9 research outputs found

    Computing Optimal Experimental Designs via Interior Point Method

    Full text link
    In this paper, we study optimal experimental design problems with a broad class of smooth convex optimality criteria, including the classical A-, D- and p th mean criterion. In particular, we propose an interior point (IP) method for them and establish its global convergence. Furthermore, by exploiting the structure of the Hessian matrix of the aforementioned optimality criteria, we derive an explicit formula for computing its rank. Using this result, we then show that the Newton direction arising in the IP method can be computed efficiently via Sherman-Morrison-Woodbury formula when the size of the moment matrix is small relative to the sample size. Finally, we compare our IP method with the widely used multiplicative algorithm introduced by Silvey et al. [29]. The computational results show that the IP method generally outperforms the multiplicative algorithm both in speed and solution quality

    On the Analysis of the Discretized Kohn-Sham Density Functional Theory

    Full text link
    In this paper, we study a few theoretical issues in the discretized Kohn-Sham (KS) density functional theory (DFT). The equivalence between either a local or global minimizer of the KS total energy minimization problem and the solution to the KS equation is established under certain assumptions. The nonzero charge densities of a strong local minimizer are shown to be bounded below by a positive constant uniformly. We analyze the self-consistent field (SCF) iteration by formulating the KS equation as a fixed point map with respect to the potential. The Jacobian of these fixed point maps is derived explicitly. Both global and local convergence of the simple mixing scheme can be established if the gap between the occupied states and unoccupied states is sufficiently large. This assumption can be relaxed if the charge density is computed using the Fermi-Dirac distribution and it is not required if there is no exchange correlation functional in the total energy functional. Although our assumption on the gap is very stringent and is almost never satisfied in reality, our analysis is still valuable for a better understanding of the KS minimization problem, the KS equation and the SCF iteration.Comment: 29 page

    A semismooth newton method for the nearest Euclidean distance matrix problem

    No full text
    The Nearest Euclidean distance matrix problem (NEDM) is a fundamentalcomputational problem in applications such asmultidimensional scaling and molecularconformation from nuclear magnetic resonance data in computational chemistry.Especially in the latter application, the problem is often large scale with the number ofatoms ranging from a few hundreds to a few thousands.In this paper, we introduce asemismooth Newton method that solves the dual problem of (NEDM). We prove that themethod is quadratically convergent.We then present an application of the Newton method to NEDM with HH-weights.We demonstrate the superior performance of the Newton method over existing methodsincluding the latest quadratic semi-definite programming solver.This research also opens a new avenue towards efficient solution methods for the molecularembedding problem

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension

    Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems

    No full text
    For any function f from R to R, one can define a corresponding function on the space of n × n (block-diagonal) real symmetric matrices by applying f to the eigenvalues of the spectral decomposition. We show that this matrix-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiability, as well as ( -order) semismoothness. Our analysis uses results from nonsmooth analysis as well as perturbation theory for the spectral decomposition of symmetric matrices. We also apply our results to the semidefinite complementarity problem, addressing some basic issues in the analysis of smoothing/semismooth Newton methods for solving this problem

    A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure

    Get PDF
    The inverse quadratic eigenvalue problem (IQEP) arises in the field of structural dynamics. It aims to find three symmetric matrices, known as the mass, the damping, and the stiffness matrices, such that they are closest to the given analytical matrices and satisfy the measured data. The difficulty of this problem lies in the fact that in applications the mass matrix should be positive definite and the stiffness matrix positive semidefinite. Based on an equivalent dual optimization version of the IQEP, we present a quadratically convergent Newton-type method. Our numerical experiments confirm the high efficiency of the proposed method
    corecore