡 𝑁 ≥0, 𝑄𝑖 𝑁 ≥ 0, 𝑞𝑏𝑢𝑦 𝑁 𝐴𝑅 ≥ 0, 𝑞𝑠𝑒𝑙𝑙 𝑁 𝐴𝑅 ≥ 0 (5.7)

𝑃𝑃𝐿𝑠𝑒𝑙𝑙 𝑁 ≥ 0, 𝑃𝑃𝐿𝑏𝑢𝑦 𝑁 ≥ 0 (5.8)

83

Constraint (5.4) ensures that the quantity of each item across all satisfied leaves is no

greater than the total number of units awarded in the trade. This works for providers as

well as consumers: for providers a trade is negative, and this requires that the total

number of items indicated as sold in the tree be at least the total number of items traded

from the bidder in the trade.

Constraint (5.5) ensures the minimum requirements of the consumers are achieved.

 The Winner Determination Algorithm 6.4

In this section, we describe the algorithm formed for the winner determination. The main

idea of the proposed algorithm is to split the items offered based on the time dimension.

For example, a day can be split into four different time windows as follow:

 12AM to 6AM time window

 6AM to 12PM time window

 12PM to 7PM time window

 7PM to 11:59PM time window

Each time window has a specific bin that stores the bids from consumers and asks from

providers. Each bin includes different lists related to the offered items such as, storage,

computational resources, and services.

A bin represents set of items to be sold within a specific time window. Bids and asks are

introduced into bins based on time requirements. The number of bins in an auction is

obtained once the auction is configured.

We classify the bids based on the time bins as:

 Precise bids are the ones that are specific to the time slot.

 Overlapping bids are those that can be introduced or executed on different bins.

6.4.1 Providers’ Resource Insertion

Providers’ asks can overlap between bins, however, we assume that a provider does not

have dependencies between resources in other bins.

84

The insertion of asks must maintain the social welfare function to be maximized. When

an ask is inserted in a bin, we check if there are bids within the “losing request list” as

shown in Figure 15 that can be matched with the newly inserted ask. Asks can be

matched when inserted.

6.4.2 Consumers’ Bids Insertion

When a new bid is received, it is analyzed to be inserted to the proper bin based on its

time window classification. The types of bid requests are classified into four types:

1) A request to be executed within a specific bin time window

2) A request to be executed between different bins based on the required time

window. For example, a task that is to be executed in bin 1 AND bin 2.

3) A request that can be executed within a specific bin OR a partial schedule that can

be executed in bin 1 and the rest of the schedule is executed in bin 2.

4) A request with a specific time requirement that can be executed within a specific

bin OR another bin based on specific time requirements and valuation.

Step 1:

When bids are classified to the specific time window, each bid is given a value based on

the heuristic score that defines maximum value gain (MVG) by the bid. This is presented

by:

 (

)

where presents the bin end time, presents the bid start time, is the quantity

of the required resources, is the value of the bid. The main purpose of MVG is to find

which bin best fits the requested bid, specifically when the requested bid can overlap

across multiple bins. If the presented bid has more than one choice, a value is given for

each choice. The choice with the greater value is inserted to the proper bin and the other

choice is inserted into a Pending Request List as shown in Figure 15. The bids that are in

the Pending Request List are retrieved if other choices arrive to the bin that requires an

initial resource that was initially matched. The Pending Request List might hold an

85

alternative choice for the request. If no other choices exist, the optimization algorithm

selects the best choice among the selected matches. The pending request list is cleared

when the auction clears.

The possible situations that can occur when a bid B is inserted are:

 B can relocate a winning bid in any of the bins

 B can make a current losing ask in any of the bins to be allocated.

 B cannot win in any of the bins.

The condition to be maintained is the Social Welfare, so the choice of any of those

situations is given by the condition that maximizes the current social welfare. The

purpose is to maintain the allocative efficiency when determining the winner.

Step2:

Each bid before it is inserted to the bin is matched with the possible capable resources

that can execute the request. If possible resources exist and the bid value is greater than

or equal to reserve value, then the request is matched with the possible resources within

the bin. If no feasible resources exist or the bid value is less than the providers reserve

value, then the request choice is inserted into the losing request list as shown in Figure

15. Bids are taken out from the losing request list as new resources are inserted to the bin.

Figure 15: Time-Based Bin Architecture Example.

Request Queue

Matching

Losing Request List

Comp. Res. Storage Res. Services

R1 R2

A A

Time-Based Bin (ex. 12am – 6am Bin)

Optimization

Algorithm

Pending Request List

86

Step3:

The selection of the resources is based on the MVG by the request. The greatest value is

selected from each bin.

The initial allocation from the overlapping bin assigns the specific resources over the

bins. After the completion of the overlapping bin allocation, the allocation selection

process of the winner of the other bins starts. Similarly, the winner of each bin is selected

based on the greatest value of utilizing the resources. The assigned overlapping bids and

resources are not included as part of the winner selection process.

Auction mechanism:

The nature of the Grid/Cloud environment eliminates the use of the commonly applied

combinatorial auction algorithms (e.g., the Vickrey-Clarke-Groves (VCG) mechanism),

as generally such mechanism is not computationally tractable. We utilize a sealed clock

auction. All bids are entered within the specific auction time, however, consumers cannot

see other bidders valuations, and hence cannot modify their bids based on the actions of

others. This is to give the incentive to entities to reveal their truth valuation and not to

adjust them based on other entities valuations to the resources. In practice, participants

are typically given some window of time in which to enter bids and, possibly, respond to

environmental conditions. The auction keeps soliciting bids and asks until the time of the

auction ends. The sealed clock auction is computationally tractable. The execution time

scales linearly in the number of participants and the number of resources.

Reserve Pricing

The reserve prices form the basis of a decision support framework in the market economy

that allows providers to steer the system towards particular, desired outcomes. If one

resource pool is particularly crowded, for instance, then the provider can set its reserve

price high to ensure that consumers in this pool have the incentive to leave it for another,

less crowded one. We use an approach that takes into account the resource loads. For

each resource bundle r, we assume there is a utilization measure, and that each

resource bundle, r, has a cost c(r). We then define our reserve price for r as:

87

where is the weight function for r. The weight function reflects on the resource

availability. The following reflects on the criteria reflects on for constructing these:

 for resources that are over utilized.

 for resources that are underutilized.

 The relative cost difference of resources in highly congested (e.g. 99% vs 80%

utilization) is significantly greater than the cost difference of resources in

underutilized (e.g. 40% vs 15% utilization).

The inputs of the weight functions are utilization percentiles for the different resource

dimensions (e.g. computation, disk, services).

6.4.3 Auction clear

Auction mechanism for the overlapping bin clears first and the other time-based bins can

clear in parallel.

88

Chapter 7

7 Implementation and Validation

This chapter presents a solution framework for the scheduling problem in the Grid/Cloud

computing environment. The framework is based on implementing the proposed bidding

language (Chapter 5), and the winner determination approach (proposed in Chapter 6).

In developing practical architectural solutions for complex environments, we propose to

model the Grid/Cloud marketplace as software-agent. It is expected that the Grid/Cloud

marketplace will include services and participants that involve complex and

nondeterministic interactions. These requirements could not be accomplished using

traditional ways of manually configuring software. Agent-orientation is a very promising

design paradigm for integrating dynamic environment and is essential to model an open

environment, such as the Grid/Cloud computing environment.

The main purpose of this chapter is to show the integration of our proposed solution with

existing Grid/Cloud technology such as Globus. We also present simulation results

related to the quality of the solution and the run time while executing the winner

determination with the existence of many bids and asks.

 Proposed Grid/Cloud Scheduling Architecture 7.1

The proposed architecture provides a framework for Grid/Cloud entities to integrate with

the proposed Grid/Cloud market. There are two main elements to the framework:

 Real-time integration: this component receives information from entities such as

the bids, and integrates them with the Grid/Cloud market. It also deals with the

entities registration and event handling.

 Grid/Cloud market: this component provides the elements required for the market

to enable the auction mechanisms and to manage and configure the lifecycle of

the auction. The Grid/Cloud market includes different components that each has a

specific role within the framework that corresponds to a market specific

functionality.

89

Figure 16: High-level Architecture.

The main components as shown in Figure 16 are:

 Bid Integration: this component integrates the received bids from

providers/consumers and integrates it with the winner determination system.

 Bid Management: manages the bids as requests received. As parts of bids are

received from consumers, the bid management replaces the bid in the proper place

in the bidding language tree. Similarly, removing bids and updating the bidding

tree for an entity. It allows pre-processing of incoming bids to match the specific

trading conditions of the market.

 Market control: is the main container of the auction and market functionalities. It

governs the lifecycle of the market.

 Winner determination: this component implements the auction process and clears

the auction. It is triggered by the market control and finds the winner based on the

algorithm proposed in Chapter 6.

 Feedback: this component allow participants to listen to market events such as

current prices, termination, start of new round and final agreements.

 Contract Manager: handles agreements and facilitates the market clearance.

Real-Time Integration Layer

Provider 1 Provider n Consumer 1 Consumer m

Market Control Winner

Determination

Bid Management

Bids Integration Feedback Contract Manager

90

Components are architected to form the Grid/Cloud market. Specific rules e.g., a new

pricing policy can be added to the platform by specializing the relevant component

without changing the rest of the architecture.

 Proposed Grid/Cloud Scheduling Architecture with 7.2
Privacy Concerns

Providers are responsible to supply adequate level of PPL in order to be eligible for

executing the consumers’ tasks. Similarly, the broker is to provide at least the minimum

PPL requirement for consumers and providers to share their requirements and

specifications. For instance, when consumers share their task requirements with the

broker, they expect to receive enough PPL from the broker in order to disclose the

information. Higher number of PPL brings more responsibilities in providers’ sides for

protecting privacy of consumers. The provided PPL value by an entity indicates the level

of privacy protection that the provider is able to provide.

Consumers on the other hand value the minimum required PPL to share its requirements

and to execute its tasks. As an expansion for the scheduling solution architecture

presented in section 7.1, we added a component that provides privacy matching as shown

in Figure 17. The privacy matching component is to satisfy matching consumers to

providers based on the condition ≥ ∀ ∈ , ∈ . The results from

this component are the possible provider entities that are able to provide the minimum

required PPL by the consumer. The result enters the winner determination component in

which it finds the allocation of providers to consumers. The winner determination

component is the same as proposed in Chapter 6.

With such architecture, the input of the winner determination problem remains

unchanged as previously proposed. The addition of the privacy matching component

filters the unfeasible space from providers that are unable to achieve the privacy

protection level for consumers.

91

Figure 17: High-level view of the allocation of resource given the privacy concerns.

 Bidding Language Representation 7.3

In the implementation of the proposed approach we have selected JSDL for the

presenting the proposed bidding language presented in Chapter 5. JSDL (Job

Specification and Description Language) is a standard proposed by the Open Grid Forum

for describing tasks to be executed on the Grid infrastructure. JSDL is an XML based

language. We mapped the proposed bidding language as described in Chapter 5 to the

JSDL schema, and used the extensible nature of XML to extend JSDL in order to support

the proposed solution.

The scope of the JSDL schema deals with submission requirements of individual tasks

only. JSDL specification notes the fact that other documents maybe required to address

the entire lifecycle of a task including relationship between other tasks. To support

workflow and scheduling requirements, two separate documents are introduced that are

JSDL-aware, WSL (Workflow Specification Language) and SDL (Scheduling

Description Language).

Real-Time Integration Layer

Provider 1 Provider n Consumer 1 Consumer m

Market Control
Winner

Determination

Bid Management

Bids Integration Feedback Contract Manager

Privacy Matching

92

Workflow support is implemented by introducing the WSL (Workflow Specification

Language). WSL has been developed by the C3 project. WSL is JSDL aware. The

specification allows for referencing of JSDL elements in order to create dependencies

between different tasks.

The time-based requirements in the implementation are described in a separate document

as shown in Example 1. This approach is the preferred way to deal with additional parts

of the task lifecycle in the Grid environment as described in the JSDL document.

Example 1: Time-based Requirements.

The resource requirements are done through the use of the JSDL core specifications.

JSDL has support for both the computational and storage resources as shown in Example

2. The computational requirements of our model map to the elements of the R sourc s

tag. Such requirements as CPU speed, number of processors, and memory requirements

map to elements within the R sourc s such as IndividualCPUS d,

IndividualCPUCount, IndividualPhysicalMemory. Data storage requirements also map to

similar elements within the R sourc s tag, such as IndividualDiskSpace.

Example 2: Resource Requirements.

<ScheduleDescription>

<StartTime .../>?

<EndTime .../>?

</ScheduleDescription>

<Resources>

<IndividualCPUSpeed>

 <LowerBoundedRange>

1073741824

 </LowerBoundedRange>

</IndividualCPUSpeed>

<IndividualCPUCount>

<Exact>2</Exact>

</IndividualCPUCount>

<IndividualPhysicalMemory>

<Exact>4G</Exact>

</IndividualPhysicalMemory>

<IndividualDiskSpace>

<Exact>25GB</Exact>

</IndividualDiskSpace>

<TotalResourceCount>

<Exact>2</Exact>

</TotalResourceCount>

</Resources>

93

The TotalResourceCount tag gives ability to represent multiple identical units. We further

extend the JSDL by adding a multiplicity to the Resources tag. The JSDL specifies the

multiplicity of the tag to be 1, but in order to satisfy the bidding language we allow for

multiple resource requirements to be listed in the task description. This approach allows

to further support the interval operator type where the required number of resource to

satisfy the task is specified.

Example 3: Extended JDSL schema.

We further extend the JSDL to support the interval operator type for the proposed bidding

language extension. The interval operator allows a consumer to specify the number of

resources which are required to satisfy the task execution. This is implemented using the

ResourceInterval tag element within the JobDefinition element of the JSDL schema. The

complete model of our implementation is shown in Example 3. Similarly to the other

elements of the JobDescription tag, the ResourceInterval element has the

jsdl:RangeValue_Type. The jsdl:RangeValue_Type enabled to specification for exact

number of resources required to satisfy the task execution, as well, optionally the

consumer can specify the upper and/or lower bounds as shown in Example 4. The

jsdl:RangeValue_Type is defined in the JSDL document. It can contain the following

elements LowerBoundRange, UpperBoundRange, and Exact. Where the

LowerBoundRange denotes the least number of children which are required to satisfy the

task execution of the given task, UpperBoundRange denotes the most number of children

required to satisfy the task execution, and Exact denotes the exact number of children

required to satisfy the task execution.

<JobDefinition>

<JobDescription>

<JobIdentification ... />?

<Application ... />?

<Resources ... />+

</JobDescription>

<ResourceInterval ... />*

</JobDefinition>

94

Example 4: ResourceInterval tag, two examples.

In addition to the implementation of the job definition, we introduce the PPL value. The

PPL value is represented as shown in Example 5. The PPL value on the consumer side is

submitted with the job definition and represents the required PPL for executing the tasks.

The JSDL specification allows for the extension of the attributes for the JobDefinition

element. We choose to implement the PPL value as an attribute of the JobDefinition

element since the modification of the task definition might not require the change of the

PPL attribute.

Example 5: PPL value implementation.

The provided architecture in section 7.2 allows for the Privacy Matching component

within the broker to perform matching of the job definition to the available providers.

This approach eliminates any providers which cannot provide enough PPL for

consumers.

 Implementation Environment 7.4

We developed a prototype of an agent-oriented Grid/Cloud by utilizing Globus toolkit

and the Java Agent Development (JADE) platform for the runtime environment as shown

in Figure 18. JADE is a software framework which allows us to develop agent

applications in compliance with the Foundation of Intelligent Physical Agents (FIPA)

specifications for multi-agent systems. JADE deals with all aspects that are external to

agents and independent of their applications. These include message transport, encoding,

<ResourceInterval>

<Exact>2</Exact>

</ResourceInterval>

<ResourceInterval>

<UpperBoundRange>2</UpperBoundRange>

</ResourceInterval>

<JobDefinition ... PPL=”8”>

...

</JobDefinition >

95

parsing and agent lifecycles. JADE supports a distributed environment of agent

containers, which provide a run-time optimized environment to allow several agents to

execute concurrently. This feature has been utilized to create several concurrent auction

sessions. A complete agent platform may be composed of several agent containers.

Communication in JADE, whether internal to the platform or externally between

platforms, is performed transparently to agents. Internal communication is realized using

Java Remote Method Invocation to facilitate communication across the Grid/Cloud

environment and its market sessions. External non-Java based communication, between

the market and its participating organizations, is realized through the Internet InterOrb

Interoperability Protocol mechanism or http.

At the resource level, we utilize the functionalities of Globus toolkit version 5.0.2. The

use of the Globus technology is limited to task processing and monitoring at each

computing node. We use GramJob API within the Java WS Core to provide the necessary

methods to submit a task using GRAM and control its lifetime.

In our deployment environment as shown in Figure 18, we have a number of computing

nodes connected through the Internet. Each computing node runs Globus Toolkit as the

Grid middleware, which provides a uniform access to the computing resource. However

from the Globus technology point of view, each Globus computing node is independent

of each other and unaware of other existence. On top of the Globus installation we deploy

JADE in a distributed configuration.

The Provider agent abstracts each computing node. Each Provider can map a single or

multiple computing nodes. Providers are registered in the Grid through the Brokering

agent. The trading and interaction behavior of the participant agents is governed by the

market.

Although our implementation takes advantage of the JADE platform and its supporting

agents, such as the directory facilitator (DF), agent management service (AMS), and

agent communication center (ACC), the architecture of the application agents is based on

the CIR-Agent model [Ghenniwa, 1996]. Java features, such as portability, dynamic

loading, multithreading, and synchronization support make it appropriate to implement

96

the inherent complexity and concurrency for the Grid market. The design of each agent is

described in terms of its knowledge and capabilities. The agent’s knowledge includes the

agent’s self-model, goals, and local history of the world, as well as a model of its

acquaintances. The agent’s knowledge also includes its desires, commitments, and

intentions as related to its goals.

The main capabilities of the CIR-Agent include communication, reasoning, and domain

actions. Implementation of the communication component takes advantage of JADE

messaging capabilities. It is equipped with an incoming message inbox, whereby message

polling can be both blocking and non-blocking, and with an optional timeout mechanism.

Messages between agents are based on the FIPA ACL. The agent’s reasoning capabilities

include problem solving and interaction devices.

Figure 18: Implementation Logical Architecture.

97

The brokering agent creates a scheduling decision based on the interaction between

consumer and provider agents. As proposed in Chapter 6, the broker-agent interaction

and problem solver components are implemented as follows:

 Interaction – it describes the interaction protocol used by the broker-agent to

coordinate with the consumer and provider-agents in the environment. The interaction

component of the broker-agent is implemented by making use of the existing JADE

behavior classes: FipaContractNetIntitiatorBehavior. In that protocol, the broker-

agent can solicit proposals from consumers and providers by sending a CFP (call for

proposal) message. Consumers send the bidding to the required items and providers

submit the reserve value for their resources. The PROPOSE messages, sent by the

providers and consumers are taken into the broker-agent problem solver and an

OFFER message is created to the winner provider to schedule the request.

 Problem Solver – it is the decision making of the broker agent to schedule requests

into the resources, based on its self-knowledge, and the knowledge of the provider and

consumer agents. The architecture within the broker agent is the proposed architecture

in Figure 16. The broker agent announces the winner based on the mechanism

proposed in Chapter 6.

The role of the consumer-agent is to express its preferences through the proposed biding

language in Chapter 5 format and sends “bid” messages out to the broker-agent. The

interaction of the consumer-agent interaction and problem solver is as follows:

 Interaction – describes the interaction protocol used by consumer-agents to interact

with the broker-agent in the environment. It contains a class that extends the JADE

behavior class ContractNetReponder Behavior through which the consumer-agent

prepares the PROPOSE message that is later followed by the formulated biding

language proposed in Chapter 5 using the JSDL standard.

 The problem-solver – contains a Bid class that implements a cyclic behavior in order

to respond to incoming messages from the broker-agent that requests bids. This class

implements all the consumer-agent’s tasks such as registration with the broker agent

as well as a method that formulates preferences and bid valuations using the proposed

98

bidding language in Chapter 5. The bidding language is created based on the

consumer agent objective.

The provider-agent’s role is to express the resource specifications and reserve value

through the bidding language proposed in Chapter 5. The provider-agent’s reasoning

component consists of the following:

 Interaction – describes the interaction protocol used by provider-agents to interact with

the broker-agent in the environment. The resource’s interaction makes use of the

existing JADE class FipaContractNetResponderBehavior when interacting with the

broker-agent.

 Problem Solver – contains Ask class that implements a cyclic behavior in order to

respond to incoming messages from the broker-agent. This class implements all the

provider-agent’s requirements such as registration with the broker agent as well as a

method that formulates the Asks and reserve values using the proposed bidding

language in Chapter 5 using the JSDL standard. The reserve values are created based

on the provider agent objective.

 Experimentation Environment and Results 7.5

The aim of the experiment is twofold: to validate that the winner determination provides

quality of the solution and to show the runtime of the proposed work. To carry out the

experiments a set of random data sets have been generated. We generated the set size to

be as realistic as the size of a real environment. The problem set consists of the

following:

Set 1 – consists of 300 bids and 300 asks

Set 2 – consists of 400 bids and 300 asks

Set 3 – consists of 500 bids and 300 asks

Set 4 – consists of 600 bids and 300 asks

Set 5 – consists of 700 bids and 300 asks

99

Set 6 – consists of 800 bids and 300 asks

Set 7 – consists of 900 bids and 300 asks

Set 8 – consists of 1000 bids and 300 asks

Set 9 – consists of 1100 bids and 300 asks

The distribution functions used were derived from several experiments found in the

literature [Mills and Dabrowski, 2008][Phelps, 2007] to generate random data. Uniform

distribution of ask prices are motivated by the assumption that costs of resources are also

uniformly distributed. Bid prices have been generated using Uniform distribution. The

bids and asks are distributed across time slots.

7.5.1 Economic Efficiency

The experiment aimed to evaluate the economic efficiency obtained by the winner

determination algorithm. Economic efficiency is defined as the social welfare that the

mechanism provides given a certain input. In order to evaluate the economic efficiency of

the proposed winner determination, we compared the outcome of the proposed algorithm

with CPLEX 10 by implementing the winner determination model created in Model 4 in

Chapter 6. We generated 9 random runs for the experiment. For each run the random

input is stored and transformed to be used as the input for the CPLEX tool to avoid

divergences due to randomization.

We measured the efficiency of Scheduling, , as the ratio of the value of

the final schedule S to the value of the optimal schedule provided by CPLEX that

maximizes total value across the agents as defined in the model in section 6.2:

∑ ∈ ∈

∑ ∈
 00

100

Figure 19: Economic Efficiency for 9 random runs.

The results reflects the difference between the proposed winner determination algorithm

that solicits bids based on the time auction mechanism, and the one-shot using CPLEX in

the context of auction-based decentralized scheduling.

Figure 19 plots the economic efficiency of the proposed winner determination over the 9

random problem sets. Compared to CPLEX tool which provides (100% efficiency), on

average, the proposed winner determination can on average achieve more than 90%

efficiency.

We reflect on the mechanism result behavior on the economic efficiency based on two

elements: the deficiency by average 10% of the solution quality, and on the average 90%

efficiency. It was noticeable that giving priority to the allocation of the overlapping bin

created some deficiency to the overall solution. As it created specific solutions that

overlap across bins, some other solution were not accommodated within the bins because

of the priority given to the overlapping bin. However, because of the MVG heuristic

function, the allocation was still controlled not to give full priority to the overlapping bin

without having sufficient valuation to the bid. The MVG heuristic, managed to maintain

the economic efficiency of the solution. It was also noticeable that the losing request list

in the architecture helped in the economic efficiency by not completely ignoring the bids

that were not initially matched to asks because of insufficient valuation or capability

existence. As new resources (asks) arrive to the environment, bids were taken out from

the list. Moreover, the reserve value made the system eliminate the solution space that did

89.00%

91.00%

93.00%

0 1 2 3 4 5 6 7 8 9

Ef
fi

ci
e

n
cy

Problem Set

101

not meet the minimum valuation of asks. This is also a factor that contributed to the

economic efficiency within the solution.

7.5.2 Run Times Results

We did a comparison with the run time between the proposed algorithm and CPLEX as

the problem size grows through 9 random generated problem sets with 4 time-based bins.

The experiment were conducted on an i7-2600, 3.40GHz with 8GB memory. We can see

through Figure 20 that the proposed winner determination for the Grid/Cloud

environment requires less time to solve a set of problem than CPLEX.

Figure 20: Run times of the propose WD and CPLEX for 9 problem sets.

Couple of factors of the proposed mechanism enabled the behavior of time result. The

choice of the clock auction is computationally tractable and limited participants in the

auction to provide their preferences within specific time frame. Moreover, splitting the

bids and asks into bins split the large problem into small sub-problems. In this

experiment case, the problem was split into four sub-problems where the sub problems

are executed in parallel. In the worst case scenario, this creates four times more efficient

solution than CPLEX. Moreover, the matching process happen as the auction is soliciting

bids and asks during the specific auction time. The matching component cuts from the

infeasible space of the solution and hence, the solution that are computed by the close of

the auction are the once within the feasibility space for each bin.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9

Ti
m

e
 (

Se
co

n
d

)

Problem Set

CPLEX

proposed WD

102

Chapter 8

8 Summary and Conclusion

This thesis investigates modeling and computational issues in developing solution

approaches to the Grid/Cloud scheduling problem. Our objective is to design economic-

based models capable of coordinating the scheduling behaviors of independent entities in

the Grid/Cloud. The developed solution mainly targets to the valuation, communication,

and winner determination complexities in auction-based decentralized scheduling that is

adequate for the Grid/Cloud. This chapter summarizes the main contributions of this

work; highlights our conclusions; and presents some future research directions.

 Summary of Contributions 8.1

In the design of economic-based models for the Grid/Cloud scheduling problem, we

focused on auction-based approaches. We addressed complexity issues in applying

combinatorial auctions to the Grid/Cloud scheduling problem. Our main contributions

include the Grid/Cloud scheduling problem model and analysis, bidding language, winner

determination model and algorithm design, and auction structure design in which they are

adequate for the Grid/Cloud.

Grid/Cloud scheduling problem modeling: A formal Grid/Cloud scheduling problem

model is presented. This model extends the classical centralized scheduling problem for

the makespan and resource utilization models to decentralized Grid/Cloud environment.

The model was analyzed and derived based on the structure and the characteristics of the

Grid/Cloud. A formal mapping to combinatorial auction problems is provided.

Comparing with other research work on the Grid/Cloud scheduling problem modeling,

our model is more formal and more comprehensive.

Tree-based Requirement Specification Bidding Languages: The proposed language

use requirements for processing a set of tasks as atomic propositions and prices are

attached to the completion times of the processing and on the specification of the required

resources. The requirement specification extension is based on the TBBL language

103

proposed by [Cavallo et. al. 2005] and designed specifically to suite the Grid/Cloud

scheduling problem that applies the auction-based mechanism. This has advantages over

other general logical languages in terms expressiveness for entities in the Grid/Cloud,

reduces valuation and communication complexities.

Winner Determination model and algorithm: The winner determination problem

formulated using the tree-based requirement specification bidding language. We utilized

a sealed bid clock auction mechanism to bound the solicitation of bids based on specific

time window that is known to all users. Our mechanism splits the problem into sub

problems to reduce the complexity of the overall problem. We built an architecture that

manages the bids as they arrive and eliminates infeasible space from the scheduling

problem. The uniqueness of this framework is it targets winner determination problems

formulated by tree-based requirement specification language and targets properties

related to strategy-proofness, individual rationality, time efficiency, and economic

efficiency. Compared with general winner determination algorithm used in optimization,

our approach demonstrates improved performance.

By embedding the tree-based requirement specification languages and winner

determination algorithm that solicit bids within specific time frame enables entities to

provide their bidding iteratively. This is more natural in terms of the implementation in

real world Grid/Cloud.

Scheduling with privacy concerns model and architecture for the Grid/Cloud: We

argue in this work that privacy is a requirement component to consider in the decision of

the scheduling problem in the Grid/Cloud given the nature of the environment. There is

very little work done in this domain. In this thesis, we analyzed and developed a

scheduling model that takes privacy concerns of entities within the scheduling problem.

We have expanded our Grid/Cloud computing scheduling model, mechanism, and

architecture to enable the privacy concern in the scheduling decision for the Grid/Cloud.

104

 Conclusions 8.2

Auctions offer great promise as mechanisms for optimal resource allocation in the

Grid/Cloud environment. However, the applicability of auctions to the Grid/Cloud

scheduling depends on the ability to manage the valuation, communication, winner

determination, and strategic complexities in the context of scheduling problem. We argue

that it is necessary to take an explicit computational approach, which integrates

scheduling specific methods, to auction-based Grid/Cloud scheduling system design. The

proposed bidding language presented in this thesis is designed for the Grid/cloud

scheduling problem. We have shown that the proposed bidding language provides

concise, natural representations of entities’ valuations for the Grid/Cloud scheduling. In

addition, the winner determination problem resulted from the languages preserve natural

scheduling constraints which enables effective algorithm design. We developed the

winner determination algorithm which embeds constraint-directed search scheduling. The

experimental results have exhibited significant improvement in terms of problem solving

speed and maintain the economic efficiency to at least 90%.

 Directions for Future Research 8.3

This thesis improves on the understanding on the modeling of the scheduling problem in

the Grid/Cloud environment and advances the state-of-the-art through its contributions.

The investigations conducted in this thesis reveal several areas in Grid/Cloud scheduling,

where much work remains to be done. Moreover, the contributions of this thesis have led

to new challenges that are to be addressed through further research. This section briefly

describes some of these challenges within the scope of the thesis.

First, we will continue to improve on the efficiency of the winner determination. The

proposed algorithm developed in the thesis has demonstrated good performance in

auction-based Grid/Cloud scheduling. Heuristics from classical scheduling theory can be

embedded to boost the approach’s performance on well-studied scheduling problem

models for each bin. We will explore the possibility of introducing approximate and

heuristic algorithms for the winner determination problem. While these algorithms can

105

come with different flavors, those preserve incentive compatibility are worth of

investigation.

Second, we will continue the investigation on the privacy concerns in the Grid/Cloud

specifically into the quality of the solution aspect. Our proposed economic-based model

deals with privacy as a quality measure, however, in our proposed architecture, we

created a component that deals with matching requests to resources that are able to

provide at least the minimum privacy protection level. The proposed heuristic does not

guarantee that entities are receiving the maximum privacy protection level from the

Grid/Cloud resources. Future expansion is to measure the quality of the proposed privacy

heuristic solution quality and investigate into possible improvement to the scheduling

solution given privacy concerns in the Grid/Cloud.

A third direction is to investigate models to include energy-aware resource allocation

qualities. There is a growing demand for computational power from industry and

academia that has led to extreme power consumption. Numbers of initiatives were taken

in the development of energy-efficient hardware. The overall energy consumption

however, continues to grow due to the overwhelming requirements for computing

resources and data centers. Utilizing the consumption of the power in an inefficient way

will eventually lead to critical problems such as, insufficient or malfunctioning to the

cooling system. This result to overheating of resources and reduces the system reliability

and lifetime. Moreover, high power consumption leads to generating substantial amount

of carbon dioxide. The proposed architecture in this thesis considers the scheduling

decision based on time, resource utilization, and privacy concerns. Further direction is to

extend the scheduling model with energy-aware resource allocation that takes into

account both consolidation (to switch off nodes) and smart task mapping techniques with

a view to lower the total energy consumed to run a service.

A fourth direction is to enhance the reliability of critical tasks execution. A task in the

Grid/Cloud is called critical task if the execution of other tasks depend on the output or

the execution completion of the “critical” task. The failure of executing a task in the

Grid/Cloud can be caused by changes in the resources environment configuration, non-

106

availability of required services or software components, overloaded resource conditions,

and faults in computational and network fabric components. Proposed techniques to

achieve fault-tolerance in [Abawajy, 2004] such as retry, check-pointing, and redundant

task-allocation. The redundant task-allocation technique [Abawajy, 2004] executes the

same task simultaneously on different resources to guarantee fault-tolerant execution of

that task in the event of task failure, provided that one of the resources does not fail. It is

not efficient to apply redundant task-allocation for each task in a workflow, rather it can

be applied for critical tasks. The challenges along the future research direction is to look

into improving reliability of workflow execution in case of unexpected resource behavior

in the Grid/Cloud and to develop algorithms for identifying the critical tasks and

determining the level of redundancy based on the reliability requirement.

107

Bibliography

[Abawajy, 2004] Abawajy J. H. Fault-tolerant scheduling policy for grid computing

systems. In Proceedings of the 18th International Parallel and Distributed Processing

Symposium (IPDPS04), USA, April, 2004.

[Aderholz et al.,2001] Aderholz, M. et al. (2001). MONARC Project Final Report.

Technical report, CERN. URL: http://cern.ch/lhc-computing-review-

public/Public/Report_final.PDF

[Andersson et al., 2000] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer

programming for auctions with bids for combinations. In Proc. 4th International

Conference on Multi-Agent Systems (ICMAS-00), 2000.

[Bagchi and Uckum, 1991]Bagchi S., Uckum S. (1991). Exploring Problem-Specific

Recombination Operators for Job shop Scheduling. Proceedings of the Fourth

International Conference on Genetic Algorithms. Morgan Kaufmann, San Diego.

[Bartal et. al., 2003] Y Bartal, R Gonen, and N Nisan. Incentive compatible multi unit

combinatorial auctions. Technical report, The Hebrew University of Jerusalem, 2003.

[Benisch et. al., 2008] M. Benisch, N. Sadeh, and T. Sandholm, “Theory of

expressiveness in mechanisms”, in AAAI-08, 17-23, 2008

 [Berman et al. 1997] Berman F. and Wolski R., (May 1997). “The AppLeS Project: A

Status Report”, Proceedings of the 8th NEC Research Symposium, Berlin, Germany.

[Berman et al., 2003] Berman F., Wolski R., Casanova H., Cirne W., Dail H., Faerman

M., Figueira S., Hayes J., Obertelli G.,. Schopf J, Shao G., Smallen S., Spring N., Su

A. and Zagorodnov D., Adaptive Computing on the Grid Using AppLeS, in IEEE

Trans. On Parallel and Distributed Systems (TPDS), Vol.14, No.4, pp.369--382,

2003.

[Bezzi, 2010] Bezzi M. (2010). “An Information Theoretic approach for privacy

metrics”, Transactions on Data Privacy 3, p.199-215.

http://cern.ch/lhc-computing-review-public/Public/Report_final.PDF
http://cern.ch/lhc-computing-review-public/Public/Report_final.PDF

108

[Bikhchandani and Ostroy, 2006] Bikhchandani S. and Ostroy J. M. “Ascending price

Vickrey auctions,” Games and Economic Behavior, Volume: 55, Issue: 2, May,

2006, pp. 215-241.

[BIRN, 2005] Biomedical Informatics Research Network (BIRN) (2005).

http://www.nbirn.net.

[Blumrosen and Nisan, 2002] Liad Blumrosen and Noam Nisan. Auctions with severely

bounded communication. In Proc. 43rd Annual Symposium on Foundations of

Computer Science, 2002.

[Blythe et. al., 2005] Blythe J., Jain S., Deelman E., Gil A., and Vahi K.. Task scheduling

strategies for workflow-based applications in grids. In Proceedings of the 5th IEEE

International Symposium on Cluster Computing and the Grid (CCGrid’05), UK,

May, 2005.

[Boutilier, 2002] Craig Boutilier. Solving concisely expressed combinatorial auction

problems. In Proc. 18th National Conference on Artificial Intelligence (AAAI-02),

July 2002.

[Briscoe and Marinos, 2009] Briscoe, G., and A. Marinos. "Digital Ecosystems in the

Clouds: Towards Community Cloud Computing." Digital Ecosystems and

Technologies Conference. IEEE Press, 2009.

[Bulhoes et al., 2004] Bulhoes, P. T., Byun, C., Castrapel, R., and Hassaine, O. (2004).

N1 Grid engine 6 features and capabilities. White paper, Sun Microsystems, Phoenix,

USA.

[Buskens, et al, 2000] Buskens, Vincent and Jeroen Weesie (2000), “Cooperation via

Social Networks,” Analyse and Kritik, this issue.

[Buyya, 2002] Buyya, R. “Economic Paradigm for Distributed Resource Management

and Scheduling for Service Oriented Grid Computing,” Ph.D. thesis, Monash

University, April 12, 2002.

[Buyya et al.,2000a] Buyya R., Abramson D., and Giddy J., (May 2000). “Nimrod-G: An

Architecture for a Resource Management and Scheduling System in a Global

Computational Grid”, The 4th International Conference on High Performance

http://www.nbirn.net/

109

Computing in Asia-Pacific Region (HPC Asia 2000), Beijing, China, IEEE Computer

Society Press, USA.

[Buyya et al.,2000b] Buyya R., Giddy J., Abramson D., (August 2000). “An Evaluation

of Economy-based Resource Trading and Scheduling on Computational Power Grids

for Parameter Sweep Applications”, Proceedings of the 2nd International Workshop

on Active Middleware Services (AMS 2000), Kluwer Academic Press, Pittsburgh,

USA.

[Buyya et al., 2002] Buyya R., Abramson D., Giddy J., and Stockinger H., (2002).

“Economic Models for Resource Management and Scheduling in Grid Computing”,

The Journal of Concurrency and Computation: Practice and Experience (CCPE),

Wiley Press.

[Buyya et al., 2001] Buyya R. and Vazhkudai S., (2001). “Compute power market:

Towards a market-oriented grid”, The First IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid 2001).

[Buyya et. al., 2008] Buyya R., Yeo C. S., and Venugopal S., “Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as Computing

Utilities”, Keynote Paper, Proceedings of the 10th IEEE International Conference on

High Performance Computing and Communications (HPCC 2008, IEEE CS Press,

Los Alamitos, CA, USA), Sept. 25-27, 2008, Dalian, China.

[Casanova et al., 2000] Casanova H., Legrand A., Zagorodnov D. and Berman F., (May

2000). Heuristics for Scheduling Parameter Sweep Applications in Grid

Environments, in Proc. of the 9
th

 hetero-geneous Computing Workshop (HCW'00),

pp. 349-363, Cancun, Mexico.

[Cavallo et. al. 2005] Cavallo, R., Parkes, D. C., Juda, A. I., Kirsch, A., Kulesza, A.,

Lahaie, S., Lubin, B., Michael, L., & Shneidman, J. (2005). TBBL: A Tree-Based

Bidding Language for Iterative Combinatorial Exchanges. In Multidisciplinary

Workshop on Advances in Preference Handling (IJCAI).

[Compte and Jehiel, 2000] Olivier Compte and Philippe Jehiel. On the virtues of the

ascending price auction: New insights in the private value setting. Technical report,

110

CERAS and UCL, 2000.

[Condon et al., 1967] Condon WS, Ogston WD (1967) A segmentation of behavior. J

Psychiat Res 5:221–235

[Condor, 2012] Condor High Throughput Computing - http://www.cs.wisc.edu/condor

(visited December 2012)

[Conway et. al., 1967] Conway, R. W., Maxwell, W. L. and Miller, L. W. (1967) Theory

of Scheduling. Addison-Wesley, Reading, Mass.

 [Cooper et al., 2004] Cooper K., Dasgupta A., Kennedy K., Koelbel C., Mandal A.,

Marin G., Mazina M., Mellor-Crummey J., Berman F., Casanova H., Chien A., Dail

H., Liu X., Olugbile A., Sievert O., Xia H., Johnsson L., Liu B., Patel M., Reed D.,

Deng W., Mendes C., Shi Z., YarKhan A. and Dongarra J., (April 2004). “New Grid

Scheduling and Rescheduling Methods in the GrADS Project”. In Proceeding of the

18th International Parallel and Distributed Processing Symposium (IPDPS'04),

pp.199--206, Santa Fe, New Mexico USA.

[Czajkowski, 1998] Czajkowski K., Foster I., Karonis N., Kesselman C., Martin S.,

Smith W., and Tuecke S., (March 1998). “A Resource Management Architecture for

Metacomputing Systems”, In D.G.Feitelson and L. Rudolph, editors, in Proc of the

4th Workshop on Job Scheduling Strategies for Parallel Processing, LNCS Vol. 1459

pp. 62–82, Orlando, Florida USA.

[Czajkowski,2001] Czajkowski K., Fitzgerald S., Foster I., and Kesselman C., (August

2001). “Grid Information Services for Distributed Resource Sharing”, in Proceeding

the 10th IEEE International Symposium on High- Performance Distributed

Computing (HPDC-10), pp. 181-194, San Francisco, California, USA.

[Davis, 1985] Davis L., (1985). Job Shop Scheduling with Genetic Algorithms.

Proceedings of an International Conference on Genetic Algorithms and their

Applications, Pittsburgh, Lawrence Erlbaum Associates.

[Dey et al., 2002] A. Dey , S. Lederer , J. Mankoff , “A Conceptual Model and

Metaphor of Everyday Privacy in Ubiquitous Computing”, Technical report,

University of California at Berkley, USA, 2002.

http://www.cs.wisc.edu/condor

111

[De Vries and Vohra, 2002] Sven de Vries and Rakesh V Vohra. Combinatorial auctions:

A survey. Informs Journal on Computing, 2002.

[Doebeli, et al, 2005] Doebeli, M. and Hauert, C. “Models of cooperation based on the

Prisoner’s Dilemma and the Snowdrift game.” Ecology Letters. 8 (2005) 748-766.

[Durfee et al., 1989] Durfee, E., Lesser, V. and Corkill, D., (1989). “Cooperative

distributed problem solving,” In A. Barr, P. Cohen, and E. Feigenbaum, editors, The

Handbook of Artificial Intelligence, volume IV, pages 83-147, Addison Wesley.

[Ernemann et al., 2005] Ernemann C. and Yahyapour R., (2005). “Grid Resource

Management: State of the Art and Future Trends”, chapter 30 Applying Economic

Scheduling Methods to Grid Environments, pages 491–506.

[Fahringer et. al., 2005] Fahringer T., Jugravu A., Pllana S., Prodan R., Seragiotto C., and

Truong H. L. Askalon: A tool set for cluster and grid computing. Concurrency and

Computation: Practice and Experience, vol. 17, no. 2-4, pp. 143-169, 2005.

[Fisher, 1973]Fisher, M. L., (1973) Optimal solution of scheduling problems using

Lagrange multipliers: Part I. Operations Research, 21:1114-1127.

[Foster, 1998] Foster, I. Computational Grids, pp. 15–52. In [10], 1998.

[Foster and Kesselman, 1998] Foster, I. and Kesselman, C. The Globus Project: a Status

Report. In Proc. IPPS/SPDP’98 Workshop on Heterogeneous Computing, pp. 4–18,

1998.

[Foster et al. 2002] Foster, I., Kesselman, C., Nick, J., and Tuecke, S. Grid Services for

Distributed System Integration. Computer, 35(6):37–46, 2002.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. Int. J. Supercomp. App., 15(3):200–222,

2001.

[Foster et al., 2008] Foster I., Zhao Y., Raicu I., and Lu S., Cloud Computing and Grid

Computing 360-Degree Compared, Grid Computing Environments Workshop, 2008.

(GCE '08), 1-10, Austin, Texas, USA, November 2008.

[Franks, 1989] Franks, N., (1989). "Army Ants: A Collective Intelligence", American

112

Scientist, vol. 77, pp.139-145.

[French, 1982] French, S., (1982) Sequencing and Scheduling' An Introduction to the

Mathematics of the Job Shop, New York: John Wiley and Sons, inc.

[Frey et al., 2001] Frey, J., Tannenbaum, T., Livny, M., Foster, I. T., and Tuecke, S.

(2001). Condor-G: A computation management agent for multi-institutional Grids. In

10th IEEE International Symposium on High Performance Distributed Computing

(HPDC 2001), pages 55–63, San Francisco, USA. IEEE Computer Society.

[Garey and Johnson, 1979] Garey, M.R., and Johnson, D. S. 1979. Computers and

Intractability, a Guide to the Theory of NP-Completeness. W. H. Freeman Company.

[Geelan, 2009] Geelan Jeremy. Twenty one experts dene cloud computing.

Virtualization, January 2009. Electronic Magazine, article available at

http://virtualization.sys-con.com/node/612375.

[Ghenniwa, 1996] Ghenniwa H., Coordination in cooperative distributed systems, Ph.D.

Thesis, University of Waterloo, 1996

[Giffler, 1960]Giffler B. and Thompson G. L. (1960). Algorithms for solving production

scheduling problems, Operations Research, 8, 487-503.

[Glover, 1986]Glover F., (1986). Future paths for integer programming and links to

artificial intelligence, Computers & Operations Research, 5: 533-549.

[Greenstadt, 2008] R. Greenstadt. An analysis of privacy loss in k-optimal algorithms. In

Workshop on Distributed Constraints Reasoning (DCR08), at AAMAS 2008, Estoril,

Portugal, May 2008.

[Greenstadt et. al., 2006] R. Greenstadt, J. Pearce, M. Tambe, “Analysis of Privacy Loss

in Distributed Constraint Optimization”, AAAI'06 Proceedings of the 21st national

conference on Artificial intelligence - V 1, pp 647-653 , 2006.

[Grimshaw, 2002] Grimshaw, A. What is a Grid? Grid Today, 1(26), 2002.

[Grimshaw and Wulf, 1997] Grimshaw, A. and Wulf, W. The Legion Vision of a

Worldwide Virtual Computer. Comm. of the ACM, 40(1):39–47, 1997.

[Groves, 1973] Groves Theodore. Incentives in teams. Econometrica, 41:617-631, 1973.

113

[Hamscher,2000] Hamscher V., Schwiegelshohn U., Streit A., Yahyapour R., (December

2000). “Evaluation of Job-Scheduling Strategies for Grid Computing”. In Proceeding

of GRID 2000 GRID 2000, First IEEE/ACM International Workshop, pp. 191-202,

Bangalore, India.

[He et al. 2003] He X., Sun X. and Laszewski G., (July 2003)A QoS Guided Min-Min

Heuristic for Grid Task Scheduling, in J. of Computer Science and Technology,

Special Issue on Grid Computing, Vol.18, No.4,pp.442—451

[Holzman et. al., 2001] R Holzman, N Kfir-Dahav, D Monderer, and M

Tennenholtz.Bundling equilibrium in combinatorial auctions. Games and Economic

Behavior, 2001.

[Kalagnanam and Parkes, 2004] Kalagnanam, J, Parkes, D. (2004). “Auctions, Bidding

and Exchange Design,” in Simchi-Levi, Wu, Shen, Handbook of Quantitative Supply

Chain Analysis: Modeling in the E-Business Era, Kluwer Academic Publishers.

[Kamel and Ghenniwa, 1995] M. Kamel and H. Ghenniwa, 1995, “Partially-Overlapped

Systems: The Scheduling Problem,” in Design and Implementation of Intelligent

Manufacturing Systems, Parsaei, H. and Jamshidi, M. (Eds.), Prentice-Hall, pp.

241-274.

[Kirkpatrick et. al, 1983]Kirkpatrick, S., Gelatt, C. D., (1983). Optimization by Simulated

Annealing, Science 220:671-680.

[Krauter et. al., 2002] Krauter, K., Buyya, R., and Maheswaran, M. A taxonomy and

survey of grid resource management systems for distributed computing. Int. J. of

Software Practice and Experience, 32(2):135–164, 2002.

[Kurzban, 2001] Kurzban, R., The Social Psychophysics of Cooperation: Nonverbal

Communication in a Public Goods Game, J. Nonverbal Behav. 25 (2001), pp. 241–

259.

[Lehmann, et. al., 2002] Daniel Lehmann, Liadan Ita O'Callaghan, and Yoav Shoham.

Truth revelation in approximately efficient combinatorial auctions. Journal of the

ACM, 49(5):577-602, September 2002.

[Lehmann et. al., 2006] D. Lehmann, R. Muller, and T. Sandholm, "The Winner

114

Determination Problem," in Combinatorial Auctions, P. Cramton, Y. Shoham, and R.

Steinberg, Eds., MIT Press, 2006.

[Li and Baker 2005] Li M. and Baker M., The Grid: Core Technologies, Wiley, 2005, pp.

274-278

[Litzkow et al. 1988] Litzkow M., Livny M., and Mutka M., (1988). “Condor - A Hunter

of Idle Workstations”, Proceedings of the 8th International Conference of Distributed

Computing Systems (ICDCS 1988), January 1988, San Jose, CA, IEEE CS Press,

USA.

[Lubin et. al., 2008] B. Lubin, A. Juda, R. Cavallo, S. Lahaie, J. Shneidman, and D.

Parkes, “ICE: An Expressive Iterative Combinatorial Exchange”, J. of Artificial

Intelligence Research, 33, pages 33-77, 2008.

[Mandal et. al., 2005] Mandal Anirban, Kennedy Ken, Koelbel Charles, Marin Gabriel,

Mellor-Crummey John, Liu Bo, Johnsson Lennart. Scheduling strategies for mapping

application workflows onto the grid. In Proceedings of the 14th IEEE International

Symposium on High Performance Distributed Computing (HPDC’05), USA, July,

2005.

[Mas-Colell et al., 1995] Mas-Colell Andreu, Whinston Michael, and Green Jerry R.

Microeconomic Theory. Oxford University Press, New York, 1995.

[Maheswaran et. al.,1999] Maheswaran M., Ali S., Siegel H.J., Hensgen D., and Freund

R.. Dynamic matching and scheduling of a class of independent tasks onto

heterogeneous computing systems. In Proceedings of the 8th Heterogeneous

Computing Workshop (HCW’99), Puerto Rico, April, 1999.

[McFedries, 2008] McFedries Paul. The cloud is the computer. IEEE Spectrum Online,

August 2008. Electronic Magazine, available at

http://www.spectrum.ieee.org/aug08/6490.

[Mills and Dabrowski, 2008] Kevin L. Mills and Christopher Dabrowski. Can

economics-based resource allocation prove effective in a computation marketplace?

Journal of Grid Computing, 6:291-311, Sept 2008.

[Nagaratnam et al., 2002] Nagaratnam N., Janson P., Dayka J., Nadalin A., Siebenlist

115

F., Welch V., Foster I., and Tuecke S., “The Security Architecture for Open Grid

Services,” Open Grid Service Architecture Security Working Group, Global Grid

Forum, 2002.

[Nash, 1950] Nash John. Equilibrium points in n-person games. In Proceedings of the

National Academy of Sciences, volume 36, pages 48-49, 1950.

[Nisan, 2000] Noam Nisan. Bidding and allocation in combinatorial auctions. In Proc.

2nd ACM Conf. on Electronic Commerce (EC-00), pages 1-12, 2000.

[Nisan and Ronen, 2000] Noam Nisan and Amir Ronen. Computationally feasible VCG

mechanisms. In Proc. 2nd ACM Conf. on Electronic Commerce (EC-00), pages 242-

252, 2000.

[Nisan and Ronen, 2001] Noam Nisan and Amir Ronen. “Algorithmic mechanism

design”. Games and Economic Behavior, 35:166-196, 2001.

[Nisan and Segal, 2002] Noam Nisan and I Segal. The communication complexity of

efficient allocation problems. Technical report, Hebrew University and Stanford

University, 2002.

[Nishi, et. al. 2004] Nishi, Tatsushi; Konishi, Masami; Hasebe, Shinji (2004). A

decentralized scheduling method for flowshop problems with resource constraints

Electrical Engineering in Japan Volume: 149, Issue: 1, October 2004, pp. 44 – 51

[Openpbs, 2012] PBS Works -- http://www.pbsworks.com/ (visited December 2012)

[Parkes, 1999a] David C Parkes. “Optimal auction design for agents with hard valuation

problems”. In Proc. IJCAI-99 Workshop on Agent Mediated Electronic Commerce,

pages 206-219, July 1999. Stockholm

[Parkes, 1999b] David C Parkes. iBundle: An efficient ascending price bundle auction. In

Proc. 1st ACM Conf. on Electronic Commerce (EC-99), pages 148-157,1999.

[Parkes, 2001] David C Parkes. “Iterative Combinatorial Auctions: Achieving Economic

and Computational Efficiency”. PhD thesis, Department of Computer and

Information Science, University of Pennsylvania, May 2001.

[Parkes and Kalagnanam, 2005] Parkes D. C. and Kalagnanam J., “Models for Iterative

http://www.pbsworks.com/

116

Multiattribute Procurement Auctions,” Management Science, 51-3, pp. 435-451,

Mar, 2005.

[Parkes and Ungar, 2001] Parkes D. C. and Ungar L., “An Auction-Based Method for

Decentralized Train Scheduling. In the Proceedings of 5th International Conference

on Autonomous Agents (AGENTS-01), Montreal, Canada, pp. 43-50, 2001.

[Pearce, 1986] David W. Pearce. The MIT dictionary of modern economics. MIT Press,

1986.

[Phelps, 2007] Steve Phelps. Evolutionary Mechanism Design. Ph.D thesis, University of

Liverpool (U.K.), 2007.

[Rahman et. al., 2007] Rahman M., Venugopal S., and Buyya R.. A dynamic critical path

algorithm for scheduling scientific workflow applications on global grids. In

Proceedings of the 3rd IEEE International Conference on e-Science and Grid

Computing (eScience’07), India, December, 2007.

[Ranjan et. al., 2008] Ranjan R., Rahman M., and Buyya R. A decentralized and

cooperative workflow scheduling algorithm. In Proceedings of the 8th IEEE

International Symposium on Cluster Computing and the Grid (CCGrid’08), France,

May, 2008.

[Reeves et. al., 2005] Reeves, D. M., M. P.Wellman, J.K.Mackie-Mason, and

A.Osepayshvili. “Exploring bidding strategies for market-based scheduling”.

Decision Support Systems, 39: 67–85, 2005.

[Ronen, 2001] Amir Ronen. Mechanism design with incomplete languages. In Proc. 3rd

ACM Conf. on Electronic Commerce (EC'01), 2001.

[Rothkopf et. al., 1998] Michael H Rothkopf, Aleksandar Pekec, and RonaldMHarstad.

Computationally manageable combinatorial auctions. Management Science,

44(8):1131-1147, 1998.

[Rutherford, 1992] Donald Rutherford. Dictionary of economics. Routledge, 1992.

[Sacerdoti et al., 2003] Sacerdoti F.D.,. Katz M.J, Massie M.L and Culler D.E., Wide

area cluster monitoring with Ganglia, in Proc. of IEEE International Conference on

117

Cluster Computing, pp.289 – 298, Hong Kong, December 2003.

[Samani et. al., 2012] Samani A., Ghenniwa H., Samarabandu J. “Risk-Based Modelling

For Managing Privacy”, IEEE Canadian Conference in Electrical and Computer

Engineering (CCECE2012), pp. 1-5, May 2012.

[Sandholm et al., 2005] Sandholm, T., Suri, S., Gilpin, A. and Levine, D. CABOB: A

Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions.

Management Science, 51, 3, 2005, 374-390.

[Schopf, 2001] Schopf J., (July 2001). “Ten Actions When Super Scheduling”,

document of Scheduling Working Group, Global Grid Forum,

http://www.ggf.org/documents/GFD.4.pdf

[Schwartz and Solove, 2011] Schwartz P. M., Solove D.J., “The PII Problem: Privacy

and A new Concept of Personally Identifiable Information”, New York University

Law Review, Vol. 86, 2011.

[Shan et al, 2004] Shan H., Oliker L., Biswas R., and Smith W., (December 2004).

“Scheduling in Heterogeneous Grid Environments: The Effects of Data Migration”.

Proceedings of ADCOM2004: International Conference on Advanced Computing

and Communication, Ahmedabad Gujarat, India

[Shen et al., 1994] Shen, C., Pao, Y., and Yip, P., (1994). Scheduling multiple job

problems with guided evolutionary simulated annealing approach, In Proceedings of

the First IEEE Conference on Evolutionary Computation, pp 702-706.

[Shneidman and Parkes, 2003] Jeff Shneidman and David C. Parkes. Rationality and

selfinterest in peer to peer networks. In 2nd Int. Workshop on Peerto-Peer Systems

(IPTPS'03), 2003.

[Silva et al. 2003] Silva D. P., Cirne W. and Brasileiro F. V., (August 2003). Trading

Cycles for Information: Using Replication to Schedule Bag-of-Tasks Applications on

Computational Grids, in Proc of Euro-Par 2003, pp.169-180, Klagenfurt, Austria.

[Singh and Bawa, 2007] Singh, S. and Bawa, S. “Privacy, Trust and Policy based

Authorization Framework for Services in Distributed Environments”. International

Journal of Computer Science 2(2):85-92, 2007.

http://www.ggf.org/documents/GFD.4.pdf

118

[Solove, 2008] Solove D. J., “Understanding Privacy”, Harvard University Press, 2008.

[Stewart, 2000] Stewart, John E. (2000): Evolution’s Arrow: The direction of evolution

and the future of humanity (Chapman Press, Rivett, Canberra, Australia)

[Subramani et al. 2002] Subramani V., Kettimuthu R., Srinivasan S. and Sadayappan P.,

(July 2002). Distributed Job Scheduling on Computational Grids using Multiple

Simultaneous Requests, in Proc. of 11th IEEE Symposium on High Performance

Distributed Computing (HPDC 2002), pp.359- 366, Edinburgh, Scotland.

[Such et. al., 2012] Such J.M., Espinosa A., Garcia-Fornes A., “A survey of Privacy in

Multi-agent Systems”, The knowledge Engineering Review, Vol. 00:0 pp:1-31,

Cambridge University Press 2012.

[Sweeny, 2002] Sweeny L., “K-Anonymity: A Model for Protecting Privacy”,

International Journal of Uncertainty, Fuzziness and Knowledge-based Systems -

IJUFKS , 2002.

[TGA, 2013] The Globus Alliance (2013). http://www.globus.org.

[Tianchi et al 2005] Tianchi Ma and Rajkumar Buyya, (October 2005). Critical-Path and

Priority based Algorithms for Scheduling Workflows with Parameter Sweep Tasks

on Global Grids, in Proc. of the 17th International Symposium on Computer

Architecture and High Performance Computing, Rio de Janeiro, Brazil.

[Topcuoglu et al. 2002] Topcuoglu H., Hariri S., Wu M.Y., (2002). Performance-

Effective and Low-Complexity Task Scheduling for Heterogeneous Computing,

IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 3, pp. 260 -

274.

[Tucker, 1998] Paul Tucker. Market mechanisms in a programmed system, 1998.

[Wellman, 1993] M. P. Wellman, “A market oriented programming environment and its

application to distributed multicommodity flow problems,” Journal of Artificial

Intelligence Research, Vol., 1, No. 1, pp.1- 23, 1993.

[Wellman et al., 2001] M. P. Wellman, E. Walsh, P. R. Wurman, and J. K. MacKie-

Mason, “Auction Protocols for Decentralized Scheduling”, Games and Economic

119

Behavior, 35(1-2), 271-303, 2001.

[Wieczorek et. al, 2005] Wieczorek M., Prodan R., and Fahringer T.. Scheduling of

scientific workflows in the askalon grid enviornment. ACM SIGMOD Record, vol.

34, no. 3, pp. 56-62, 2005.

[Wright,2003] Wright D., (December 2003). “Cheap Cycles from the Desktop to the

Dedicated Cluster: Combining Opportunistic and Dedicated Scheduling with

Condor”, in Proceeding of Conference in Linux Cluster Computing (CLUSTER’03),

pp.354-361, Hong Kong.

[Wolski et al., 1999] Wolski R., Spring N. T. and Hayes J., The Network Weather

Service: A Distributed Resource Performance Forecasting Service for

Metacomputing, in the Journal of Future Generation Computing Systems, Vol. 15,

No. 5-6, pp. 757-768, January 1999.

[Yokoo, 2000] Makoto Yokoo. “Distributed Constraint Satisfaction: Foundation of

Cooperation in Multi-agent Systems”, Springer, 2000.

[Young et al., 2003] Young L., McGough S., Newhouse S., and Darlington J., (2003).

“Scheduling Architecture and Algorithms within the ICENI Grid Middleware, in

Proceeding of the International Conference on Parallel and Distributed Processing

Techniques and Applications, PDPTA ’04, pp.240-245, Nevada, USA.

[Yu and Buyya, 2009] Yu J. and Buyya R. Gridbus Workflow Enactment Engine, Grid

Computing: Infrastructure, Service, and Applications, L. Wang et al. (eds.). CRC

Press, USA, 2009.

[Zhu, 2003] Zhu Y., A Survey on Grid Scheduling Systems, Department of Computer

science, Hong Kong University of science and Technology, 2003.

120

Curriculum Vitae

Name: Raafat Aburukba

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: B.Sc. Computer Science with Software Engineering Specialization

1998-2002

The University of Western Ontario

London, Ontario, Canada

M.E.Sc. Software Engineering

2003-2005

The University of Western Ontario

London, Ontario, Canada

Ph.D. Software Engineering

2005-2013

Honors and Natural Sciences and Engineering Research Council of Canada

Awards: 2006-2009

Communications and Information Technology Ontario

2004-2005

Western Engineering Graduate Research Scholarship

2003-2009

Related Work Teaching Assistant

Experience Electrical and Computer Engineering Department

The University of Western Ontario, London Ontario

2003-2009

Research Assistant

Cooperative Distributed Systems Engineering

The University of Western Ontario, London Ontario

2003-2013

Research Assistant

EK3 Technologies Inc., London Ontario

2003-2012

121

Publications:

1. Raafat Aburukba, Hamada Ghenniwa, Weiming Shen. “Bidding Specification
Language and Winner Determination for Grid Computing Scheduling”.

Proceedings of IEEE Computer Supported Cooperative Work in Design 2013,

Accepted.

2. Raafat Aburukba, Hamada Ghenniwa, Weiming Shen. “Economic-Based

Modeling for Resource Scheduling in Grid Computing”. Proceedings of IEEE

CSCWD 2012, pp.583-590.

3. Raafat Aburukba, AbdulMutalib Masaud-Wahaishi, Hamada Ghenniwa, Weiming

Shen. "Privacy-based computation model in e-Business", International Journal of

Production Research, Volume 47, Number 17, 2009, 4885-4906(22).

4. Raafat Aburukba, Hamada Ghenniwa and Weiming Shen, “A Distributed Multi-
Agent Approach for Collaborative Agile Manufacturing Scheduling”,

International Journal of Agile Manufacturing, Vol. 10, Issue 1, 2007, 103-114

5. Raafat Aburukba, Hamada Ghenniwa, and Weiming Shen. “Agent-Based

Dynamic Scheduling Approach for Collaborative Manufacturing”, Proceedings of

IEEE CSCWD 2007, Melbourne, Australia , April 26-28, 2007 , pp. 445-451.

6. Raafat Aburukba, Hamada Ghenniwa, and Weiming Shen, "Agent-Based

Approach for Dynamic Scheduling in Content-Based Networks", Proceedings of

the IEEE International Conference on e-Business Engineering 2006, pp. 425-432.

7. Raafat Aburukba, Hamada Ghenniwa, and Weiming Shen. “Agent-Based

Intelligent Media Distribution in Advertisement”, Information Technology for

Balanced Manufacturing Systems, IFIP Series, Vol. 220, pp. 203-212, Springer,

2006.

8. Raafat Aburukba, “An Agent-Oriented Approach for Dynamic Scheduling in

Partially Overlapping Systems”, The University of Western Ontario, Master of

Engineering Science Dissertation, 2005.

	Decentralized Resource Scheduling in Grid/Cloud Computing
	Recommended Citation

	Decentralized Resource Scheduling in Grid/Cloud Computing

