3 research outputs found

    Analysis of the fitness landscape for the class of combinatorial optimisation problems

    No full text
    Anatomy of the fitness landscape for a group of well known combinatorial optimisation problems is studied in this research and the similarities and the differences between their landscapes are pointed out. In this research we target the analysis of the fitness landscape for MAX-SAT, Graph-Colouring, Travelling Salesman and Quadratic Assignment problems. Belonging to the class of NP-Hard problems, all these problems become exponentially harder as the problem size grows. We study a group of properties of the fitness landscape for these problems and show what properties are shared by different problems and what properties are different. The properties we investigate here include the time it takes for a local search algorithm to find a local optimum, the number of local and global optima, distance between local and global optima, expected cost of found optima, probability of reaching a global optimum and the cost of the best configuration in the search space. The relationship between these properties and the system size and other parameters of the problems are studied, and it is shown how these properties are shared or differ in different problems. We also study the long-range correlation within the search space, including the expected cost in the Hamming sphere around the local and global optima, the basin of attraction of the local and global optima and the probability of finding a local optimum as a function of its cost. We believe these information provide good insight for algorithm designers

    Analysis of Local Search Landscapes for k-SAT Instances

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s11786-010-0040-7Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound [...] for the average number of local maxima, if m is in the region of 2 k · n/k. [...see original online abstract for correct notation]Peer reviewe

    Analysis of local search landscapes for k-SAT instances

    No full text
    Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound TeX for the average number of local maxima, if m is in the region of 2 k · n/k
    corecore