6 research outputs found

    Automated Classification System for HEp-2 Cell Patterns

    Get PDF
    Human Epithelial Type-2 (HEp-2) cells are essential in diagnosing autoimmune diseases. Indirect immunofluorescence (IIF) imaging is a fundamental technique for detecting antinuclear antibodies in HEp-2 cells. The four main patterns of HEp-2 cells that are being identified are nucleolar, homogeneous, speckled and centromere. The most commonly used method to classify the patterns is manual evaluation. This method is prone to human error. This paper will propose an automated method of classifying HEp-2 cells patterns. The first stage is image enhancement using Histogram equalization contrast adjustment and Wiener Filter. The second stage uses Sobel Filter and Mean Filter for segmentation. The third stage feature extraction based on shape properties data extraction. The last stage uses classification based on different properties data abstracted. The results obtained are more than 90% for nucleolar and centromere and about 70% for homogenous and speckled. For future work, another feature extraction method need to be introduced to increase the accuracy of the classification result. The method suggested is to analyze and obtain the data based on the texture of the image

    Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis

    Get PDF
    Texture can be broadly stated as spatial variation of image intensities. Texture analysis and classification is a well researched area for its importance to many computer vision applications. Consequently, much research has focussed on deriving powerful and efficient texture descriptors. Local binary patterns (LBP) and its variants are simple yet powerful texture descriptors. LBP features describe the texture neighbourhood of a pixel using simple comparison operators, and are often calculated based on varying neighbourhood radii to provide multi-resolution texture descriptions. A comprehensive evaluation of different LBP variants on a common benchmark dataset is missing in the literature. This thesis presents the performance for different LBP variants on texture classification and retrieval tasks. The results show that multi-scale local binary pattern variance (LBPV) gives the best performance over eight benchmarked datasets. Furthermore, improvements to the Dominant LBP (D-LBP) by ranking dominant patterns over complete training set and Compound LBP (CM-LBP) by considering 16 bits binary codes are suggested which are shown to outperform their original counterparts. The main contribution of the thesis is the introduction of multi-dimensional LBP features, which preserve the relationships between different scales by building a multi-dimensional histogram. The results on benchmarked classification and retrieval datasets clearly show that the multi-dimensional LBP (MD-LBP) improves the results compared to conventional multi-scale LBP. The same principle is applied to LBPV (MD-LBPV), again leading to improved performance. The proposed variants result in relatively large feature lengths which is addressed using three different feature length reduction techniques. Principle component analysis (PCA) is shown to give the best performance when the feature length is reduced to match that of conventional multi-scale LBP. The proposed multi-dimensional LBP variants are applied for medical image analysis application. The first application is nailfold capillary (NC) image classification. Performance of MD-LBPV on NC images is highest, whereas for second application, HEp-2 cell classification, performance of MD-LBP is highest. It is observed that the proposed texture descriptors gives improved texture classification accuracy

    Analysis of HEp-2 images using MD-LBP and MAD-bagging

    No full text
    Indirect immunofluorescence imaging is employed to identify antinuclear antibodies in HEp-2 cells which founds the basis for diagnosing autoimmune diseases and other important pathological conditions involving the immune system. Six categories of HEp-2 cells are generally considered, namely homogeneous, fine speckled, coarse speckled, nucleolar, cyto-plasmic, and centromere cells. Typically, this categorisation is performed manually by an expert and is hence both time consuming and subjective. In this paper, we present a method for automatically classifiying HEp-2 cells using texture information in conjunction with a suitable classification system. In particular, we extract multidimensional local binary pattern (MD-LBP) texture features to characterise the cell area. These then form the input for a classification stage, for which we employ a margin distribution based bagging pruning (MAD-Bagging) classifier ensemble. We evaluate our algorithm on the ICPR 2012 HEp-2 contest benchmark dataset, and demonstrate it to give excellent performance, superior to all algorithms that were entered in the competition
    corecore