22 research outputs found

    Analysis of Inpainting via Clustered Sparsity and Microlocal Analysis

    Full text link
    Recently, compressed sensing techniques in combination with both wavelet and directional representation systems have been very effectively applied to the problem of image inpainting. However, a mathematical analysis of these techniques which reveals the underlying geometrical content is completely missing. In this paper, we provide the first comprehensive analysis in the continuum domain utilizing the novel concept of clustered sparsity, which besides leading to asymptotic error bounds also makes the superior behavior of directional representation systems over wavelets precise. First, we propose an abstract model for problems of data recovery and derive error bounds for two different recovery schemes, namely l_1 minimization and thresholding. Second, we set up a particular microlocal model for an image governed by edges inspired by seismic data as well as a particular mask to model the missing data, namely a linear singularity masked by a horizontal strip. Applying the abstract estimate in the case of wavelets and of shearlets we prove that -- provided the size of the missing part is asymptotically to the size of the analyzing functions -- asymptotically precise inpainting can be obtained for this model. Finally, we show that shearlets can fill strictly larger gaps than wavelets in this model.Comment: 49 pages, 9 Figure

    Asymptotic Analysis of Inpainting via Universal Shearlet Systems

    Get PDF
    Recently introduced inpainting algorithms using a combination of applied harmonic analysis and compressed sensing have turned out to be very successful. One key ingredient is a carefully chosen representation system which provides (optimally) sparse approximations of the original image. Due to the common assumption that images are typically governed by anisotropic features, directional representation systems have often been utilized. One prominent example of this class are shearlets, which have the additional benefitallowing faithful implementations. Numerical results show that shearlets significantly outperform wavelets in inpainting tasks. One of those software packages, www.shearlab.org, even offers the flexibility of usingdifferent parameter for each scale, which is not yet covered by shearlet theory. In this paper, we first introduce universal shearlet systems which are associated with an arbitrary scaling sequence, thereby modeling the previously mentioned flexibility. In addition, this novel construction allows for a smooth transition between wavelets and shearlets and therefore enables us to analyze them in a uniform fashion. For a large class of such scaling sequences, we first prove that the associated universal shearlet systems form band-limited Parseval frames for L2(R2)L^2(\mathbb{R}^2) consisting of Schwartz functions. Secondly, we analyze the performance for inpainting of this class of universal shearlet systems within a distributional model situation using an â„“1\ell^1-analysis minimization algorithm for reconstruction. Our main result in this part states that, provided the scaling sequence is comparable to the size of the (scale-dependent) gap, nearly-perfect inpainting is achieved at sufficiently fine scales
    corecore