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Abstract

Multi-Dimensional Local Binary Patterns
Texture Descriptors and their Application for

Medical Image Analysis
Niraj P. Doshi, Oct 2014.

Texture can be broadly stated as spatial variation of image intensities. Tex-

ture analysis and classification is a well researched area for its importance to many

computer vision applications. Consequently, much research has focussed on deriv-

ing powerful and efficient texture descriptors. Local binary patterns (LBP) and

its variants are simple yet powerful texture descriptors. LBP features describe

the texture neighbourhood of a pixel using simple comparison operators, and are

often calculated based on varying neighbourhood radii to provide multi-resolution

texture descriptions.

A comprehensive evaluation of different LBP variants on a common benchmark

dataset is missing in the literature. This thesis presents the performance for dif-

ferent LBP variants on texture classification and retrieval tasks. The results show

that multi-scale local binary pattern variance (LBPV) gives the best performance

over eight benchmarked datasets. Furthermore, improvements to the Dominant

LBP (D-LBP) by ranking dominant patterns over complete training set and Com-

pound LBP (CM-LBP) by considering 16 bits binary codes are suggested which

are shown to outperform their original counterparts.

The main contribution of the thesis is the introduction of multi-dimensional

LBP features, which preserve the relationships between different scales by build-

ing a multi-dimensional histogram. The results on benchmarked classification and

retrieval datasets clearly show that the multi-dimensional LBP (MD-LBP) im-

proves the results compared to conventional multi-scale LBP. The same principle

is applied to LBPV (MD-LBPV), again leading to improved performance. The

proposed variants result in relatively large feature lengths which is addressed using

three different feature length reduction techniques. Principle component analysis

(PCA) is shown to give the best performance when the feature length is reduced

to match that of conventional multi-scale LBP.
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CHAPTER 0. ABSTRACT 4

The proposed multi-dimensional LBP variants are applied for medical image

analysis application. The first application is nailfold capillary (NC) image classi-

fication. Performance of MD-LBPV on NC images is highest, whereas for second

application, HEp-2 cell classification, performance of MD-LBP is highest. It is ob-

served that the proposed texture descriptors gives improved texture classification

accuracy.
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Chapter 1

Introduction

Object detection and classification is most important in several image processing

and computer vision applications. Is there a human face in this image and if so,

who is it? Is there any particular object present in the image and if it is, then

where exactly? How many such objects are there?

Not only this, in medical image analysis there are several questions which are

related to human health and are equally important. Is any abnormality present

in the image? For example, in Figure 1.1 a typical problem of human cell clas-

sification is presented. Each cell in the image has to be analysed by an expert

which is a time consuming and monotonous task. The expert has to answer ques-

Figure 1.1: Example of medical image classification

1
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tions like, how many defective cells are there in the image? What type of cells

are present? Sooner or later, demand to automate the detection and classification

in these types of questions, will be there. Consequently, good quality descriptors

and strong classifiers are needed. The researchers are working on texture based

descriptors and are developing powerful descriptors to meet real life challenges.

Since the pioneering work in [55], good results have been reported in difficult

visual classification tasks such as medical image processing, industrial surface in-

spection, contented based image retrieval and face recognition. This work reports

the importance of clusters formed by proximate points of uniform brightness in

visual discrimination. Although, human visual system is a source of inspiration,

it is a difficult challenge for the researchers. The human visual system can eas-

ily react to the change in ambient conditions and hence can analyse the object

accurately even in poor illumination conditions.

In practical life, changes in orientation, scale, illumination and other confound-

ing imaging factors are still a big challenge for automatic texture analysis. The

texture images captured with two different lighting conditions, or different camera

positions at times can appear completely different. The researchers have put ex-

tensive effort to solve these problems and have developed powerful machine learn-

ing and texture classification algorithms. Despite significant efforts, the maxim

garbage in, garbage out still applies: if descriptive features are not provided,

the good classification will not be achieved. This thesis worked on the texture

descriptors and investigate some of the descriptors, especially local binary pattern

based descriptors and proposed multi-dimensional texture descriptors for better

texture analysis.

This chapter presents a brief introduction on texture analysis and its role in

computer vision algorithms. Subsequently the research motivation is presented in

section 1.2, followed by the aim and objectives of the research. The contributions

of the thesis are listed in section 1.4 and finally the organisation of the thesis is

given in the last section of this chapter.

1.1 Texture

Texture can be broadly defined as the visual or tactile surface characteristics and

appearance of the object. Unfortunately, no one has so far been able to define

digital texture in mathematical terms. In general, textures are formed by a single

surface via variations in shape, illumination, shadows, absorption and reflectance.

In Figure 1.2, we present examples of variety of texture patterns that can

be used to describe a wide variety of surfaces such as terrain, plants, minerals,

walls, fur, skin and some natural phenomena like weathering and corrosion. These
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Figure 1.2: Texture spectrum

texture samples can be categorised into four texture patterns regular, near-regular,

irregular and stochastic. These form a texture spectrum in which the perceptual

structural regularity varies continuously from being regular to random.

Analysis of these textures has been a topic of intensive research since the

1960s, and a wide variety of techniques for discriminating textures have been

proposed in the literature. Chapter 2 and Chapter 3 discuss in detail different

texture descriptors and give a grouping for these descriptors. These descriptors are

successfully utilised in many applications including texture classification, texture

retrieval, texture synthesis and segmentation.

1.2 Motivation of Research

Texture analysis and classification algorithms are employed in many computer vis-

ion applications including biomedical image analysis, industrial surface inspection,

content-based image retrieval, face analysis, etc. Consequently, much research has

focussed on deriving powerful and efficient texture descriptors. Even though colour

is an important cue in interpreting images, textures can be good axillary features

to interpret images.

Thus textures are useful for understanding natural image scenes, medical image

analysis, industrial surface inspection, etc. To meet the requirements of real-

world applications, texture operators should be computationally cheap and robust

against variations in the appearance of a texture. These variations may be caused

by varying illumination, different viewing positions, shadows, etc. While achieving

the invariance to ambient conditions, texture should retain their discrimination

power.

One such effective descriptor named local binary patterns (LBP) is our motiva-
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tion for the further research in LBP based texture descriptors. LBP based texture

algorithms have gained significant popularity in recent years. LBP, first intro-

duced in [78] and generalised in [79], represents a relatively simple yet powerful

texture descriptor, describing the relationship of a pixel to its immediate neigh-

bourhood. Successively, many variants of LBP were introduced aiming to outper-

form the earlier LBP variant or to address various limitations. These variants are

sometimes designed to perform on specific application. For example Multi-block

LBP [126] has been introduce for face detection, Dominant LBP [64] is for baby

facial expressions classification.

In the literature variety of LBP variants are proposed, however, their per-

formance on a common benchmark dataset is missing. With this motivation, 19

different LBP variants are discussed and their performance on eight texture clas-

sification datasets and one texture retrieval dataset is benchmarked in this thesis.

The performance of multi-scale LBP as reported in [79, 67, 94] has provided fur-

ther motivation to experiment and investigate some real life challenges in medical

image understanding. Building multi-dimensional histograms for colour images is

one of the proven ways to describe colour images. This approach is applied to

multi-scale LBP in this thesis and their performance is benchmarked. Applying

texture descriptors to practical scenarios is also a motivation of the work presented

in this thesis, and thus multi-dimensional LBP features are proposed for medical

image classification. The work reported in this thesis is limited to two dimensional

texture images.

1.3 Aim and Objectives

The aim of this research is “to propose novel LBP variants which improve the

texture description of an image and use them for medical image analysis”. The

specific research objectives are listed below:

• To study existing Local Binary Pattern variants and suggest novel ideas for

their improvement.

• To evaluate and benchmark different LBP variants on a common texture

dataset.

• To evaluate the improvements suggested to LBP variants and address the

shortcoming of the descriptor.

• To apply multi-dimension histograms to LBP.

• To automate the classification of nailfold capillary images using multi-dimensional

LBP features.



CHAPTER 1. INTRODUCTION 5

• To automate the classification of HEp-2 cell images using multi-dimensional

LBP features.

1.4 Contributions

The following original contributions have been made by the research presented in

this thesis. A list of publications are included in Appendix A, and are referenced

as A.1 to A.25.

A. Benchmark different LBP variants and propose improvements to

LBP variants [A.01-A.05]

In Chapter 3, the original LBP descriptor, its circular version, rotation invariant

and uniform mappings for circular LBP along with 14 different variants are stud-

ied. Chapter 4 benchmarks all these variants on eight texture datasets designed

for classification and one texture dataset designed for retrieval. Furthermore, an

improvement to the compound LBP (CM-LBP) [4] is suggested by considering a

16-bit description code and an improvement to Dominant LBP (D-LBP) [64] by

improving the process of finding dominant patterns. In total, the performance

of 46 LBP variants are reported. It is found that, the suggestion for improving

CM-LBP and D-LBP improved the classification performance. It is observed that

multi-scale LBP variance (LBPV) [41] gives highest overall accuracy over eight

classification datasets, while multi-scale LBP works better on the retrieval data-

set.

B. Proposed Multi-Dimensional LBP (MD-LBP) and Multi-Dimensional

LBP variance (MD-LBPV) texture descriptor [A.06-A.07]

From the results in Chapter 4, it is observed that multi-scale LBP significantly

improves the classification and retrieval accuracy. However, it is found that build-

ing a multi-dimensional histogram will result in better performance as it preserves

the spatial relationships between the scales. This approach is further extended

for the LBP variance descriptor [41] and six methods to build a multi-dimension

LBPV histogram are proposed. The multi-dimension approach is a significant

contribution of this thesis.

C. Feature length reduction for multi-dimensional LBP features [A.08-

A.12]

The multi-dimensional LBP features perform very well compared to multi-scale

LBP, however they generate large feature size. The high dimensional feature length

generated using multi-dimensional features (MD-LBP) is reduced to an acceptable
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level using three different feature length reduction methods. Here, D-LBP sug-

gested in [64] is utilised for the purpose of the feature length reduction with few

changes to the original algorithm. The principal component analysis (PCA) based

feature selection approach give the highest accuracy.

D. Medical Image Analysis [A.13-A.25]

The performance of MD-LBP and MD-LBPV is evaluated on two applications.

First nailfold capillary (NC) imaging techniques and computer algorithms for its

automation are studied. Then a novel approach is proposed for the classification

of NC images based on texture analysis. No one before has presented any texture

descriptor based algorithm for classification of the NC images. From experiments

it is found that MD-LBPV gives the highest performance.

Indirect immunofluorescence imaging is used for screening of HEp-2 cells. In

another set of experiments, the proposed multi-dimensional LBP features are used

for automatic classification of HEp-2 cells. From the results, it is found that MD-

LBP features are useful for the classification of HEp-2 cells.

1.5 Organisation of Thesis

For clarity of presentation the thesis has been organised into nine chapters as de-

scribed below.

Chapter 2 presents details of the existing literature on texture analysis methods

and descriptors. The chapter discus different texture descriptors and categorise

them into four groups. Furthermore, the application of texture analysis methods

are given.

Chapter 3 concentrates on providing the background reading in the context of

LBP texture descriptor and its variants that are proposed in the literature. As

local binary pattern descriptor is the basis of this thesis, a detailed literature re-

view on LBP is given. First, the basic LBP concept is explained together with its

circular representation, rotation invariant and uniform mappings and 14 different

variants are discussed in detail.

Chapters 4 presents first contribution of this thesis. The LBP descriptor and its

variants discussed in Chapter 3 are benchmarked on a common texture database.

In total eight classification databases and one retrieval datasets are use for bench-

marking purposes. In total 46 combinations of LBP descriptors are benchmarked.

Chapter 5 proposes a new LBP variant based on a multi-dimensional histogram.
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In this chapter the limitation of multi-scale LBP is given and proposed a multi-

dimensional LBP to preserve the relationships between the scales. This approach

is further extended for the LBP variance descriptor [41] and six methods to build

a multi-dimension LBPV histogram are proposed.

Chapter 6 proposes three methods to reduce the feature length of multi-dimensional

LBP. The experiment shows that the PCA based approach for reducing feature

length of MD-LBP descriptors gives the best performance.

Chapters 7 provides the application side of the new descriptors proposed in earlier

chapters. This chapter propose a novel approach for NC image classification using

a texture analysis method and shows that MD-LBPV descriptors work better for

NC image classification.

Chapter 8 gives another application of medical image classification using texture

descriptors. This chapter proposed to apply MD-LBP texture descriptor for clas-

sification of HEp-2 cells. It is also shown that compact MD-LBP also perform

very well on this dataset.

Finally Chapter 9 gives conclusion and direction for future work.



Chapter 2

Literature Review

There is, generally no accepted formal definition for textures, however image tex-

ture gives us information about the spatial arrangement of colour or intensities

in an image or selected region of an image. Texture is a fundamental property of

natural images, and thus it is one of the important topics to study in the fields of

computer vision and computer graphics. Texture analysis is a successful method

used in many computer vision algorithms including medical image analysis, im-

age retrieval, image segmentation which requires robust and fast processing al-

gorithms. As can be seen in figure 2.1, we can recognise the texture, as it shows

characteristics variation in intensities. However, defining it is a challenge.

Texture descriptors, (possibly mathematical) representations of texture, are

applied to encapsulate textural properties and study the textures. Developing

powerful texture descriptors is an active research area, which addressed the chal-

lenges in practical applications such as variation in rotation, illumination and

scaling. This chapter presents different applications using texture analysis method

and discuss in detail various kinds of texture descriptors.

2.1 Background

2.1.1 What is Texture?

The word texture comes from the Latin word textura, which means textile fabric.

The concept of texture is intuitively obvious to us, but it is hard to define. Al-

though there is no formal definition, we describe texture as fine, coarse, grained,

smooth, regular/irregular, directional, etc. Nevertheless, these descriptions are

imprecise and non-quantitative.

Although researchers have been studying the subject since long, no one has

given a widely accepted mathematical definition of texture yet. In the literature,

many of the studies given try for defining texture. Some definitions of texture

8
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obtained from the literature are given below.

• “The term texture generally refers to repetition of basic texture elements

called texels. The texel contains several pixels, whose placement could be

periodic, quasi-periodic or random. Natural textures are generally random,

whereas artificial textures are often deterministic or periodic. Texture may

be coarse, fine, smooth, granulated, rippled, regular, irregular or linear” [52].

• “Texture is characterized not only by the gray value at a given pixel,but also

by the gray value ‘pattern’ in a neighbourhood surrounding the pixel” [53].

• “We consider a texture to be stochastic, possibly periodic two dimensional

image field” [22].

• “A region in an image has a constant texture if a set of local statistics or

other local properties of the picture function are constant, slowly varying or

approximately periodic” [100].

• “We may regard texture as what constitutes a macroscopic region. Its struc-

ture is simply attributed to the repetitive patterns in which elements or prim-

itives are arranged according to a placement rule” [108].

• “Texture has been extremely refractory to precise definition” [46].

Although there is no universally agreed definition, almost all researchers agree

on the following.

• “While colour is a point property, texture is a local-neighbourhood prop-

erty” [8].

• “A texture is a region that can be perceived as being spatially homogeneous

in some sense” [12].

Scale is a crucial concept that must be considered when dealing with textures,

because the same texture at various scales may be perceived as different [62]. Thus,

there may be several levels of completely different textures in the same image, but

at different scales. For instance, in Figure 2.2, the leaf in the left image has different

texture information and the tree made up of a number of leaves give different

information. [61] identified the following properties as playing an important role in

describing texture: uniformity, density, coarseness, roughness, regularity, linearity,

directionality, direction, frequency, and phase. In the following sections it will be

discovered that the perception of texture has so many different dimensions is an
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important reason why there is no single method of texture representation which

is adequate for a variety of textures.

2.1.2 Texture Analysis Methods

Texture analysis methods were initially divided into two categories. The first

one, called the statistical approach, treats textures as statistical phenomena. The

formation of a texture is described by the statistical properties of the intensities

and positions of pixels. The second category is known as structural approach and is

based on the concept of texture primitives, often called texels or textons. Texture

description is based on the vocabulary of texels and their relationship. In other

words, this approach describes the complex structure using simpler primitives.

Another way of classifying texture methods has been proposed in [18]. Accord-

ing to the author, modern methods either try to understand the process of texture

formation, or base themselves on the theory of human perception. The earlier di-

vision of texture analysis methods is refined in [112] in which four categories were

proposed: statistical, geometrical, model based, and signal processing. Model

based texture analysis methods are based on the construction of an image model

that can be used not only to describe texture, but also to synthesise it. The model

parameters capture the essential perceived qualities of texture. The last category

is signal processing based methods, which involves the filtering of images and

then frequency analysis for texture description. In the following section, texture

descriptors from the above groups are discussed in details.

2.2 Texture Descriptors

A representation of texture, usually numeric, also known as texture features, is

calculated by one of the methods categorised in 2.1 and use for computer vision

applications. Certain features work better on particular applications and no single

feature is suitable for all applications. It is difficult to select appropriate feature

descriptors and often an empirical evaluation is required to find the most effect-

ive features. One of the major problems when developing texture measures is to

address invariant properties in the descriptors. It is very common in real-world

environment that, for example, the illumination changes over time and causes

variations in the texture appearance or rotation and scale changes are also com-

mon. In the following, different texture descriptors are discussed following the

same categorisation given in [112].
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2.2.1 Statistical Texture Descriptors

Statistical texture descriptors are the important qualities of texture based on the

spatial distribution of the intensity values. Thus, it is one of the earliest methods

suggested in the literature of texture descriptors. The easiest statistical property

of texture would be to calculate the variance of the pixel value from the grey level

histogram of the image.

[44] have filtered the original image with several Gaussian filters, and construc-

ted a multi-resolution intensity histogram of the image as texture features. The

multi-resolution decomposition of an image is computed with Gaussian filtering

and then the set of intensity histograms of the image at each image resolutions

are considered for feature generation.

Another example for detecting texture properties statistically is the use of

gray-level run length features to detect texture properties. A gray level run is a

set of consecutive, collinear picture points having the same gray level value. The

length of the run is the number of picture points in the run [34]. A fraction of

image in runs, short run, long runs, uniformity, percentage are some parameters

that can be derived from the run-length matrix as texture descriptors. E.g. for a

sample image
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0 1 2 3
0 2 3 3
2 1 1 1
3 0 3 0

the run length matrices at 0◦ and 45◦ are generated as

0◦ 1 2 3 4
0 4 0 0 0
1 1 0 1 0
2 3 0 0 0
3 3 1 0 0

and

45◦ 1 2 3 4
0 4 0 0 0
1 4 0 0 0
2 3 0 1 0
3 3 1 0 0

respectively

Rather than using these run length matrices as it is, its characteristics features

such as short run emphasis, long run emphasis, gray level non-uniformity, run

length non-uniformity and run percentage can be extracted and use as texture

features.

Different run-length matrices can be built for one image with various direc-

tions [104]. Texture features from run length matrices are easy to extract, but

in [20] their performance has been reported to be quite poor.

Another simple texture statistic is to calculate the autocorrelation function

of the image. This can be used to assess the amount of regularity, as well as

the coarseness of the texture present in the image. This function describes the

texture spatial organisation by the correlation coefficient that evaluates linear

spatial relationships between primitives [112]. If I is an image then the correlation

coefficient is given as

ρ(x, y) =

∑N
u=0

∑N
v=0 I(u, v)I(u+ x, v + y)∑N
u=0

∑N
v=0 I

2(u, v)
(2.1)

where (x,y) is the positional differences in the (u,v) direction. This function is

related to the size of the texture primitive (i.e., the fineness of the texture). If the

texture is coarse, then the autocorrelation function will drop off slowly; otherwise,

it will drop off very rapidly. For regular textures, the autocorrelation function will

exhibit peaks and valleys.

A popular statistical texture descriptor, the gray level co-occurrence matrix

(GLCM), is suggested in [46]. The co-occurrence matrix gives the statistical in-

formation of the image regarding its distribution of pairs of pixels. It not only

considers the distribution of intensities but also the relative positions. The matrix

is calculated by counting the pair of pixels separated by a defined distance in the

particular direction.

Let Q is an operator that defines the relative position of two pixels in image

I of L possible intensity levels. Let G be a matrix whose elements gij is the
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number of times that pixel pairs with intensities zi and zj occurs in I at the

position specified by Q. A matrix formed in this manner is referred as gray level

co-occurrence matrix and mathematically given as

G∆x,∆y(i, j) =
n∑
x=1

m∑
y=1

1, if I (x , y) = zi and I (x + ∆x , y + ∆y) = zj

0, otherwise
(2.2)

where (∆x,∆y) are defined by operator Q, I is an image of size n×m. An example

of the co-occurrence matrix is given in figure 2.3, where Q is considered as one

pixel distance to the right.

Based on G the following texture features can be extracted:

Maximum probability: It measures the strongest response of G. In other words,

it gives indication of the most common intensity pair that occurs in the image.

Pij = gij/n

where n is the total number of pixel pairs that satisfies operator Q. Hence, the

maximum probability is given as max(Pij).

Correlation: It is a measure of how correlated a pixel is to its neighbour and

it is always in the range -1 to 1, representing perfect negative to perfect positive

relation. Here, the neighbour is define by operator Q. The correlation is estimated

as follows:

Mr =
K∑
i=1

i

K∑
j=1

Pij Mc =
K∑
j=1

j

K∑
i=1

Pij

σ2
r =

K∑
i=1

(i−mr)
2

K∑
j=1

Pij σ2
c =

K∑
j=1

(j −mc)
2

K∑
i=1

Pij

Correlation =
K∑
i=1

K∑
j=1

(i−mr)(j −mc)Pij
σrσc

(2.3)

where K is the total number of rows or columns of matrix G.

Contrast: It is a measure of intensity contrast between a pixel and its neighbour

and it is given as

Contrast =
K∑
i=1

K∑
j=1

(i− j)2Pij (2.4)
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Uniformity (Energy): It is 1 for the constant image.

Uniformity =
K∑
i=1

K∑
j=1

P 2
ij (2.5)

Homogeneity: It measures the spatial closeness of the distribution of elements

in G to the diagonal. The range of values is [0,1].

Homogeneity =
K∑
i=1

K∑
j=1

Pij
1 + |i− j|

(2.6)

Entropy: It measures the randomness of the G.

Entropy = −
K∑
i=1

K∑
j=1

Pij log2 pij (2.7)

Co-occurrence matrix descriptors suffer from inherent limitations regarding

its tuning. There is no standard method of selecting the displacement Q. If

the maximum possible values for displacement are considered then the resulting

feature length will be very large. In [114] this problem is addressed and proposed

to consider sum and difference histograms as texture features. This approach gave

similar results as of GLCM.

The gray-level difference statistics are closely related to GLCM [120]. In this,

the features are calculated by comparing the intensity values with the pair of

intensity values or the average intensities. [120] proposed four spatial gray-level

difference measures for texture analysis: mean, entropy, contrast, and angular

second moment (ASM). If spatial gray-level difference is given as

fδ(x, y) = |f(x, y)− f(x+ ∆x, y + ∆y)| (2.8)

where δ ≡ (∆x,∆y) is a displacement represented as G before and Pδ is a probab-

ility density of fδ(x, y), which is a vector of length of total number of gray levels

and whose i-th element is the probability that function fδ(x, y) will have value i,

then texture features are calculated as

Contrast =
∑

i2Pδ(i) (2.9)
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ASM =
∑

Pδ(i)
2 (2.10)

Entropy = −
∑

Pδ(i)logPδ(i) (2.11)

Mean = (1/m)
∑

iPδ(i) (2.12)

2.2.2 Structural and Geometrical Texture Descriptors

These kind of descriptors are characterised by their definition of texture as being

formed of texture elements named as texels or textons. Texels are the smallest

element which creates the impression of a texture surface. In Figure 2.4, example

of texel and the corresponding texture is given. Based on these texels, texture

analysis is performed by analysing the statistical features of texels or the placement

of texels. In general, structural descriptors are invariant to illuminations, but

strongly depend upon the definition of texels. The work in [56] suggests that

structural based methods are justified using psychophysical studies that show

humans can discriminate textures with different texton elements.

Based on similar psychophysical studies [108] explored the texture represent-

ation from a different angle and developed computational approximations to the

visual texture properties found to be important. The six visual texture properties

were coarseness, contrast, directionality, line likeness, regularity, and roughness,

commonly known as Tamura texture features and given as follows.

Coarseness: It is a measure of the granularity of the texture. A moving win-

dow of size 2k × 2k(k = 0, 1, . . . , 5) is defined for each pixel I(i,j). Then, moving

averages Ak(x, y) can be computed as

Ak(x, y) =
x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

I(i, j)/22k (2.13)

First, the differences between pairs of non-overlapping moving averages in the

horizontal and vertical directions for each pixel are computed as

Ek,h(x, y) = | Ak(x+ 2k−1, y)− Ak(x− 2k−1, y) | (2.14)

and

Ek,v(x, y) = | Ak(x, y + 2k−1)− Ak(x, y − 2k−1) | (2.15)
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Then, the value of k (kbest) that maximises E in either direction is used to set

the best size Sbest for each pixel,i.e.

Sbest(i, j) = 2k (2.16)

The coarseness is the average value of the Sbest over the entire image and is

defined as follows:

C =
1

m× n

M∑
i=1

N∑
j=1

Sbest(i, j) (2.17)

Contrast: It measures the variations of gray levels in the image and can be

defined as

Ct =
σ

α
1/4
4

(2.18)

where α4 is the kurtosis and

α4 =
µ4

σ4
(2.19)

where µ4 is the 4-th moment about the mean and σ2 is the variance.

Directionality: In order to compute directionality, the image is convoluted with

3× 3 vertical and horizontal edge masks. The angle of the gradient vector at each

pixel is defined as:

θ = tan−1(∆V /∆H) + π/2 (2.20)

where ∆V and ∆H are the vertical and horizontal differences and measured using

the following 3× 3 moving window operators: −1 0 1

−1 0 1

−1 0 1


 1 1 1

0 0 0

−1 −1 −1


After quantizing θs, histogram of θ, HD, is constructed. Strong peaks in the

histogram indicate that the image is highly directional. A directionality measure

can be defined as

D =

np∑
p

∑
∀θ∈wp

(θ − θp)2HD(θ) (2.21)

where D is a measure of directionality, p is a peak, wp is the set of bins, θp is the
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bin that takes the peak value and np is the total number of peaks.

Line-likeness: Line likeness is supplementary to the previous three features and

concerned only with the shape of texture.

As a measure of line-likeness, it is defined so that co-occurrence in the same

direction is weighted +1 and those in the perpendicular direction by -1, resulting

in

Flin =
n∑
i

n∑
j

PDd(i, j) cos

[
(i− j)2π

n

]/ n∑
i

n∑
j

PDd(i, j) (2.22)

where PDd is the n× n local direction co-occurrence matrix of points.

Regularity: This deals with the regularity of repetitive patterns. It is the sum

of the variation for each of the four features given before.

Freg = 1− r(σcrs + σcon + σdir + σlin) (2.23)

where r is a normalising factor, σcrs is the standard deviation of coarseness, σcon is

the standard deviation of contrast, σdir is the standard deviation of directionality

and σlin is the standard deviation of line likeness.

Roughness: The coarseness and contrast approximate a measure of roughness

and is given as

Frgh = σcrs + σcon (2.24)

In [111], it is proposed that the extraction of texture tokens using Voronoi

tessellation of the given image is useful for texture description. Voronoi tessellation

is used because of its property in defining local neighbourhoods. First, texture

tokens are extracted and then the tessellation is constructed. Tokens can be as

simple as points of high gradient in the image or complex structures such as line

segments or closed boundaries. Another approach [117], [9], filters the image using

Laplacian of Gaussian (LoG) masks at different scales to detect blobs, which are

then used as texels. [50] studied the basic mathematical morphology operations

for texels detection using the structural opening and top-hat operations. The

structural opening is the translation invariant for a family of structuring elements

extracted from the textural set. These correspond to primitive patterns, some

kind of ”textons” , which completely characterize the texture. Different textures

are detected using a top-hat transformation which detects the difference between

the texture set and its opening.

[128] considers the observable texture as distorted versions of ideal textures.
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In this method, first the placement rules for ideal texture are defined using graphs

and these graphs are then transformed to generate the observable texture. This

is done by computing the two dimensional histogram of the relative positions of

the detected texture tokens.

2.2.3 Model Based Texture Descriptors

These texture analysis methods are useful for texture analysis as well as synthesis

textures. Model parameters are typically learned for a specific texture analysis task

and used as features. Markov random fields (MRFs) are popular for modelling

images, and are based on the contextual information in the image. It is assumed

that the intensity of each pixel depends on the intensity of neighbouring pixels [19].

MRF defined as a probabilistic process in which all interactions are local. The

probability that a pixel is in a given state is determined by the probabilities for

states of neighbouring pixels. The image is usually represented by an m×n lattice

denoted by

L = {(i, j)|1 ≤ i ≤M, 1 ≤ j ≤ N} (2.25)

f(i,j) is a random variable representing the gray level at location (i,j) on lattice

L. The Markov vanity is defined as

P (f(i, j)|L) = P (f(i, j)|ηi,j) (2.26)

where ηi,j is a neighbouring set of pixel (i,j). Different forms of probability distri-

butions yield different MRF models. Widely used models include Gaussian MRFs

(GMRFs), and the simultaneous autoregressive (SAR) model [36]. The Gaussian

Markov random field model is also proposed to model the textural information in

the image [17].

Roughness and self-similarity of texture are important characteristics observed

in many natural textures, which can be modelled using fractals [70]. [16] used

fractals for texture segmentation. The circular autoregressive model and its ex-

tension to multi-resolution processing is proposed in [72] for texture classification

and segmentation.

2.2.4 Filtering Based Texture Descriptors

Human brain analyse the image by frequency information of intensities and it is

an important characteristic of textures as well [11]. In general, signal processing

based approaches first apply filters to the image and then records the responses as

texture features. The direct approach for the application of filters is to use spatial
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domain filters such as Robert’s masks, Laplacian masks or Law’s masks [61]. These

filters generally give the edge related information and the edge density per unit

area, which can serve as texture features.

On other hand, frequency domain masks are more popular and effective in tex-

ture description. In frequency domain analysis, the Fourier transform is applied

to the image, and features are calculated, for example, from the power spec-

trum [120]. The response of Gabor filters is the texture descriptor work on same

approach [33]. Gabor wavelets (GW) feature proposed in [71] is the most popular

texture measures and it is given as

gmn(x, y) = a−mG(x′, y′)

x′ = a−m(x cos θ + y sin θ),

y′ = a−m(−x sin θ + y cos θ)

(2.27)

The θ is given as θ = nπ/K. However, the GW has redundant information which is

implied by its non-orthogonality characteristics. This can be removed by designing

filters using equation 2.28.

a = (Uh/Ul)
− 1
s−1 , σu =

(a− 1)Uh

(a+ 1)
√

2 ln 2
, (2.28)

σv = tan
π

2k

[
Uh − 2 ln

(
σ2
u

Uh

)][
2 ln 2− (2 ln 2)2σ2

u

U2
h

]− 1
2

Where , Ul and Uh denote the lower and upper centre frequencies of interest.

In order to reduce the sensitivity of filter responses to absolute intensity values,

G(0, 0) in Gabor function is set to zero. Gabor wavelet transform for given image

I(x, y) is defined as follows:

Wmn(x, y) =

∫
I(x1, y1)gmn ∗ (x− x1, y − y1)dx1dy1 (2.29)

Local texture regions are homogeneous, thus the mean and standard deviation

of the magnitude of transform coefficients can be used as texture features. The

mean (µmn) and standard deviation (σmn) is given as

µmn =

∫∫
|Wmn(xy)|dxdy and σmn =

√∫∫
(|Wmn(xy)| − µmn)2dxdy (2.30)

Then, a feature vector comprising µmn and σmn, for e.g., four scales and six

orientations, corresponding to the Gabor feature which is shown in Figure 2.5, can
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be constructed.

2.2.5 Local Binary Patterns

Local binary patterns (LBP) proposed in [78] is the simple yet powerful gray scale

invariant texture descriptor. The LBP operator combines characteristics of statist-

ical and structural texture analysis: it describes the texture with micro-primitives

and their statistical placement rules. The original LBP operates on a pixel basis,

and describes the eight neighbourhood pixels in binary code and summarises all

codes into a histogram which serves as texture feature. This method produces 256

texture patterns for the 3× 3 neighbourhood. In detail, if

B =

 g8 g1 g2

g7 g(0,0) g3

g6 g5 g4


is a 3× 3 grey scale block of pixels with centre at location (0, 0), then the neigh-

bouring pixels are set to 0 and 1 by thresholding them with the centre pixel value.

For this, the centre pixel is subtracted from each neighbour

LBP1 =

 g8 − gc g1 − gc g2 − gc
g7 − gc gc g3 − gc
g6 − gc g5 − gc g4 − gc

 (2.31)

where gc = g(0,0) for convenience. The binary code is then generated by

LBP2 =

 s(g8 − gc) s(g1 − gc) s(g2 − gc)
s(g7 − gc) gc s(g3 − gc)
s(g6 − gc) s(g5 − gc) s(g4 − gc)

 (2.32)

with

s(x) =

{
1 for x ≥ 0

0 for x < 0

Finally, the eight bit binary pattern is encoded as

LBP =
8∑
p=0

s(gp − gc)2p (2.33)

The 256 possible patterns resulting from the above procedure are used to con-

struct a histogram, which serves as texture descriptor. In Chapter 3, a detail

survey on LBP and its variants are presented.
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2.2.6 Recent Descriptors

There are several texture descriptors reported recently in the literature and use

for various applications like human detection, face detection, automatic number

plate detection. One such descriptor is Histogram of Oriented Gradient (HOG)

proposed in [25] used for the human detection. The HOG features are extrac-

ted by dividing the image window into small spatial regions (cells) and for each

cell a 1-D histogram of gradient direction is constructed. These histograms from

all cells are combined in a single histogram which serves as the HOG features.

Furthermore, invariance to illumination is achieved by normalising the local his-

togram energy by the histogram energy of a large spatial region (blocks). In [25]

it is mentioned that combined HOG and scale invariant feature transformation

(SIFT) [69] representation has several advantages. It captures the local edge or

gradient structure and can easily achieve a controllable degree of invariance to

local geometric and photometric transformations. As the name suggest SIFT fea-

tures are the scale invariant features. They are extracted in four steps and only

the filtered features are passed to the next step. The expensive operations are

applied only at locations that pass an initial test. In the first stage the difference

of Gaussian functions are used to identify potential interest points. Following this,

for each candidate location, a detailed model is fit to determine location and scale

and only those key points are selected which are stable for each model. In the

third step one or more orientations are assigned to each key point based on local

image gradient directions. This provided the orientation invariance. In the final

step, the local image gradients are measured at the selected scale in the region

around each keypoint. These are transformed into a representation that allows for

significant levels of local shape distortion and change in illumination.

Speeded Up Robust Features (SURF) are another important descriptor par-

tially inspired from SIFT features [7]. The slow speed of SIFT features is ad-

dressed in the SURF features. The SURF features uses LoG with Box filter to

approximates the scales. Then, interest point detection is done by applying a

very basic Hessian matrix approximation. The orientation invariance is achieved

by extracting wavelet responses in horizontal and vertical direction. Finally, the

extraction of the descriptor is done in two steps. The first step consist of con-

structing a square region centred around the interest point and oriented along the

orientation selected in the previous section. Then, interest region is split up into

smaller 4 × 4 square sub-regions, and for each one, it is computed Haar wavelet

responses at 5× 5 regularly spaced sample points which are then weighted with a

Gaussian filter. Another descriptor is based on maximum response (MR8) [115],

which consist of 38 filters but only 8 filter responses. The filter bank contains fil-
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ters at multiple orientations but their outputs are collapsed by recording only the

maximum filter response across all orientations. This achieves rotation invariance.

Measuring only the maximum response across orientations reduces the number of

responses from 38 which is consist of 6 orientations at 3 scales for 2 oriented fil-

ters (edge and bar filter), plus 2 isotropic (Gaussian and Laplacian filter) to 8 (3

scales for 2 filters, plus 2 isotropic). It is observed that, these new descriptors

are outperforming the traditional texture descriptors and are very useful in object

detection and tracking.

2.3 Texture Applications

Texture analysis algorithms are extensively used for the variety of applications

including medical image processing, texture classification, texture retrieval, seg-

mentation. In some application domains, texture analysis methods have proved

very useful like medical image analysis. This section considers the classical ap-

plications such as texture classification, texture retrieval and segmentation.

2.3.1 Texture Classification

Texture classification is a well-known problem in pattern recognition and computer

vision. As shown in Figure 2.6, the goal of classification is to categorise unknown

texture samples into one of the predefined texture samples or to find the probability

of the unknown sample to match predefined samples [27]. In [46], textures are used

for classification of sandstones and satellite image classification. More recently

in [5], a texture analysis method is applied to the face recognition problem and

the results show that texture based algorithms are useful for face identification.

Medical image analysis is another area where classification based texture ana-

lysis algorithms are used extensively. For example textural properties can be

extracted from the image and tissue classification performed based on priori in-

formation. One of the early used texture analysis methods found in the literature

is for classification of pulmonary disease X-ray images [107]. The affected area of

lungs have shown different textural properties and hence textural analysis is suit-

able for pulmonary disease diagnosis. In [13], various texture analysis methods

used in radiological image analysis are presented. Texture analysis method such

as co-occurrence matrix, run length matrix, histogram, wavelets are applied on

various medical images such as diagnosis of skeletal muscle dystrophy, differenti-

ation between healthy and pathological tissue in the human brain, detection of

multiple sclerosis and Cervix lesions classification.

In general, texture images are represented in numerical feature vectors using
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single or the combination of multiple texture descriptors to train a classifier and

the output of the classier is used to predict or classify the unknown texture. There

are two groups of classifiers: parametric and non-parametric. The difference is,

in parametric classifiers, like Bayesian and Mahalanobis classifiers, make certain

assumptions about the distribution of features. Non-parametric classifiers, like

the k-NN classifier, can be used with arbitrary feature distributions and with

no assumptions about the forms of the underlying densities [27]. In both the

methods some prior knowledge, like training data is required and hence they are

called as supervised techniques. Non-supervised technique does not require any

priori information and they use clustering based approach such as self-organizing

maps [59].

2.3.2 Texture Retrieval

In today’s world of digital media, terabytes of data are generated in the form of

images. A huge amount of information is freely available on the internet. However,

one cannot access or make use of the information unless it is organised so as to

allow efficient browsing, searching, and retrieval. With this problem in mind,

extensive research in image retrieval has been actively going on since long. While

database management is one approach for this, computer vision can be axillary to

it.

Content-based image retrieval (CBIR) extracts features from images describing

colour, texture, shape, etc. characteristics and uses these coupled with similarity

measures to allow for searching for visually similar images [101].

[65] has successfully used the hidden Markov models for texture retrieval. [116]

analysed 56 CBIR systems and found that 46 of them use colour features, 38 of

them use texture features and 29 of them use shape features. Tamura features are

used in QBIC [30] and Photobook [87]. Wavelets, specially Gabor wavelets [71]

are also popular texture descriptor in image retrieval applications.

2.3.3 Texture Segmentation

Texture analysis can also be effectively used for image segmentation, where the

goal is to separate regions with different textural properties. Image segmentation

algorithms can be divided into supervised and unsupervised methods. In unsu-

pervised methods there is no prior knowledge about object or its homogeneity, on

other hand, supervised methods make used of prior information regarding object

homogeneity and other textural properties. Unsupervised texture segmentation

is more suitable, for example, in image pre-processing tasks, however it is still

an unsolved and widely studied issue in computer vision [113]. As in Figure 2.7
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textural feature can be used for segmenting the sky, water and mountains which

then can be analysed for particular applications.

2.4 Summary

This chapter has presented the detailed review on texture analysis methods and

applications. Texture can be used for the variety of applications including clas-

sification, segmentation and retrieval. Texture descriptors can classified into four

groups: statistical, structural, model based and signal processing based. Statist-

ical descriptors are simple and one of the earliest descriptors that encode texture

properties. Structural descriptors describe texture primitives which is then used

for texture analysis. Model based approach are typically learned for a specific

texture analysis task and used as features classification. The signal processing

based approach is popular in texture analysis, where first filters are applied to the

image and then its response is recorded as texture feature.

In addition to this, local features can also be considered which combine stat-

istical and structural properties. Local binary patterns (LBP) is a simple and

powerful texture descriptor which describes the local properties of texture. In the

next chapter, LBP and LBP variants are reviewed.



CHAPTER 2. LITERATURE REVIEW 25

wood sand

Figure 2.1: Texture example

Figure 2.2: Example of change in texture at different scales.

Figure 2.3: Co-occurrence matrix
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Figure 2.4: Texture synthesis using texels [2]

Figure 2.5: Example of Gabor filter bank

unknown class A class B class C class D class E
sample

Figure 2.6: Texture classification example.
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Figure 2.7: Example of texture analysis for image segmentation



Chapter 3

Background Work

In the previous chapter, different texture descriptors were discussed. A texture

descriptor or combination of descriptors are used to represent texture in numer-

ical form, giving emphasis to unique properties of texture. However, a common

problem is that texture patterns are often not uniform due to changes in orient-

ation, scale, illumination and other factors. Consequently, grey scale invariance

and rotation invariance along with computational complexity are key features for

successful texture descriptors.

Local binary patterns (LBP) is a simple yet powerful grey scale invariant

texture descriptor which encodes the neighbourhood into binary patterns. This

chapter gives the detailed understanding of LBP and its variants.

3.1 Local Binary Patterns

LBP, first introduced in [78], represents a relatively simple yet powerful texture

descriptor describing the relationship of a pixel to its immediate neighbourhood.

In section 2.2.5, basic principle of LBP is given. Given below is an example for

LBP.

B =

 56 58 95

20 80 98

22 79 80


is a 3× 3 grey scale block from an image with centre pixel at location (i, j), then

the LBP code after application of Equations 2.32 and 2.33 is

 s(56− 80) s(58− 80) s(95− 80)

s(20− 80) s(98− 80)

s(22− 80) s(79− 80) s(80− 80)

 Binary−−−−→

 0× 28 0× 21 1× 22

0× 27 1× 23

0× 26 0× 25 1× 24

 LBP(8,1)−−−−−→ 28

28
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3.2 Circular local binary patterns (LBPcir
P,R)

In the above procedure, the eight neighbourhood of each pixel are utilised. Clearly,

four of these neighbours are at different distance (
√

2) than the other four. To

compensate for this, a circular neighbourhood can be defined [79] as shown in Fig-

ure 3.1 where locations that do not fall exactly at the centre of a pixel are obtained

through interpolation. A circular symmetric neighbourhood defined by R and P

can be employed on which LBPs are calculated. Here, R defines the distance of the

neighbours to the centre while P gives the number of samples at that distance that

are employed as neighbours. For centre pixel gc, the coordinates of neighbouring

pixels gp, if p = 1, 2, . . . , P are given by (−R sin(2πp/P ), R cos(2πp/P )).

Figure 3.1: Square (left) vs. circular (right) LBP neighbourhood.

3.3 LBP Mappings

In [79] three mappings for LBP are proposed: rotation invariant, uniform and

rotation invariant uniform LBP. The rotation invariant mapping not only useful

to reduce the feature length but also work exceptionally well on rotated texture

data, giving rotation invariant texture description. Similarly, uniform mapping

also reduces the feature length of LBP.

3.3.1 Rotation Invariant LBP (LBPri
P,R)

If a texture is rotated essentially the patterns (that is the 0s and 1s around the

centre pixel) rotate with respect to the centre as illustrated in Figure 3.2 [79].

Rotation invariance of LBP, LBPri
P,R, is easy to obtain by considering the unique

minimum value of the binary patterns which is obtained by shifting the binary

structure so as to end up with a sequence of a maximal number of 0s at the

beginning. Mathematically, it is given as

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, . . . , P − 1} (3.1)
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Figure 3.2: LBP pattern and 90-degree rotated LBP pattern.

where ROR(x, i) performs a circular bit-wise right shift on the P bit number. In

Figure 3.2, if 1 is represented by black and 0 is represented by white, then the

texture before rotation gives pattern (10100111) and after rotation (10011110).

However, after applying LBPri, both images result in the same pattern (00111101).

For eight neighbours, there are 36 rotation invariant LBP codes.

3.3.2 Uniform LBP (LBPu2
P,R)

Certain binary patterns are fundamental properties of texture and sometimes their

frequency exceeds 90%. These patterns are called uniform, leading to LBPu2
P,R, and

are defined by a uniformity measure which corresponds to a spatial transition (i.e.

changes from 0 to 1 and vice versa) [79]. For example, in Figure 3.3, the image

on the left shows four changes and is hence considered as non-uniform while the

image on the right has the uniformity index of two and is hence considered as the

uniform pattern. The patterns with uniformity measure 2 are given by

LBP riu2
P,R =


∑P−1

p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(3.2)

where

U(LBPP,R) = |s(gp − gc)− s(g0 − gc)|

+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|

3.3.3 Rotation Invariant Uniform LBP (LBPriu2
P,R )

Clearly, rotation invariance uniform mapping can be achieved in the same way

as above. For this both rotation invariant and uniform mapping are performed.

For eight neighbours there are nine rotation invariant uniform LBP codes, two

without any 0-1 changes and the remaining seven with {1, . . . , 7} 1s in sequence
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as shown in Figure 3.4. While LBP generates 256 patterns for 8-neighbourhood,

LBPri generates 36 patterns, LBPu2 generates 58 uniform patterns and LBPriu2

results in 9 patterns for the same neighbourhood. In case of uniform and rotation

invariant uniform patterns, all non-uniformed patterns are summarised into one

bin for texture description.

3.4 Multi-scale LBP

By defining several radii around a pixel, multiple concentric neighbourhood LBP

codes can be extracted as illustrated in Figure 3.5. To capture LBP feature at

different scales, only the radius has to change. A large radius also allows to capture

more neighbouring pixels, however that means more LBP patterns and thus finally

the more feature length. Thus, LBP histograms corresponding to different radii

are simply concatenated and used as texture features.

3.5 LBP Variants

It is clearly observed that LBP are simple texture descriptors, further to this

various forms of LBP (LBP variants) are reported to boost the performance of

LBP. In this section, different LBP variants are discussed.

3.5.1 Co-occurrence of Adjacent LBP (CoA-LBP)

In [75, 76], co-occurrence of adjacent LBP is proposed to preserve the spatial re-

lation between adjacent LBPs. In the proposed method the number of possible

combinations will be significantly higher and hence auto-correlation matrix is pro-

posed to calculate the co-occurrence of LBP. To reduce the number of LBPs two

configurations are proposed: patterns derived only with horizontal and vertical

pixels (LBP(+)) and the patterns derived by diagonal pixel (LBP(-)). Then the

correlation matrix is calculated by considering Np × Np auto-correlation matrix

defined by following equation.

H(a) =
∑
r∈I

f(r)f(r + a)T (3.3)

where a is the displacement vector from the reference LBP to its neighbour

LBP. The element Hi,j(a) indicates the number of pairs of adjacent LBPi and

LBPj. In our experiments we extracted LBP at radius 1 and a is set to 1 pixel to

the right. Further, LBPs are generated at vertical and horizontal pixels to central

pixel.
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3.5.2 Dominant LBP (D-LBP)

Unlike in conventional uniform LBP, where occurrence of only uniform patterns are

considered, D-LBP considers the occurrence of all patterns generated by the LBP

algorithm. In D-LBP, first the normal LBP histogram is sorted in descending order

of bin values and first few (dominant) patterns are selected to describe textural

information [64].

Thus, D-LBP feature vectors do not carry information regarding the dominant

pattern types and only contain information about the occurrence frequencies of

LBP patterns. [64] suggested that it is practically improbable to have two distinct

texture types to carry the same dominant pattern proportions. In D-LBP, a

number of first few patterns are obtained by considering the initial bins of the

sorted histogram which sum to 80% of the total number of occurrences. This

number is calculated for all training samples and an average value is used to select

the dominating patterns from all samples.

3.5.3 LBP Variance (LBPV)

The contrast in an image, V ARP,R = 1
P

∑P−1
p=0 (gp − µ)2 with µ = 1

P

∑P−1
p=0 gp can

be incorporated with LBPP,R to generate a joint distribution LBPP,R/VARP,R

which gives a powerful texture descriptor as it contains both local pattern and

local contrast information. However, VAR has a continuous value that needs to

be quantised, using a feature distribution from all training images. This has some

limitations such as the required training stage to determine the threshold values

for each bin, the quantisation is depends on training samples and the number of

bins needs to be preset. Too few bins will not provide enough discrimination while

too many bins will result in large feature vectors.

An alternative is to use a hybrid scheme, LBP variance (LBPV), which provides

joint LBP and contrast distribution where the variance VARP,R is used as an ad-

aptive weight to adjust the contribution of the LBP code in histogram calcula-

tion [41].

LBPV histograms are calculated as

LBPVP,R(k) =
N∑
i=1

M∑
j=1

ω(LBPP,R(i, j), k), k ∈ [0, K] (3.4)

with

ω(LBPP,R(i, j), k) =

V ARP,R(i, j) if LBPP,R(i, j) = k

0 otherwise
(3.5)
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3.5.4 Adaptive LBP (A-LBP)

LBPP,R/VARP,R is a good texture descriptor and LBP and VAR are compliment-

ary to each other. Furthermore, the variance can be used to weight the LBP. A-

LBP tries to incorporate local spatial structure into LBP [43]. A weight parameter

wp is introduced to minimise the directional difference along different orientations.

The overall directional difference |gc−wp× gp| can be minimised by the objective

function

wp = argmax
w

{
N∑
i=1

M∑
j=1

|gc(i, j)− w · gp(i, j)|2
}

(3.6)

A least square estimation (LSE) technique is used for optimisation of wp, which

is computed as

wp = ḡTp ḡc/(ḡ
T
p ḡp) (3.7)

where ḡc = [gc(1, 1); gc(1, 2); . . . ; gc(N,M)] is a column vector containing all pos-

sible gc pixels and ḡp = [gp(1, 1); gp(1, 2); . . . ; gp(N,M)] is the corresponding vector

for all gp pixels. Each weight wp is estimated along one orientation 2πp/P , and

A-LBP is defined as

A-LBP =
P−1∑
p=0

s(gp ∗ wp − gc)2p (3.8)

where P is the size of the weight vector w.

3.5.5 Multi-scale Spatial Pyramid LBP (MSSP-LBP)

MSSP-LBP is used to capture the geometry of texture of multiple scales. A

multi-scale spatial pyramid (MSSP) image is obtained by recursively rescaling the

original image by 2l−k+1 using bilinear interpolation [67]. Then, LBPriu2
P,R is used

at each level of the pyramid, and finally all extracted features are concatenated.

LBP at multi-scales encodes both micro-patterns and macro-patterns, thus allows

discrimination of texture features at both level.

3.5.6 Pyramid LBP (P-LBP)

An improvement to MSSP-LBP is suggested as P-LBP, where the image is again

represented in a pyramid structure [94]. P-LBP considers resolution variation,

while pyramid images are generated through Gaussian filtering with a down-

sampling ratio of
√

2.

If PLBPP,R,k denotes the LBP of a pixel at the k-th pyramid, then P-LBP is
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given as

PLBPP,R = 〈LBPP,R,1; . . . ;LBPP,R,N〉 (3.9)

3.5.7 Hierarchical Multi-scale LBP (H-LBP)

It has been shown that around one third of information is wasted by discarding

the non-uniform LBPs. In some cases the patterns of bigger radii are non-uniform

but their smaller radii counterparts are uniform. Thus, it is possible to classify

non-uniform patterns according to their smaller radius counterparts. In H-LBP,

as shown in Figure 3.6, the image is divided into small blocks and a multi-scale

histogram is built where the LBP map of biggest radius is divided into uniform

and non-uniform groups. A sub-histogram is built for the uniform group, while for

the non-uniform group LBP patterns are extracted from the smaller radius. The

process continues until obtaining a uniform pattern or when reaching the smallest

radius [42].

3.5.8 Completed LBP (C-LBP)

In the approach of [40], local regions are represented by their centre pixels and a

local difference sign-magnitude transform (LDSMT). If gc is the centre pixel and gp

is one of the (circular) neighbours, then the difference dp = gp− gc is decomposed

into two components, namely the sign sp and the magnitude mp. The LDSMT

is used to calculate CLBP S, CLBP M and CLBP C operators which represent

texture features. CLBP S is the same as the original LBP descriptor. CLBP M

represents mp. As it is not a binary code it is calculated as

CLBP M =
P−1∑
p=0

t(mp, c)2
p (3.10)

with

t(x, c) =

1, c ≤ x

0, c > x

where c is a threshold (which is set as the mean value of mp). The centre pixel,

which expresses the image local grey level also has discriminant information and

is coded as CLBP C = t(gc, cl) with t(..) as defined above and cl is set to average

grey level of whole image. CLBP M, CLBP C, and CLBP S are then combined

into a joint 3-D histogram. The overall process for C-LBP generation is shown in

Figure 3.7.
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3.5.9 Compound LBP (CM-LBP)1

The original LBP operator discards the magnitude information of difference between

the centre and neighbouring grey values. In CM-LBP, a 2-bit code is used to en-

code the local texture property of an image. The first bit represents the sign of

difference between the centre and neighbouring grey values, while the second bit is

used to encode the magnitude of difference with respect to a threshold value Mavg.

Mavg is set to the average magnitude of the difference between the centre and the

neighbour grey values in the local neighbourhood [4]. If gp is a neighbouring pixel,

and gc the center pixel, the 2-bit code s(x) is obtained as

s(gp, gc) =



00 if gp − gc < 0 and |gp − gc| ≤Mavg

01 if gp − gc < 0 and |gp − gc| > Mavg

10 if gp − gc ≥ 0 and |gp − gc| ≤Mavg

11 otherwise

(3.11)

generating a 16-bit code for eight neighbours. This 16-bit code is then divided

into two 8-bit codes by selecting a pair of alternate bits into one code and the

remaining bits into another code and two different histograms are generated from

the two codes as shown below:

CM -LBP =

 10 10 11

01 01

10 00 00

 Two 8 bit code−−−−−−−−→



non-diagonal
10

01 01

00

 −→ 10010001

diagonal
10 11

10 00

 −→ 11001010

In other words, two histograms are generated by grouping diagonal elements

in one histogram and non-diagonal elements in another histogram.

1Note, that while the method is abbreviated as CLBP in the original paper, this thesis will
use CM-LBP to distinguish it from completed LBP.
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3.5.10 Local Ternary Patterns (LTP)

In LBP, thresholding is performed exactly at the value of the centre pixel, which

tends to be sensitive to noise. Hence in [109], a 3-value code is suggested called a

local ternary pattern, encoding interval ±t around the centre pixel as

s(gp, gc, t) =


1 if gp ≥ gc + t

0 if |gp − gc| < t

−1 if gp ≤ gc − t

(3.12)

where, gp is the neighbouring pixel, t is a user-specified threshold. This makes LTP

code more resistant to noise but not strictly invariant to grey level transformation.

Each ternary is then split into positive and negative parts, which are subsequently

treated as two separate LBP channels for which histograms are calculated and

finally combined. The LTP scheme is summarised below:

B =

 56 58 95

20 80 98

22 79 80

 ternary code−−−−−−−→

 −1 −1 1

−1 1

−1 0 0

 binary code−−−−−−→



Upper pattern
0 0 1

0 1

0 0 0


Lower pattern

1 1 0

1 0

1 0 0


In the given example t is set to three. Separate histograms are constructed

for upper and lower binary patterns and a final feature vector is generated by

concatenating the two histograms.

3.5.11 3-Patch (3P-LBP) and 4-Patch (4P-LBP) LBP

codes

As the name suggests, 3P-LBP is produced by comparing the values of three

patches to give a single bit value as shown in Figure 3.8 [123]. A w × w patch

centred on a pixel and S additional patches distributed uniformly in a ring of

radius r around each pixel are considered. Then, pairs of patches, α patches apart

along the circle are compared with the centre patch. The value of a single bit

is set describing which of the two patches is more similar to the centre patch.
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Mathematically, the three patch LBP can be given as

3P -LBPr,S,w,α(p) =
S∑
i

f(d(Ci, Cp)− d(Ci+α mod S, Cp))2
i (3.13)

where, Ci and Ci+α mod S are two patches along the ring and Cp is the central

patch. The function d(..) is any distance function between two patches and f is

defined as

f(x) =

1 if x ≥ τ

0 if x < τ
(3.14)

In 4P-LBP, two rings of radii r1 and r2 are considered [123]. The code is then

produced by comparing the two centre symmetric patches in the inner ring with

two centre symmetric patches in the outer ring positioned α patches away along

the circle. The coding is the same as in 3P-LBP. In Figure 3.9, binary patterns

will be produced by comparing the differences between C10 and C21 pixels with

C14 and C25 and repeated this for the reaming three pairs.

3.5.12 Multi-block LBP (MB-LBP)

The basic idea of MB-LBP is to encode rectangular regions by LBP operators.

While in basic LBP the centre pixel value is compared with neighbouring pixel

values, this concept is extended in MB-LBP where an average of a block is com-

pared with the average of neighbouring blocks [126]. For example in Figure 3.10,

the block size is set to 2 × 3 and the average values of these blocks are used to

generate LBP patterns. Such binary pattern can detect diverse image structures

like edges, line spots, corners and flat areas at different scales and rotations. An

advantage of MB-LBP over basic LBP at 3 × 3 neighbourhoods is its ability to

capture large-scale structures that may be dominant features of images.

3.5.13 Transition LBP (T-LBP)

[110] try to address a problem of the LBP encoding method where the relation

between pixels with the same value is lost. T-LBP binary values are composed

by neighbouring pixel comparisons in clockwise direction for all pixels except the

centre pixel, which in turn gives information about partial ordering of border pixels

as shown in Figure 3.11. If gp corresponds to the grey value of the p-th neighbour
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of the centre pixel, then T-LBP is given as

T -LBPP,R = s(g0 − gp−1) +
P−1∑
p=1

s(gp − gp−1)2p (3.15)

It is observed that T-LBP is the grey scale invariant texture descriptor.

3.5.14 Line LBP (L-LBP)

In [89] the neighbourhood shape is changed to a line of length N pixels from a

typical shape of circle or rectangle. The binary weights starts from right and left

adjacent of the centre pixel to the end of the line. A horizontal (LLBPh) and

vertical (LLBPv) line LBP are derived as

LLBPh(N, c) =
c−1∑
n=1

s(hn − hc) · 2(c−n−1) +
N∑

n=c+1

s(hn − hc) · 2(n−c−1) (3.16)

and

LLBPv(N, c) =
c−1∑
n=1

s(vn − vc) · 2(c−n−1) +
N∑

n=c+1

s(vn − vc) · 2(n−c−1) (3.17)

N is the length of line in pixel, c is the position of centre pixel and h and

v are horizontal and vertical line neighbourhood.The magnitude of LLBPh and

LLBPv which characterises changes in image intensity such as edges and corners

is calculated as

LLBPm =
√
LLBP 2

h + LLBP 2
v (3.18)

3.5.15 Monogenic LBP (M-LBP) [127]

In M-LBP, local phase information and local surface type information are com-

bined with traditional LBP. The local phase of signal f(x) is defined as

ϕ = atan2
(√

R2
x(f) +R2

y(f), f
)
, ϕε[0, π] (3.19)

where Rx(x) and Ry(x) are the spatial representations of a Riesz kernel, and ϕ is

quantised into M discrete levels to get the phase code (ϕc). Local surface inform-

ation is extracted from the monogenic curvature tensor based on the determinant

of higher order Riesz transforms. The binary code for surface information Sc is
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given as

Sc =

0 if det(Te) ≤ 0

1 otherwise
(3.20)

where det(Te) is a determinant of a second order Riesz transform. Finally, M-LBP

is obtained by combining ϕc , Sc and LBPriu2.

3.5.16 Recent LBP Variants

There are many more LBP variants reported in the literature and the list is con-

tinuously updating. Co-occurrence based texture descriptors are commonly ob-

served in the recent literature on LBP variants. For example, the work of [92]

introduced a pairwise rotation invariant co-occurrence LBP (PRI-CoLBP), which

is based on the spatial co-occurrence and orientation co-occurrence of the pat-

terns. In this method the relative angle between the LBP patterns, which gives

information about the relative curvature is preserved. For each co-occurrence pat-

tern, the gradient magnitude of the two points is used to weight the pattern. In

their other work [91] the authors proposed a rotation-invariant Multi-scale Joint

Encoding of LBPs (MSJ-LBP) operator which encodes jointly the local binary

patterns of two scales around the centre point to capture their correlation. The

gradient magnitude is used to weight the joint patterns.

The authors of [47] developed a powerful descriptor, named covariance LBP

(COV-LBP). Firstly, a variant of LBP in Euclidean spaces, named the LBP Dif-

ference feature (LBPD), is proposed. LBPD reflects how far one LBP lies from the

LBP mean of a given image region. Secondly, by applying LBPD together with

some other features provides a bank of discriminative features which are gives very

good performance. Similarly, [103] combines wavelets and LBP (WaveLBP). For

this the authors build up the image description using a hierarchical framework

based on low-dimensional WaveLBP features, which not only extracts multi-scale

oriented features and local image patterns, but also captures multi-level (pixel,

patch, image) features. [81] introduced Moment-based LBPs. Their approach

consists of two steps: the momentogram construction and the application of LBP

on it. As a result an enhanced LBP histogram is obtained, which is invariant un-

der common geometric transformations (translation, rotation, scaling), enclosing

local as well as global information.

Noise tolerance is also an important factor in extracting LBP patterns, this is-

sue is addressed in LTP (section 3.5.10). More recently the work of [96] introduced

a noise-resistant LBP (NRLBP) aiming to preserve the local image structures in

the presence of noise. A small pixel difference is vulnerable to noise, and thus it is

first encoded as uncertain, and then its value is determined based on the other bits
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of LBP code to form a code of local uniform pattern. They also proposed extended

noise resistant LBP (ENRLBP) to capture line patterns. Experiments with added

Gaussian and uniform noise on various datasets demonstrate the efficiency of their

approach. In addition to this [66] proposed a computationally simple approach

to multi-scale analysis with their Binary Rotation Invariant and Noise Tolerant

Texture descriptor (BRINT). Points are sampled in a circular neighbourhood, but

the number of bins in a single scale LBP histogram are kept constant and reduced

by averaging over several contiguous pixels in the circle before binarisation. This

allows to encode a large number of scales and also reduces the effects of noise. Both

sign and magnitude components, like in CLBP (section 3.5.8), are considered.

3.6 Summary

Local binary patterns (LBP) is a simple yet powerful grey scale invariant texture

descriptor which encodes the neighbourhood into binary patterns. This chapter

gives the detailed understanding of LBP and its variants, and has presented dif-

ferent mappings for local binary patterns. Changing square neighbourhoods to

circular neighbourhoods allows rotation invariant description of texture images.

Further dimensions of LBP histograms can be reduced using uniform mappings.

Derivation of LBP variant is often based on neighbourhood, scaling, or intens-

ity information. However, in the literature the performance of all the variants

on common texture database is missing and thus the next chapter benchmark

all this variants on classification and retrieval dataset design for benchmarking

the algorithms. In Table 3.1 summary on LBP variants described in section 3.5.2

to 3.5.15 is presented. Section 3.5.16 presented the recent variants in the literature

and these variants are excluded from the benchmarking experiments in the next

chapter.
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LBP
variant

Category Description

CoA-LBP Correlation of LBP patterns is con-
sidered.

D-LBP Rearrange the LBP histogram and se-
lects only the dominant patterns.

LBPV Weight based Variance is used as adaptive weight to
adjust the contribution of LBP code.

A-LBP Weight based A weight parameter is introduced
to minimise the directional difference
along different orientations.

MSSP-
LBP

Multi-scale based Texture images are recursively rescaled
using bilinear interpolation and LBP
patterns are generated for each scale.

P-LBP Multi-scale based Pyramid images are generated through
Gaussian filtering by down sampling.

H-LBP Multi-scale based Non-uniform patterns are classify ac-
cording to their smaller radius counter-
parts.

C-LBP Thresholding based local regions are represented by their
centre pixels and a local difference sign-
magnitude transform.

CM-LBP Thresholding based Sign difference and magnitude differ-
ence is encoded using 16-bit code.

LTP Thresholding based 3-value code is suggested which en-
codes the thresholded interval around
the centre pixel.

3-Patch
and 4-
Patch

Patch based Compares the values of patches for en-
coding neighbours.

MB-LBP Patch based Compares the average of a block to the
average of neighbouring blocks.

T-LBP binary values are composed by neigh-
bouring pixel comparisons in clockwise
direction.

L-LBP the neighbourhood shape is changed to
a line.

M-LBP local phase information and local sur-
face type information is combined with
traditional LBP.

Table 3.1: Summary on different LBP variants.
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Figure 3.3: Examples of non-uniform (left) and uniform (right) LBP patterns.

Figure 3.4: Rotation invariant uniform pattern (top row).

Figure 3.5: Multi-scale LBP with radii r = {1, 3, 5}.
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Figure 3.6: Hierarchical multiscale LBP

Figure 3.7: Completed LBP [40]

Figure 3.8: Three patch LBP [123]
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Figure 3.9: Four patch LBP [123]

Figure 3.10: Multi-block LBP

Figure 3.11: Transition LBP



Chapter 4

Benchmarking of LBP Variants

LBP is the most popular descriptor and hence extensive research is done to de-

rive more powerful descriptors. However, it is difficult to compare different LBP

variants as their performance on common texture dataset is missing. This chapter

fills this gap, and presents a comprehensive study that benchmarks all the LBP

variants discussed in Chapter 3 on a common texture dataset. To do this, classi-

fication and retrieval tasks are performed and accuracies of each LBP variant are

recorded and evaluated.

Furthermore, an improvement to the CM-LBP which is discussed in section 3.5.9

is suggested. Specifically, the 8-bit binary code in original CM-LBP is replaced

by 16-bit code. Also, an improvement to the D-LBP discussed in section 3.5.2 is

proposed. Both improvements suggested in this chapter gives better classification

accuracy as compared to their counterparts. It is shown that overall the multi-

scale LBPV performs better on the classification dataset compared to other LBP

variants giving average accuracy of 88.65% over eight datasets and multi-scale

circular LBP performs better for retrieval dataset.

4.1 Improved Compound LBP (CM-LBP16bit)

The original CM-LBP algorithm generates two histograms by grouping diagonal

elements in one histogram and non-diagonal elements in another histogram. That

is the 16-bit code generated in CM-LBP is divided into two 8-bit codes and two

different histograms are generated from the two codes. However, when the rota-

tion invariant mapping is applied and if the texture is rotated only by ±45◦, then

the resulting histogram bin changes completely. That means it will be difficult

to achieve complete rotation invariance using original CM-LBP and rotation in-

variance mapping. For example, if original image and its CM-LBP code is given

as,

45
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CM -LBP =

 10 10 11

01 01

10 00 00

 Two 8 bit code−−−−−−−−→



non-diagonal
10

01 01

00

 −→ 10010001

diagonal
10 11

10 00

 −→ 11001010

and then if the image is rotated by 45◦ clockwise, then the corresponding pixels

will also rotate and CM-LBP will be

CM -LBP =

 01 10 10

10 11

00 00 01

 Two 8 bit code−−−−−−−−→



non-diagonal
10

10 11

00

 −→ 10110010

diagonal
01 10

00 01

 −→ 10010001

Thus two different histograms are generated when the image is rotated by 45◦

The obvious solution would be to use all 16-bits, however this would result in

high feature length, close to 65000. Thus the proposed approach use all 16 bit

code and employ rotation invariance and uniform mappings, which should lead to

improved discrimination power and reduce the feature length as well. Mainly, the

improvement in texture description is due to achieved rotation invariance for all

possible rotations. To calculate rotation invariant CM-LBP16bit, the first bit from

each pixel (that is a LBP bit) is considered for mapping rotation invariance and

the second bit which is the intensity bit is shifted accordingly to preserve both

magnitude and sign information. The rotation invariant and uniform mappings

for 16-bit CM-LBP are pre-computed and used as a look up table and hence
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as compared to original CM-LBP only memory usage of the proposed method

is higher. The original CM-LBP generates 512 feature length whereas proposed

method generates 2560.

4.2 Improved Dominant MD-LBP

This approach is akin to that introduced in [64] where Dominant LBP (D-LBP)

was introduced. D-LBP considers the occurrence of all rotation invariant patterns

generated by the LBP algorithm. In D-LBP, an LBP histogram is sorted in des-

cending order and the first few (dominant) patterns are selected to describe texture

information. When matching the generated texture descriptors, D-LBP ignores

information of the actual LBP patterns and utilises only the frequency informa-

tion. This however can lead to a loss of information as the pattern information

itself is quite informative as is demonstrated in Figure 4.1. There, it is shown that

two different texture images (on the left), the frequencies of dominant patterns for

them (in the middle), and the sorted histograms that are employed for similarity

calculation in D-LBP (on the right). Since the two (sorted) D-LBP histograms

are fairly similar, the second texture image gets misclassified as belonging to the

class of the first image.

The procedure for improved D-LBP work as follows: Based on a training data-

set, the algorithm first ranks, for each training image, the LBP patterns according

to their occurrence in the image so that the most frequent pattern is assigned the

highest rank and the least frequent one the lowest rank. These ranks are then

summed up over the whole dataset and the results are sorted in descending or-

der. The first k patterns according to this overall ranking are then the dominant

patterns based on the chosen training set, and consequently give a texture feature

vector of length k. Since the algorithm effectively removes all but k MD-LBP

bins, it also maintains the correspondence between bins. Thus the discrimination

between different bins is maintain and there is no significantly extra computation

cost involved as compared to original D-LBP.

4.3 Benchmarking Texture Classification

Texture classification is one of the well-known problems in pattern recognition and

computer vision. The goal here is to categorise unknown texture samples into one

of the pre-defined texture classes or to find the probability of the unknown sample

to match to the predefined texture class [27]. While the number of classification

techniques are given in literature for classifying texture features, in this thesis
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the support vector machine (SVM) as a classifier is selected and hence discussed

below.

4.3.1 Support vector machines (SVM)

Mathematically classification is a process of finding a function that can separate

the different sets of data with some difference in their properties. As shown in

Figure 4.2, this function (F) is then use to classify the new object into one of the

classes. In other words, classification is done by first generating a classification

function using previously collected training data for each class and then using this

function to find the classes of test data samples.

For texture classification based on the various LBP features, a standard ap-

proach based on support vector machines (SVMs) is employed [21]. In this ap-

proach, classification of two separable classes is achieved by maximising the width

of empty area (margin) between the two classes. Data points which are nearest to

the margin are called support vectors as shown in Figure 4.3. These vectors are

used to form the discrimination function.

This approach works for linearly separable classes. Non-linearly separable

problems are solved by the so called kernel trick extension. The kernel func-

tion is used to determine the similarity of two non-linearly separable patterns in

linear space. Basically, a kernel function is used to transfer data from the original

feature space to a higher dimensional feature space where linear separability of the

two classes is easier to achieve. For example in Figure 4.4, the circle and triangles

represent two classes which are not separable using a linear function. Thus this

data is projected in higher dimension using a kernel function, where the separation

between two classes is possible.

In this thesis the experiments are performed on more than two class classifica-

tion problem, a one-against-one multi-class SVM is employed [48] where for each

SVM, a linear kernel is used and the cost parameter C ∈ [−1.1; 3.1] is optimise

using a cross validation approach [15]. Thus for each cost parameter, training data

is divided as training and test data and the accuracy is noted. The best accuracy

parameter is set for final SVM generation. The one-against-one approach involves

construction of a SVM for each pair of classes. Thus for a N class classification

problem, total N(N − 1)/2 SVMs are constructed. Then, during classification

each SVM votes for the winning class and the unknown sample is classified with

the class having most votes.
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4.4 Benchmarking Texture Retrieval

Image retrieval is another challenging task in computer vision. In general it is

a process of finding the images similar to the query image from the large set

of texture images. Content based image retrieval algorithms, match the images

based on the colour, texture etc. In texture based image retrieval algorithms, same

as texture classification algorithms, texture features are extracted and similarity

between the features is use for retrieval purpose.

Different distance measures between the LBP features of different texture im-

ages are evaluated. In particular following distance metrics are employed.

Bhattacharya = − ln

(∑
i

√
h1(i)h2(i)

)
(4.1)

where h1 and h2 are histograms of query image and dataset image and i is the

number of bins in the histogram.

Chi-square =
∑
i

(h1(i)− h2(i))2

h1(i) + h2(i)
(4.2)

and

L1-norm =
∑
i

|h1(i)− h2(i)| (4.3)

These measures has their own inherent merit which makes them suitable for

the distance measurement. For example, L1 norm has less effect of gross error over

entire distribution. When two classes have similar means but different standard

deviations, other methods like Mahalanobis distance would tend to zero, however,

the Bhattacharyya distance would grow depending on the difference between the

standard deviations. Chi-square distance is suitable for unpaired data from large

samples.

4.5 Benchmarking Texture Datasets

The Outex texture dataset given in [77], is used for the experiments in this chapter.

The Outex dataset is designed for benchmarking texture algorithms and provides

both the diversity as well as the size required for an appropriate evaluation. Sur-

face textures were captured using a Macbeth SpectralLight II Luminare light

source and a Sony DXC-775P three chip CCD camera attached to a robot arm, so

that both light source and the capturing angle could be controlled automatically.

Automatic control of these parameters avoids the measurement error in human
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judgement. The experimental set-up for the texture classification and retrieval

experiment is discussed in the following sections.

4.5.1 Texture classification datasets

The following eight Outex datasets were selected which provides situations such

as illumination variation, scale variation and rotation variations.

1. Basic texture classification (TC 00): which provides a basic test suite

for texture classification as shown in Figure 4.5. 24 texture classes are cap-

tured under the same conditions and without rotation, and 20 samples are

provided for each class. The classifier is trained on half of the dataset (i.e., on

240 images) and the remaining half is used for testing. 100 dataset splits are

defined, and the average classification accuracy over all splits is considered

as the performance measure.

2. Basic texture classification (TC 01): Training and testing of this data-

set is the same as TC 00, but the image size is reduced from 128 × 128 to

64× 64 pixels.

3. Rotation invariant texture classification (TC 10): is built from 24

texture classes captured at 9 rotation angles under the same illumination as

shown in Figure 4.6, with 20 samples of each class. The classifier is trained

on 20 samples (at angle 0◦) of each texture class, that is on 480 (24 × 20)

images. Testing is performed on the other 8 angles, i.e. on 3840 (24×20×8)

images.

4. Resolution invariant texture classification (TC 11): is built from 24

texture classes captured at 100dpi and 120dpi resolution, with 20 samples

of each class and each resolution. The classifier is trained on 20 samples

at resolution 100dpi of each texture class, that is on 480 (24 × 20) images.

Testing is performed on the remaining 480 images.

5. Rotation and illuminant invariant texture classification (TC 12):

This dataset provides the 24 texture classes with 20 images for each class at

nine rotation angles captured using three illuminants. The training of the

classifier is done with the texture at angle 0◦ and illuminant ‘Inca’ and testing

is performed on two different illuminants on a total of 8640 (24× 20× 9× 2)

images. Example of TC 12 dataset is given in Figure 4.7.

6. Basic RGB texture classification (TC 13): which provides a basic test

suite for RGB texture classification. 68 texture classes are captured under
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the same conditions and without rotation, and 20 samples are provided for

each class. The classifier is trained on half of the dataset (i.e., on 680 images)

and the remaining half is used for testing.

7. Illuminant invariant RGB texture classification (TC 14): is built

from 68 RGB texture images captured at three illumination ‘Horizon’,‘Inca’,‘TL84’.

The classifier is trained on 10 images captured using illuminant ‘Horizon’

from each class, that is on 680 (68 × 10) images and tested on 20 images

from each class captured using ‘Inca’,‘TL84’, that is on 1360 (68 × 10 × 2)

images.

8. Basic texture classification (TC 15): It is same as TC 00, only 68

texture classes are used. Training and testing is performed as in TC 00.

The classification is done using Support Vector Machine, discussed in Sec-

tion 4.3.1.

4.5.2 Texture retrieval datasets

Texture retrieval ability is evaluated on the Outex TR 00 dataset. This is a large

texture dataset that consists of 319 different grey-scale textures with 20 samples

for each texture, that is a total of 6380 texture images. Each of the 6380 images

serves as a query image. The LBP features of the image is compare with LBP

feature of reaming 6379 texture images.

4.6 Experimental results

The primary aim is to benchmark LBP and its variant on a common dataset.

For this classification and retrieval accuracy values of different LBP variants are

compared.

4.6.1 Classification Results

The accuracy for the classification is given as:

Accuracy =
Correct Classified Test Images (True Positive)

Total Test Images
(4.4)

The classification results are given in Table 4.1 which has the feature length of

LBP variants and classification accuracies on the datasets namely TC 00, TC 01,

TC 10, TC 11, TC 12, TC 13, TC 14 and TC 15. The last column in table gives

the average classification accuracy over all 8 datasets.
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FL TC 00 TC 01 TC 10 TC 11 TC 12 TC 13 TC 14 TC 15 Avg

LBP 256 99.90 99.03 53.62 92.50 57.88 90.59 52.13 83.43 78.63
LBPR=1,3 512 99.95 99.55 55.89 90.21 61.45 91.76 61.47 86.18 80.81
LBPR=1,3,5 768 99.95 99.52 54.87 91.46 60.46 92.06 64.63 87.19 81.27
LBPcir 256 99.85 98.92 54.45 90.42 58.04 90.44 50.51 82.94 78.20
LBPcirR=1,3 512 99.93 99.42 59.11 95.21 63.28 90.88 61.32 86.21 81.92

LBPcirR=1,3,5 768 99.94 99.50 57.58 95.42 62.78 92.94 64.63 87.43 82.53

CoA-LBP 1024 99.91 99.65 56.12 93.33 58.52 93.53 55.29 87.05 80.43
LBPri 36 94.57 88.11 83.41 76.46 64.44 87.06 34.19 74.86 75.39
LBPriR=1,3 72 99.14 97.43 92.19 83.54 86.96 90.59 50.29 83.18 85.42

LBPriR=1,3,5 108 99.81 98.26 92.68 87.50 88.76 91.03 55.74 84.37 87.27

LBPu2 59 99.83 98.89 57.19 87.92 59.09 91.18 44.71 82.72 77.69
LBPu2

R=1,3 118 99.93 99.32 64.87 92.29 65.30 91.18 56.03 85.52 81.81

LBPu2
R=1,3,5 177 99.93 99.41 64.58 94.38 66.71 91.76 60.07 86.31 82.89

LBPriu2 10 93.80 85.98 82.76 76.88 63.47 86.03 31.18 73.56 74.21
LBPriu2

R=1,3 20 98.87 95.72 95.81 80.83 85.35 90.59 48.75 82.18 84.76

LBPriu2
R=1,3,5 30 99.73 97.65 94.61 87.29 86.18 91.32 54.34 83.33 86.81

D-LBP 39 89.10 72.28 54.40 70.83 39.47 87.06 27.72 66.96 63.48
D-LBPriR=1,3,5 38 99.24 93.41 92.40 78.54 79.44 91.47 51.03 81.37 83.36

LBPVri 36 95.54 94.53 87.99 87.92 73.81 86.76 46.25 76.33 81.14
LBPVri

R=1,3 72 98.43 97.96 90.10 91.04 88.66 88.38 60.74 81.60 87.11

LBPVri
R=1,3,5 108 99.27 98.51 89.84 94.38 85.54 88.97 65.74 83.02 88.16

LBPVu2 59 99.00 98.48 57.00 96.88 59.84 87.65 50.96 81.37 78.90
LBPVu2

R=1,3 118 99.09 98.92 59.08 94.79 61.56 88.97 52.35 82.55 79.66

LBPVu2
R=1,3,5 177 99.03 98.88 61.30 93.75 64.70 88.38 56.99 82.97 80.75

LBPVriu2 10 95.52 93.58 88.41 87.50 73.13 87.50 43.24 76.01 80.61
LBPVriu2

R=1,3 20 97.90 96.52 97.42 91.46 92.44 87.21 54.34 80.50 87.22

LBPVriu2
R=1,3,5 30 98.65 97.66 98.13 92.71 93.81 88.09 58.31 81.83 88.65

A-LBP 10 93.63 83.86 83.17 75.00 64.63 84.71 30.15 71.54 73.34
MSSP-LBP 30 98.53 95.19 92.40 84.38 76.34 89.85 38.97 80.16 81.98
P-LBP 30 98.52 95.67 93.13 84.58 75.65 90.59 39.63 80.75 82.32
H-LBP 896 78.95 71.78 72.14 58.33 70.41 59.12 48.31 47.75 63.35
C-LBP 200 98.56 98.29 95.65 93.96 88.39 90.74 53.60 85.81 88.12
CM-LBP 512 99.97 99.64 53.72 96.67 57.98 93.24 58.97 86.06 80.78
CM-LBPri 72 99.24 98.43 70.94 94.58 71.08 90.00 46.40 83.09 81.72
LTP 512 99.82 99.54 58.59 99.38 62.68 91.32 65.51 86.05 82.86
3P-LBP 256 99.29 96.42 41.46 82.50 44.48 87.06 60.81 73.89 73.24
4P-LBP 256 79.96 55.97 32.21 57.71 31.18 55.74 43.38 44.03 50.02
MB-LBP 256 99.86 97.50 71.38 94.79 72.53 90.74 53.68 77.38 82.23
T-LBP 256 99.57 98.59 47.58 92.92 51.08 90.15 50.59 72.21 75.34
L-LBP 48 98.65 92.02 49.66 75.63 48.19 85.73 56.99 74.79 72.71
M-LBP 540 99.08 97.41 53.09 93.96 56.64 86.47 58.68 78.07 77.92

Table 4.1: Texture analysis results on all LBP variants. Reported are classifica-
tion results on TC 00, TC 01, TC 10, TC 11, TC 12, TC 13, TC 14 and TC 15
datasets as well as the average performance.
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The performance of LBP and its variants is analysed for the basic texture

classification, rotation variation, resolution variation, rotation and illumination

variation and colour texture images. An ideal texture descriptor is one which

performs well under all these conditions.

Basic texture Classification (TC 00, TC 01 and TC 15)

These datasets test texture descriptors under normal conditions when there is no

variation in rotation or illumination for both training data and test data. From

Table 4.1, it can be observed that basic LBP gives accuracy of more than 99% for

TC 00 and TC 01 datasets, confirming the efficiency of texture description using

LBP. While most of the LBP variants yield an accuracy of more than 90%, some

variants like D-LBP, H-LBP and 4P-LBP failed to reach this level.

Comparing the classification results of TC 01 dataset with the TC 00 dataset,

it is observed that the accuracy is less for all LBP variants. Big difference in

accuracy is observed with LBPri by 6%, LBPriu2 by 9%, D-LBP by 17% and A-

LBP by 9%. Overall CM-LBP gives the best outcomes for TC 00 and CoA-LBP

performs better for TC 01. The TC 15 dataset is more challenging with 68 texture

classes and hence the observed drop in accuracy is not surprising. With 68 texture

classes, the best accuracy obtained is 87.43% using LBPCir
R=1,3,5 and the worst is

47.75% by H-LBP.

Under normal conditions basic LBPR=1,3,5 , LBPcir
R=1,3,5, CM-LBP and CoA-

LBP perform well while the other rotation invariant descriptors record poor per-

formance. The drop in accuracy using these descriptors is a result of grouping

of binary patterns which reduces the discriminating power when textures are not

rotated. From the experimental Figure 4.8 it can be ascertained that although

class 14 and class 17 textures, show differences, the LBPri histogram do not rep-

resent that difference in contrast to LBP which retains good discriminating power.

Grouping based on uniform patterns made only a little damage to the accuracy

as the occurrence of uniform patterns is frequent as compared to non-uniform

patterns. CM-LBP encodes sign as well as magnitude information and hence the

effective for classification of basic textures.

Rotation invariant texture classification (TC 10)

From Table 4.1 it can be observe that basic LBP and LBPcir give poor results

(below 60%) as compared to rotation invariant LBP. This is obvious because in

LBPri all possible rotations of patterns are grouped to achieve rotation invariance.

Almost 30% improvement in accuracy is observed with LBPri over LBPcir. It

is also true for CM-LBP, where CM-LBPriu2
16bit improves over basic CM-LBP by
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35%. Further improvement is recorded with multi-radii rotation invariant LBP

(LBPri
R=1,3,5).

The best result on the TC 10 dataset is obtained with LBPVriu2
R=1,3,5 (98.13%)

and the closest next is LBPVriu2
R=1,3 (97.42%). Other variants like LBPriu2, DP-

LBPri and C-LBP give an accuracy of more than 95% whereas 3P-LBP, 4P-LBP,

T-LBP and L-LBP produces accuracy less than 50%. Again it is observed that

when the intensity information is integrated with LBP, it gives the best results.

In Figure 4.9 the training sample of TC 10 and false classifications of textures

using LBP, LBPriu2
R=1,3,5 and LBPVriu2

R=1,3,5 are shown. By comparing training data

with false classification data there can see that all textures have granular inform-

ation. It thus, may be possible that at micro-texture level, these textures may be

showing some resemblance, but still the performance of LBPV is good.

Resolution variation (TC 11)

Local ternary pattern LTP gives the best result for resolution variation with an

accuracy of 99.38%. It is observed that uniform patterns (LBPu2) performs better

than LBPri. Even better results are observed with only circular LBP without any

mapping (LBPcir). LBPVu2 and CM-LBP with accuracy exceeding 95%, whereas

most of other methods give more than 70% accuracy with an exception of H-LBP

and 4P-LBP.

Rotation and illuminant invariant texture classification

(TC 12)

Inspecting the task of rotation and illumination invariant texture classification, i.e.

the TC 12 dataset, a very similar picture as for TC 10 dataset is observed. It is

not surprising to find that LBPri performs better than LBPcir but more interesting

is that multi-radii LBPri
R=1,3,5 improves the accuracy almost by 20% as compared

to LBPri. The same is also confirmed for LBPriu2, LBPVri and LBPVriu2 which

suggests that multi-radii information improves the accuracy significantly.

Considering the complexity of the dataset, the execution of most of the variants

is poor, while four variants are giving results below 50%. Rotation invariant

uniform mapping and multi-scale LBP with the integration of intensity information

i.e.LBPVriu2
R=1,3,5, gives the best result with 93.81% accuracy.

Colour texture classification (TC 13, TC 14)

TC 13 is a basic dataset of colour images containing 64 texture classes. In the

experiment, the texture features are extracted for each channel of an image, i.e.
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for the red, green and blue channel and then the histograms from these three

channels are concatenated to generate a feature vector. Consequently, the feature

length on these datasets is three times than for the other gray scale datasets.

For D-LBP and DT-LBP it is 125 whereas for D-LBPri
R=1,3,5 and DT-LBPri

R=1,3,5

feature length is 114. The observed results are similar to those for TC 00, where

basic circular LBP produces better results compared to other variants. The best

result is obtained using CoA-LBP (93.53%).

TC 14 contains RGB images under different illuminates. As opposed to all

other datasets, LBP gives poor performance on this dataset. The best accuracy

achieved here is 65.74% using LBPVri
R=1,3,5, while other 15 variants are giving

results of less than 50%.

4.6.2 Retrieval Results

The TR 00 dataset consist of total 6380 images in which each image is serves as

query image and accuracy is determined by evaluating different distance measures

discussed in section 4.4. Top 20 best matched images obtained using each of three

distance measures and thus the accuracy of the correct retrieved images is notated.

After recording the accuracy for all images, average accuracy is considered for the

evaluation purpose. All LBP features give more than 50% accuracy result on

retrieval dataset with exception of few variants, especially those based on only

one radius like LBPri or LBPriu2. From Table 4.2, it can be clearly seen that the

multi-scale approach improves the retrieval performance. The best result observed

is 63.74% using LBPR=1,3,5.

The LBPR=1,3 performance is better than rotation invariant and uniform LBP.

This is not surprising as the dataset contains texture images in normal conditions

without rotation and illumination variation. This effect is also observed for TC 00,

TC 01, TC 15. Furthermore, introduction of variance information along with LBP

dose not achieve invariance to monochromatic changes and hence the performance

of variants like LBPV, ALBP is poor.

Figure 4.10 shows the top 20 retrieval result for a sample query image using

LBP, LBPriu2
R=1,3,5 and LBPVriu2

R=1,3,5. It can be observed that false detections using

basic LBP still have some degree of similarity to the query image, however some

of the false detections using LBPriu2
R=1,3,5 and LBPVriu2

R=1,3,5 are completely different

texture.

4.6.3 Improved Compound LBP Results

In Table 4.3 classification results using CM-LBP and improved CM-LBP (CM-

LBP16bit) is reported. When the textures are not rotated, normal CM-LBP gives
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FL bht χ2 L1

LBP 256 57.63 57.80 56.88
LBPR=1,3 512 63.27 63.30 63.34
LBPR=1,3,5 768 62.50 62.56 63.74
LBPcir 256 55.27 55.56 54.88
LBPcirR=1,3 512 61.88 61.98 61.87

LBPcirR=1,3,5 768 62.30 62.35 63.15

CoA-LBP 1024 59.05 59.04 57.41
LBPri 36 48.65 49.71 46.21
LBPriR=1,3 72 61.04 61.13 60.08

LBPriR=1,3,5 108 62.03 62.04 62.14

LBPu2 59 54.73 54.73 53.62
LBPu2

R=1,3 118 60.74 60.73 60.57

LBPu2
R=1,3,5 177 61.54 61.60 62.30

LBPriu2 10 45.46 45.45 43.03
LBPriu2

R=1,3 20 57.86 57.86 56.22

LBPriu2
R=1,3,5 30 59.70 59.71 58.85

D-LBP 39 35.98 35.97 34.60
D-LBPriR=1,3,5 38 55.78 55.78 55.33

LBPVri 36 50.33 50.20 42.65
LBPVri

R=1,3 72 58.54 58.50 56.75

LBPVri
R=1,3,5 108 58.55 58.51 58.15

LBPVu2 59 51.02 50.97 49.32
LBPVu2

R=1,3 118 55.74 55.78 55.87

LBPVu2
R=1,3,5 177 55.72 55.84 57.19

LBPVriu2 10 46.25 46.23 40.99
LBPVriu2

R=1,3 20 54.96 54.94 53.21

LBPVriu2
R=1,3,5 30 56.30 56.31 55.56

A-LBP 10 44.50 44.49 42.47
MSSP-LBP 30 58.72 58.69 55.09
P-LBP 30 59.09 59.06 55.40
H-LBP 896 18.22 18.73 18.15
C-LBP 200 57.36 57.23 55.50
CM-LBP 512 59.43 59.44 58.66
CM-LBPri 72 58.86 59.16 58.38
LTP 512 53.37 53.42 53.61
3P-LBP 256 42.25 42.12 40.21
4P-LBP 256 21.23 21.23 20.61
MB-LBP 256 51.82 51.91 51.65
T-LBP 256 44.95 45.07 41.93
L-LBP 48 45.74 45.76 42.60
M-LBP 540 49.01 49.50 48.35

Table 4.2: Texture retrieval results for all algorithms. Reported are the feature
vector lengths (FL), and retrieval accuracies based on Bhattacharya (bht), chi-
squared (χ2) and L1 distances.
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good performance. Looking at the results of TC 10 dataset, CM-LBP16bit gives an

improvement of 12% when rotation invariant mapping is applied and 18% when

rotation invariant and uniform mappings are applied. This is obvious improvement

as in the proposed approch all eight neighbours of the central pixels are considered

to achieve the rotation invariance. Overall, the proposed approch with rotation

invariant and uniform mappings gives best results with an accuracy of 83.21%.

From Table 4.4 it is clear that the CM-LBP16bit approch is not out performing

normal CM-LBP on retrieval dataset. This results is same as other retrieval results

where LBP variants with rotation invariant mapping gives poor performance.

4.6.4 Improved Dominant LBP Results

Table 4.5 gives the classification result of improved dominant LBP (ID-LBP). It

clear from there that for all datasets the improved D-LBP gives better performance

with overall accuracy is increase by 14% for basic D-LBP and by 4% for multi-scale

D-LBP. Results for retrieval dataset is given in Table 4.6. The ID-LBP approch

gives good performance with an accuracy of 60.40% when improved multi-scale

D-LBP is used. It is clear from classification and retrieval results that proposed

approch improves the performance of normal D-LBP.

4.7 Summary

In summary, it is clear from results that the rotation invariant and uniform LBP

mapping give a better solution in complex situations whereas for no changes in ro-

tation and illumination, basic LBP and LBPcir are giving good performance. From

Table 4.1, it is observed that the best overall performance is given by LBPVriu2
R=1,3,5

with an accuracy of 88.65% while improved D-LBP and C-LBP are close to it.

Furthermore, improved performance is achieved by multi-scale information, while

the best result is reached by rotation invariant uniform mapping, multi radii ap-

proach and integrating the contrast information is considered as in LBPVriu2
R=1,3,5.

It is also observed that improved D-LBP outperforms D-LBP. Similarly, improved

CM-LBP performs better than conventional CM-LBP.

In A.02, ensemble approch is employed for classification using LBP. It is shown

their that the ensemble classification gives further improvement as compared to

SVM.
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FL TC 00 TC 01 TC 10 TC 11 TC 12 TC 13 TC 14 TC 15 Avg

CM-LBP 512 99.97 99.64 53.72 96.67 57.98 93.24 58.97 86.06 80.78
CM-LBPri 72 99.24 98.43 70.94 94.58 71.08 90.00 46.40 83.09 81.72
CM-LBPri16bit 9216 98.89 97.09 82.92 92.92 77.25 89.85 46.47 82.16 83.44
CM-LBPu2

16bit 15104 99.93 99.29 55.55 93.33 59.01 92.35 52.87 84.15 79.56
CM-LBPriu2

16bit 2560 98.47 96.26 88.65 91.04 79.70 90.15 40.59 80.78 83.21

Table 4.3: Texture classification results on improved Compund LBP results

FL bht χ2 L1

CM-LBP 512 59.43 59.44 58.66
CM-LBPri 72 58.86 59.16 58.38
CM-LBPri

16bit 9216 46.08 51.63 56.90
CM-LBPu2

16bit 15104 55.24 57.54 58.03
CM-LBPriu2

16bit 2560 52.59 55.37 56.13

Table 4.4: Texture retrieval results on Improved Compound LBP results

FL TC 00 TC 01 TC 10 TC 11 TC 12 TC 13 TC 14 TC 15 Avg

D-LBP 39 89.10 72.28 54.40 70.83 39.47 87.06 27.72 66.96 63.48
D-LBPriR=1,3,5 38 99.24 93.41 92.40 78.54 79.44 91.47 51.03 81.37 83.36

ID-LBP 39 99.80 98.40 54.74 91.46 57.41 90.44 49.34 81.94 77.94
ID-LBPriR=1,3,5 38 99.80 97.75 95.42 89.38 88.81 91.32 54.63 83.79 87.61

Table 4.5: Texture classification results on improved Dominant LBP results

FL bht χ2 L1

D-LBP 39 35.98 35.97 34.60
D-LBPri

R=1,3,5 38 55.78 55.78 55.33
D-LBPimproved 39 53.04 53.05 52.19
D-LBPri

(improved)R=1,3,5 38 60.40 60.41 60.24

Table 4.6: Texture retrieval results on Improved Dominant LBP results
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Figure 4.1: Two sample textures (left) with their LBP patterns (middle) and
D-LBP patterns (right).

Figure 4.2: Classification
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Figure 4.3: Support Vector Machines

Figure 4.4: Support Vector Machine Kernel
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Figure 4.5: Sample texture images of each of the classes of the Outex TC 00
dataset.

0◦ 5◦ 10◦ 15◦ 30◦

45◦ 60◦ 75◦ 90◦

Figure 4.6: Sample texture from the Outex TC 10 dataset under different rota-
tions.

0◦ 10◦ 30◦ 60◦ 90◦

Figure 4.7: Sample texture from the Outex TC 12 dataset under different rota-
tions and different illumination (top row “horizon”, bottom row “tl84”).
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class 14 LBP histogram LBPri histogram

class 17 LBP histogram LBPri histogram

Figure 4.8: Comparison of LBP and LBPri

Training data

False classification using basic LBP

False classification using LBPriu2
R=1,3,5

False classification using LBPVriu2
R=1,3,5

Figure 4.9: Sample texture classification of the TC 10 dataset. Given are the train-
ing sample used for class 15, and false classification using basic LBP, LBPriu2

R=1,3,5

and LBPVriu2
R=1,3,5.
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Y Y Y Y Y Y Y Y Y Y

Y Y Y N Y N N N Y N
basic LBP

Y Y Y Y N N N N N N

N Y N N N N N N N N
LBPriu2

R=1,3,5

Y Y Y Y Y Y Y Y N Y

N N N Y Y N N N N N
LBPVriu2

R=1,3,5

Figure 4.10: Top 20 texture retrieval results using basic LBP, LBPriu2
R=1,3,5 and

LBPVriu2
R=1,3,5



Chapter 5

Multi-dimensional LBP Texture

Descriptors

In the previous chapter it is shown that multi-scale LBP outperforms single radius

LBP. However, multi-scale LBP comes with loss of spatial information and there-

fore producing ambiguity. As mention in section 3.4 multi-scale LBP is generated

by extracting LBP features from different scales and concatenating the informa-

tion. This approch discards the relationship of LBP generated at that scales.

In this chapter this problem is addressed by introducing multi-dimensional

LBP (MD-LBP) which preserves the spatial relationships between scales. The

proposed approach starts by generating LBPs at various scales and constructs

a multi-dimensional histogram to preserve intra-scale relationships. In the same

manner, this concept is extended for LBP variance where the variance maps for

each scale are combined and used as weights for multi-dimension LBP. Six different

combination techniques are evaluated for combining variance maps. In this context

the performance of the proposed techniques are evaluated for image classification

and retrieval on the Outex test suite. The results shows that MD-LBP approch

outperforms the multi-scale LBP both for classification and retrieval. Comparing

the performance of MD-LBPV with the different LBP variants reported in the

previous chapter, it is clear that the proposed approch gives the overall highest

accuracy.

5.1 Multi-dimensional LBP

When building one-dimensional histograms for multi-scale LBP features, import-

ant information regarding the relationships between patterns across different scales

is lost and additional ambiguity is introduced. This is illustrated in Figure 5.1

where an “image” consisting of the two samples on the top will lead to exactly

64
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the same LBP descriptor as the two samples on the bottom. Both resulting LBP

histograms will have one entry each for bins (00001111) and (00111111) for both

radii as shown in Figure 5.1.

Here it is propose to preserve the joint distribution of LBP codes at different

scales, which is possible by building a multi-dimensional histogram of LBP values.

To get this histogram, for each pixel location, LBP codes at different scales is

extracted and the combination of these codes identifies the histogram bin that

has to increment. For the example in Figure 5.1, a histogram with one entry for

bin (00001111, 00111111) and one entry for bin (00111111, 00001111) for the top

“image” is obtained, while for the example at the bottom a histogram with one

entry for bin (00001111, 00001111) and one entry for bin (00111111, 00111111) is

obtained, that is two distinct histograms and hence two distinguishable texture

descriptors.

Here it is shown that statistical reliability of individual histogram bins is not

so important in this context since the whole distribution (i.e., the entire his-

togram) is utilised to characterise an image. Figure 5.2 shows the example of

multi-dimensional LBP feature generation.

5.2 Multi-dimensional LBPV

A similar approach to generate multi-dimensional LBPV (MD-LBPV) is proposed,

where joint variance information is used as an adaptive weight to adjust the contri-

bution of joint LBP codes in multi-dimension histogram bins. For this, a variance

map describing the local variance of the neighbourhood at each pixel location for

each scale is generated and then weights are obtained by combining all variance

maps. Six approaches based on variance in different scale and radius of neighbour-

hood to generate weights are investigated. MD-LBPV histograms are calculated

as

MD-LBPVP,(R=1,...,r)(k) =
N∑
i=1

M∑
j=1

ω(LBPP,(R=1,...,r)(i, j), k), (5.1)

where k ∈ [0, K] is local binary pattern, and R ∈ [1, r] is a set of radii over which

LBPV is generated. The weights can be generated as

ω(LBPP,(R=1,...,r)(i, j), k) =f(V ARP,(R=1,...,r)(i, j)) if LBPP,(R=1,...,r)(i, j) = k

0 otherwise
(5.2)
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where f(V ARP,(R=1,...,r)(i, j)) can be considered as a variance based function where

the weights generation is depended upon the actual variance values at each pixel

location from each scale or the variance value of particular selected scale. Three

approach for both methods to get function f() is given below.

• minimum variance: is the minimum value of variance over all scales.

MINvar = min{V ARP,(R=1), . . . , V ARP,(R=r)}

• maximum variance: is the maximum value of variance over all scales.

MAXvar = max{V ARP,(R=1), . . . , V ARP,(R=r)}

• average variance: is the average value of variance over all scales.

AV Gvar = avg{V ARP,(R=1), . . . , V ARP,(R=r)}

• minimum radius is the variance at minimum radius.

MINrad = V ARP,min{R}

• maximum radius is the variance at maximum radius.

MAXrad = V ARP,max{R}

• average radius is the variance at average radius.

AV Grad = V ARP,avg{R}

The generation of MD-LBPV features is shown in Figure 5.3. There, first LBP

maps for each radii (R=1,3,5) and corresponding variance maps are extracted

from the texture image. Then, these maps are combined using one of the methods

mentioned above with the combined variance values used as weights to generate

MD-LBPV.

Variance base weights generation is depends upon the actual variance value

at each pixel location from each scale. Hence, for example if the LBPriu2 code

as {5, 5, 7} and a corresponding radii as {1, 3, 5} at pixel location (x, y) and

the local variance value at the same location along different radii as {101, 122,

201}, then the MINvar weight will be 101, the MAXvar weight will be 201 and the

AVGvar weight will be 141.33. Similarly, radius base weights are calculated from
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neighbourhood radii at which variance maps are generated. Hence in the above

example the MINrad weight will be 101, the MAXrad weight will be 201 and the

AVGrad weight will be 122.

5.3 Experimental Results

This experiments are set out to demonstrate that the use of multi-dimensional

LBP histogram descriptors leads to improved texture features compared to their

original one-dimensional counterparts.

5.3.1 MD-LBP Results

The performance of MD-LBP is shown on the same datasets given in section 4.5.1

and for both texture classification and texture retrieval. For all experiments,

rotation invariant uniform LBP features are utilised and for multi-scale description

radii r = {1, 3} and r = {1, 3, 5} is used. Both the classification and retrieval is

perfromed as mention earlier in Chapter 4.

The results, for all classification datasets and for both the LBP and MD-LBP

approaches, are shown in Table 5.1 and given in terms of classification accuracy.

From there it can be seen that, multi-dimensional histogram approach outper-

forms the conventional LBP descriptors. Especially for the most challenging data-

set, that of TC 12, the proposed method leads to an improvement of about 5% in

terms of classification accuracy. Very little improvement is observed for the TC 00

dataset. The average classification accuracy over all eight datasets increases from

84.76% to 86.93% when using two radii, and from 86.81% to 88.19% when employ-

ing three radii. The three radii MD-LBP have not shown any improvements on the

TC 00, TC 11 and TC 13 datasets compare to the original multi-scale approch.

Figure 5.4 shows the three texture images and there histograms using LBPriu2
R=1,3

and MD-LBPriu2
R=1,3. Clearly, all texture images are different, however that differ-

ence is less observable from LBPriu2
R=1,3 histogram. Especially, for Image 1 and Image

3, the shape of conventional multi-scale histogram looks similar. Now looking at

MD-LBP histogram for those two images, the difference is visually observable.

Comparing the performance of MD-LBP on retrieval dataset from Table 5.2, it

is clearly seen that MD-LBP outperforms conventional multi-scale approch using

all three distance measurement methods. Also, it gives 63.04% accuracy, which is

very close to the top performer on retrieval dataset.

To evaluate MD-LBP further, the confusion matrix for the TC 00, TC 10

and TC 12 datasets using LBPriu2 and MD-LBPriu2 with two radii and three

radii is given in appendix B, Table B.1 to B.12. These three datasets not only
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test 24 textures but also provides rotation and illumination variations. From

Table B.1 and Table B.2, it is evident that the conventional multi scale LBP

gives 100% accuracy for 15 classes and the MD-LBP improves this to 17 classes.

From Table B.9 to B.12, it is observed that MD-LBP approch has given 15 classes

with 100% accuracy which is five classes more than conventional multi-scale LBP.

Comparing Table B.7 and B.8, it is found that MD-LBP gives 18 classes with 100%

accuracy whereas multi-scale LBP gives 19 classes. This confirms the finding in

Table 5.1 where MD-LBP performance on TC 00 dataset is dropped by 0.13%.

5.3.2 MD-LBPV Results

Now, turning attention to MD-LBPV, the evaluation is performed on the same

datasets and the classification results are reported in Table 5.3 and retrieval results

are reported in Table 5.4.

Looking at the results obtained, it can be noticed that LPBV gives in gen-

eral significantly better classification performance. While for TC 00 the accuracy

somewhat drops compared to conventional LBP, for both TC 10 and TC 12 much

better results are achieved and in particular for TC 12 the classification accur-

acy increases by about 2%. The top performer over all datasets using two radii

is MD-LBPVvar(MAX) and MD-LBPVvar(AVG) with an accuracy of 88.56% and

88.55%. Similarly, for three radii MD-LBPV, MD-LBPVrad(AVG) is top performer

(88.95%) and MD-LBPVvar(AVG) is the closet next. It is important to note that

on difficult datasets such as TC 10 and TC 12 datasets MD-LBPVvar(MAX) gives

the highest accuracies.

Again, Table B.13 to B.24 from appendix B gives the confusion matrix for

LBPV and MD-LBPVvar(MAX). MD-LBPVvar(MAX) is a top performer on dif-

ficult datasets such as TC 10 and TC 12. Out of the 6 results presented, three

time MD-LBP shown improved 100% class classification, two times it is less than

multi-scale LBP and one time there is no change. Looking at Table B.21 and B.22,

big drop in the performance in terms of 100% classification of MD-LBPV is ob-

served. Conventional multi-scale LBPV has given 16 classes with 100% accuracy

whereas MD-LBPV has given only 13 classes. However, multi-scale LBPV gives

72 miss-classified images where as MD-LBPV gives only 53 images.

Turning attention to retrieval results in Table 5.4, it can be notice that MD-

LBPV does indeed support improved texture retrieval using all six methods except

for the L1-norm distance. VARMIN , RADMIN gives accuracy above 60%. How-

ever, their performance is less as compare to multi-scale LBPV when L1-norm is

used for similarity measurement. Considering the fact that VARMAX operator

gives consistent performance using all distances and for both two radii and three
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radii, it is a best descriptor among the six methods.

5.4 Summary

In this chapter a novel approach for combining multi radii LBP codes is pro-

posed. The loss of information and ambiguity present in conventional multi-scale

LBP is addressed using multi-dimensional histograms which gives a significant

improvement in performance. Multi-dimensional histogram preserves the spatial

relationships of LBP patterns from different scales. A similar approach is used to

generate MD-LBPV which combines the variance information with LBP. Six vari-

ants of MD-LBPV based on different ways of combining variance maps at different

scales are proposed and evaluated. Overall, the multi-dimensional approach sig-

nificantly improves the performance, in particular MD-LBPV reports the highest

accuracy on the Outex classification datasets as compared other benchmarked

methods in Table 4.1.
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Image 1

Image 2

Figure 5.1: Example of multi-scale local binary patterns with radii r = {1, 3}.
White neighbours indicate 0-LBP codes and black neighbours 1s.

Figure 5.2: Example of multi-dimension LBP (MD-LBP) feature generation.
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Figure 5.3: Example of multi-dimension LBPV (MD-LBPV) feature generation.

FL TC 00 TC 01 TC 10 TC 11 TC 12 TC 13 TC 14 TC 15 Avg

LBPriu2
R=1,3 20 98.87 95.72 95.81 80.83 85.35 90.59 48.75 82.18 84.76

MD-LBPriu2
R=1,3 100 99.15 97.19 97.58 83.75 90.76 90.29 53.24 83.46 86.93

LBPriu2
R=1,3,5 30 99.73 97.65 94.61 87.29 86.18 91.32 54.34 83.33 86.81

MD-LBPriu2
R=1,3,5 1000 99.60 97.95 95.34 86.04 91.96 89.41 60.96 84.29 88.19

Table 5.1: MD-LBP texture classification results.

FL bht χ2 L1

LBPriu2
R=1,3 20 57.86 57.86 56.22

MD-LBPriu2
R=1,3 100 61.14 61.31 60.09

LBPriu2
R=1,3,5 30 59.70 59.71 58.85

MD-LBPriu2
R=1,3,5 1000 61.60 62.89 63.04

Table 5.2: MD-LBP texture retrieval results.

FL TC 00 TC 01 TC 10 TC 11 TC 12 TC 13 TC 14 TC 15 Avg

LBPVriu2
R=1,3 20 97.90 96.52 97.42 91.46 92.44 87.21 54.34 80.50 87.22

MD-LBPVriu2
R=1,3

Variance(MIN) 100 98.05 97.27 93.02 84.16 90.58 88.38 53.16 82.99 85.95
Variance(MAX) 100 98.66 97.33 97.81 92.50 94.29 87.65 57.57 82.64 88.56
Variance(AVG) 100 98.54 97.53 97.27 92.71 93.97 88.24 57.28 82.82 88.55
Radius(MIN) 100 97.91 97.23 94.66 90.00 90.18 88.38 52.21 83.34 86.74
Radius(MAX) 100 98.53 97.09 97.03 91.67 94.21 87.65 57.65 82.28 88.26
Radius(AVG) 100 98.38 97.48 94.14 89.58 92.66 88.24 56.03 82.72 87.40

LBPVriu2
R=1,3,5 30 98.65 97.66 98.13 92.71 93.81 88.09 58.31 81.83 88.65

MD-LBPVriu2
R=1,3,5

Variance(MIN) 1000 98.65 97.73 95.49 82.71 91.85 88.53 57.28 84.06 87.04
Variance(MAX) 1000 99.00 97.68 98.59 88.13 96.00 87.35 59.85 82.95 88.69
Variance(AVG) 1000 99.06 97.93 98.52 88.54 95.78 88.24 59.34 83.24 88.83
Radius(MIN) 1000 98.52 97.66 96.15 83.13 91.74 88.97 54.93 84.32 86.93
Radius(MAX) 1000 98.96 97.36 97.63 81.88 95.21 88.09 59.78 81.91 87.60
Radius(AVG) 1000 98.96 97.70 97.52 91.67 95.70 87.94 58.90 83.17 88.95

Table 5.3: MD-LBPV texture classification results.
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Texture Image LBPriu2
R=1,3 histogram MD-LBPriu2

R=1,3 histogram

Image 1

Image 2

Image 3

Figure 5.4: Example of LBP and MD-LBP histograms.

FL bht χ2 L1

LBPVriu2
R=1,3 20 54.96 54.94 53.21

MD-LBPVriu2
R=1,3

Variance(MIN) 100 61.42 58.42 51.48
Variance(MAX) 100 59.74 59.73 58.09
Variance(AVG) 100 60.57 58.07 51.69
Radius(MIN) 100 61.91 58.59 51.68
Radius(MAX) 100 59.26 57.32 51.27
Radius(AVG) 100 60.58 58.15 51.55

LBPVriu2
R=1,3,5 30 56.30 56.31 55.56

MD-LBPVriu2
R=1,3,5

Variance(MIN) 1000 61.77 60.50 52.54
Variance(MAX) 1000 58.53 59.32 59.92
Variance(AVG) 1000 59.36 58.82 52.57
Radius(MIN) 1000 62.82 60.86 53.41
Radius(MAX) 1000 57.00 56.99 51.92
Radius(AVG) 1000 58.76 58.02 52.00

Table 5.4: MD-LBPV texture retrieval results.



Chapter 6

Compact Multi-dimensional LBP

Descriptors

In the previous chapter it is shown that MD-LBP performs better than multi-

scale LBP by preserving the special relationships between different scales. This

is achieved by building a multi-dimensional LBP histogram using all scales. This

means for M scales and N LBP patterns the feature length will be NM , whereas in

case of multi-scale LBP it will be M ×N . For example, while the original uniform

rotation invariant LBP descriptor calculated at three scales leads to a feature

length of 30 (10 × 3), an MD-LBP histogram with the same parameters has a total

of 1000 (10 × 10 × 10) bins. This chapter addresses this relatively large feature

length that MD-LBP generates and propose compact MD-LBP versions. For this,

three approaches are experimentally evaluated, the first approch is Dominant MD-

LBP (D-MD-LBP) then Principle Component Analysis (PCA-MD-LBP) and PCA

on Dominant MD-LBP (D-PCA-MD-LBP). Given below is the feature selection

methods used for LBP features.

6.1 Feature Length Reduction

In [90] the LBP feature selection method is categorised into four major groups,

rule based method, boosting methods, subspace learning and other methods. Rule

based methods can be as simple as selecting small number of neighbourhood and

there by reducing the resulting histogram bins or selecting uniform patterns as dis-

cussed in section 3.3. There are other methods as given in [102], which uses the

fast correlation-based filtering (FCBF) algorithm to select the most discriminative

LBP patterns. FCBF operates by repeatedly choosing the feature that is most

correlated with a given class and exclude those features that are less correlated.

This single level filtering is improved in [39] and presented a learning model which

73
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is formulated into a three-layered model. It estimates the optimal pattern sub-

set of interest by simultaneously considering the robustness, discriminative power

and representation capability of features. This model is generalized and can be in-

tegrated with existing LBP variants such as conventional LBP, rotation invariant

patterns, local patterns with anisotropic structure, completed local binary pattern

(CLBP).

Another approch is based on boosting methods which is very popular approach

for feature selection. For instance, [124] used AdaBoost learning for selecting an

optimal set for local regions and their weights for face recognition. Whereas [99]

used AdaBoost for learning discriminative LBP histogram bins, with an applica-

tion to facial expression recognition.

The next approach for deriving compact and discriminative LBP-based feature

vectors consists of applying subspace methods for learning and projecting the LBP

features from the original high-dimensional space into a lower dimensional space.

In [14] it is shown that very good results are achieved when Linear Discrimin-

ant Analysis (LDA) is used to project high-dimensional Multi-Scale LBP features

into a discriminant space. On other hand [51] exploited the complementarity of

three sets of features, namely HOG, LBP, and LTP, and adopted Partial Least

Squares (PLS) dimensionality reduction for selecting the most discriminative fea-

tures, yielding fast and efficient visual object detection.

Several other methods are also reported in the literature, like [95] which rely

on a pre-defined LBP structure to extract features. These structures can be gen-

eralised as the patterns constructed from the binarised pixel differences in a local

neighbourhood. Instead of using a predefined structure, they learn binarised pixel-

difference patterns (BPP), casting the BPP structure discovery as a feature se-

lection problem, which is solved via incremental minimal-redundancy-maximal-

relevance (mRMR) algorithm. Similarly, [125] proposed Local Energy Pattern

(LEP) for texture classification using self-adaptive quantisation thresholds. The

method generates local feature vectors obtained by rectifying the responses of the

2D Gaussian-like second derivative filters, then utilises N-nary coding quantisation

instead of binary one which reduces the feature length.

6.2 Dominant MD-LBP

The proposed approach utilises the idea of dominant patterns as a simple yet ef-

fective strategy. This approach is akin to that introduced in Section 4.1, where

dominant LBP is improved to achieve better performance. Here, the same prin-

ciple is use for feature length reduction of multi-dimensional LBP descriptors.

First the multi-dimensional LBP features are generated, then dominant patterns



CHAPTER 6. COMPACT MULTI-DIMENSIONAL LBP DESCRIPTORS 75

are extracted as discussed in Section 4.1. Only first k patterns are selected, which

gives the reduce feature length of MD-LBP or MD-LBPV.

While there is no difference in calculating dominant patterns, there is a differ-

ence in selecting patterns. In earlier approch, average number of patterns which

contribute 80% of total histograms are selected, here any number of patterns can

be selected depending upon the required feature length.

6.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a well known method for feature length

reduction. In particular, it allows to identify the principal directions in which the

data varies. For example, in Figure 6.1 (left), suppose that the circles represent

two variable data set which we have measured in the X-Y coordinate system. The

principal direction in which the data varies is shown by the U axis and the second

most important direction is the V axis orthogonal to it. If we place the U-V

axis system at the mean of the data it gives us a compact representation. If we

transform each (X, Y) coordinate into its corresponding (U, V ) value, the data is

de-correlated, meaning that the co-variance between the U and V variables is zero.

For a given set of data, principal component analysis finds the axis system defined

by the principal directions of variance (i.e. the U-V axis system in Figure 6.1

(left)). The directions U and V are called the principal components.

Consider two variables that are nearly linearly related as shown in Figure 6.1

(right). As in Figure 6.1 (left) the principal direction in which the data varies is

shown by the U axis, and the secondary direction by the V axis. However, in this

case all the V coordinates are very close to zero. It can be assume, for example,

that they are only non zero because of experimental noise. Thus, in the U-V

axis system data can be represented by one variable U and discard V . Thus the

dimensionality of the problem is reduced by 1.

Thus, the main idea of PCA is to find a (reduced) set of vectors that can be

used to describe the full data with high accuracy. If B is a data matrix of size

M×N , where M is the number of observations and N is length of a feature vector,

then the deviation of the features from its mean is calculated by subtraction of

mean feature vector. Thus, B is transformed from the original space to the zero

mean space B0. The covariance matrix C can then be obtained as C = B0B
T
0 .

The eigenvectors uk of C are then calculated and sorted according to their

corresponding eigenvalues λk which are indicative of factor by which the data is

transformed. The first k eigenvectors are then selected to span a space of reduced

dimensionality into which the original data can be projected with a minimal loss

of variance (given by ratio of the sum of neglected eigenvalues to the sum of all
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FL TC00 TC10 TC12 average
LBPriu2

R=1,3 20 98.87 95.81 85.35 93.34
MD-LBPriu2

R=1,3 100 99.15 97.58 90.76 95.83
D-MD-LBPriu2

R=1,3 20 98.31 93.46 86.00 92.59

LBPVriu2
R=1,3 20 97.90 97.42 92.44 95.92

MD-LBPVriu2
R=1,3 100 98.66 97.81 94.29 96.92

D-MD-LBPVriu2
R=1,3 20 94.94 88.75 81.97 88.55

Table 6.1: Feature length reduction using dominant features at radii R = {1, 3}.

eigenvalues).

For PCA-MD-LBP generation, first the PCA is run on the MD-LBP histograms

of a dataset and use only a limited number of principal components to define a

reduced feature space and hence a compact texture descriptor. The limited number

of principal components can be calculated by selecting the feature length required

or by selecting the variance required.

6.4 PCA on Dominant MD-LBP

From experiments it is observed that generally more dominant features compare

to multi-scales feature set are required to achieve the good accuracy. Hence the

dominant patterns approach is useful where feature length more than multi-scale

LBP and less than multi-dimensional LBP is acceptable. However, the feature

length reduction using dominant patterns can further be reduced to match the

original feature length. For this approach a two level feature selection is employed;

the first feature selection is based on Dominant LBP as presented in Section 6.2

and in next level we apply PCA as given in Section 6.3 on dominant LBP.

6.5 Experimental Results

The evaluation of FL reduction techniques is done on three classification data-

sets namely TC 00, TC 10 and TC 12 from the Outex test suite. This are the

challenging datasets and most commonly used in the literature. Support vector

machines (SVMs) as discussed in Section 4.3.1 is employed for the classification.

All three algorithms mentioned in this chapter are run using this experimental

set-up and accuracy is measured when the feature length is reduced to that of the

conversational multi-scale LBP.

Figure 6.2 shows the accuracy vs. feature length plot when the different num-

ber of dominant patterns for the TC10 dataset are selected. The classification

accuracy increases sharply with the increasing feature length. Good classification
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performance is achieved with about 30 features while a feature length of 40 gives

results quite similar to that of the full method. Table 6.1 shows the classification

results, for all three datasets using D-MD-LBP and D-MD-LBPV. From their it

is observed that, reducing the feature length to 20 gives poor performance using

both MD-LBP and MD-LBPV.

In Table 6.2 results for three radii compact MD-LBP and MD-LBPV are given.

For this set up, the results are even worst as compared to the two radii results.

The average accuracy difference between compact version and multi-scale version

is around 13%. The reason for this is that selecting only uniform pattern already

is a form of feature reduction and hence the proposed technique is more effective

for rotation invariant descriptors than for rotation invariant uniform ones.

Although, results are not encouraging when matching with the original data

size, little compromise with feature length gives good results as already shown

shown in the Figure 6.2. From these result it is clear that D-MD-LBP can be

used for feature length reduction of multi-dimension LBP, however if the feature

length is reduce to match the original multi-scale feature length, it will give poor

performance. This actually motivates for the next experiment where higher feature

length from D-MD-LBP is selected and subsequent feature length reduction is done

by applying PCA.

Table 6.3 and 6.4 reports the feature length reduction results using D-PCA-

MD-LBP for two and three radii respectively. For this method we first compactify

the feature set using D-MD-LBP to the length of 63 for two radii features and

to the feature length of 150 for three radii features. After this PCA is applied

to match the feature length of original multi-scale LBP. An example is shown in

Figure 6.3, where 20 to 100 dominant patterns are selected and PCA is applied to

make the final feature length of 20. From the Accuracy vs. feature length graph

it can be seen that at 63 dominant patterns, accuracy is highest.

From Table 6.3 it is observed that the proposed FL reduction method is still

gives better performance than original multi-scale LBP. The difference between

MD-LBP and D-PCA-MD-LBP is around 0.80% and that of two radii LBPV is

FL TC00 TC10 TC12 average
LBPriu2

R=1,3,5 30 99.73 94.61 86.18 93.51
MD-LBPriu2

R=1,3,5 1000 99.60 95.34 91.96 95.63
D-MD-LBPriu2

R=1,3,5 30 96.73 76.04 69.52 80.76

LBPVriu2
R=1,3,5 30 98.65 98.13 93.81 96.86

MD-LBPVriu2
R=1,3,5 1000 99.00 98.59 96.00 97.86

D-MD-LBPVriu2
R=1,3,5 30 95.59 80.63 75.25 83.82

Table 6.2: Feature length reduction using dominant features at radii R = {1, 3, 5}.
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FL TC00 TC10 TC12 average
LBPriu2

R=1,3 20 98.87 95.81 85.35 93.34
MD-LBPriu2

R=1,3 100 99.15 97.58 90.76 95.83
D-PCA-MD-LBPriu2

R=1,3 20 98.94 97.19 88.90 95.01

LBPVriu2
R=1,3 20 97.90 97.42 92.44 95.92

MD-LBPVriu2
R=1,3 100 98.66 97.81 94.29 96.92

D-PCA-MD-LBPVriu2
R=1,3 20 98.71 97.01 94.07 96.60

Table 6.3: Feature length reduction using PCA on dominant features at radii
R = {1, 3}.

only 0.32%. The same is also true for the three radii LBPs. In Table 6.4, it

can be clearly observed that D-PCA-MD-LBP is better than original LBP except

for the TC 00 dataset. Comparing the results with D-MD-LBP, there is a big

improvement, more than 10% is achieve using D-PCA-MD-LBP.

In the third experiment, the feature length is reduce by applying PCA. This

method actually gives the best performance. Table 6.5 and Table 6.6 reports the

accuracies of compact multidimensional features at radii (1,3) and radii (1,3,5)

and as before the performance is given in terms of classification accuracy. Again,

the accuracy vs. feature length plot is generated and shown in Figure 6.4 where the

number of principle components for the TC10 dataset are changed. From there it

is observed that between feature length 10 and 20, the accuracy increases sharply

and after 25 it gives results as good as MD-LBP.

Now looking at Table 6.5, it can be observed that, compared to the original

LBP variants, the PCA method achieves significantly improved texture classific-

ation in virtually all cases. The maximum difference between average accuracy

of compact MD-LBP using PCA and full MD-LBP is 0.20 which is still a better

than multi-scale LBP. This observation is also true for three radii MD-LBP and

MD-LBPV as reported in Table 6.6. The maximum difference between average

accuracy of compact MD-LBP/MD-LBPV using PCA and full MD-LBP/LBPV

is 0.30. Looking into the performance on individual datasets, TC 00 have shown

FL TC00 TC10 TC12 average
LBPriu2

R=1,3,5 30 99.73 94.61 86.18 93.51
MD-LBPriu2

R=1,3,5 1000 99.60 95.34 91.96 95.63
D-PCA-MD-LBPriu2

R=1,3,5 30 99.64 96.04 90.95 95.54

LBPVriu2
R=1,3,5 30 98.65 98.13 93.81 96.86

MD-LBPVriu2
R=1,3,5 1000 99.00 98.59 96.00 97.86

D-PCA-MD-LBPVriu2
R=1,3,5 30 99.07 97.89 94.34 97.10

Table 6.4: Feature length reduction using PCA on dominant features at radii
R = {1, 3, 5}.
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FL TC00 TC10 TC12 average
LBPriu2

R=1,3 20 98.87 95.81 85.35 93.34
MD-LBPriu2

R=1,3 100 99.15 97.58 90.76 95.83
PCA-MD-LBPriu2

R=1,3 20 98.95 97.08 91.04 95.69

LBPVriu2
R=1,3 20 97.90 97.42 92.44 95.92

MD-LBPVriu2
R=1,3 100 98.66 97.81 94.29 96.92

PCA-MD-LBPVriu2
R=1,3 20 98.65 97.53 93.97 96.72

Table 6.5: Feature length reduction using PCA at radii R = {1, 3}.

FL TC00 TC10 TC12 average
LBPriu2

R=1,3,5 30 99.73 94.61 86.18 93.51
MD-LBPriu2

R=1,3,5 1000 99.60 95.34 91.96 95.63
PCA-MD-LBPriu2

R=1,3,5 30 99.60 95.28 91.73 95.54

LBPVriu2
R=1,3,5 30 98.65 98.13 93.81 96.86

MD-LBPVriu2
R=1,3,5 1000 99.00 98.59 96.00 97.86

PCA-MD-LBPVriu2
R=1,3,5 30 99.00 98.23 95.45 97.56

Table 6.6: Feature length reduction using PCA at radii R = {1, 3, 5}.

no difference in accuracies after compacting MD-LBP/MD-LBPV.

Comparing the three methods, D-LBP give poor results as compared to original

multi-scale LBP and it not at all closer to the MD-LBP results. The difference in

the MD-LBP and D-PCA-MD-LBP is 0.80% and that for PCA-MD-LBP is 0.20%.

Similarly, for three radii MD-LBP and D-PCA-MD-LBP the maximum difference

is around 0.75% and that for PCA-MD-LBP is 0.20%. It is clear that PCA-MD-

LBP gives slightly better results and additional step of finding dominant patterns

is not required.

6.6 Summary

As demonstrated earlier, multi-dimensional LBP outperforms conventional multi-

scale LBP by preserving the spatial relationships between different scales. How-

ever, this comes at the cost of high dimensional feature lengths. In this chapter,

three feature length reduction techniques are proposed to reduce the high dimen-

sion of LBP features. Dominant features selection is a basic technique which

selects the dominant patterns from the features. It is a good method, however

to see a significant performance improvements, commonly feature length has to

set more than that of original multi-scale features. The principal component ana-

lysis method performed very well on the Outex texture datasets and gives the

highest accuracies, very close to full length MD-LBP. The dominant feature selec-

tion method is good if simple algorithm is a priority and PCA will be good option

if small feature set is high priority.
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Figure 6.1: PCA data representation (left) and PCA for dimension reduction
(right).

Figure 6.2: Classification accuracy vs. feature length for Outex TC10 dataset and
D-MD-LBPriu2

R=1,3
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Figure 6.3: Classification accuracy vs. feature length for Outex TC10 dataset and
D-PCA-MD-LBPriu2

R=1,3

Figure 6.4: Classification accuracy vs. feature length for Outex TC10 dataset and
PCA-MD-LBPriu2

R=1,3



Chapter 7

Nailfold Capillaroscopy using

MD-LBP Descriptors

Nailfold capillaroscopy (NC) is a non-invasive imaging technique employed to as-

sess the condition of blood capillaries in the nailfold. It is particularly useful for

early detection of scleroderma spectrum disorders and evaluation of Raynaud’s

phenomenon. While diagnosis based on NC is typically performed by manual

inspection, computerised nailfold capillaroscopy can help to reduce the inherent

ambiguity present in human judgement while greatly reducing the time for dia-

gnosis.

Diagnosis using NC images involves the classification of image into Early, Act-

ive and Late groups, also known as NC patterns or scleroderma (SD) patterns. In

this chapter, a holistic method is proposed to classify NC images in the above pat-

terns. For this, a texture classification algorithm based on multi-dimensional LBP

patterns (MD-LBP) is employed. In the result section, it is shown that MD-LBPV

performs better than multi-scale LBP texture descriptors.

7.1 Medical Background

Capillaroscopy is an established technique to investigate micro-vascular involve-

ment in various diseases. In a resurge of interest, various works on capillaro-

scopic patterns, emphasising mainly the relationship between capillary patterns

and particular diseases, were published. At the same time, capillaroscopic image

acquisition techniques and protocols improved significantly. For acclimatisation,

the subject is typically kept in the procedure room for a minimum of 15 minutes,

and the room temperature kept between 20 and 22 ◦C. The nailfolds of several

fingers are examined, and a drop of immersion oil used to improve the image res-

olution [23]. Observation can be conducted using various instruments including

82
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Figure 7.1: Sample SD patterns: (a) healthy patient, (b) early, (c) active, (d) late
SD pattern.

ophthalmoscopes, stereomicroscopes, photomicrography and video-capillaroscopy

systems.

The most important disease encountered underlying RP is systemic sclerosis

(SSc) or scleroderma. SSc is characterised by progressive skin and visceral organ

fibrosis. Early diagnosis of scleroderma is only possible by examination of nail-

fold capillaries [6]. Researchers have observed that 90% of patients with sclero-

derma show a typical NC pattern called scleroderma pattern or SD pattern. How-

ever, similar patterns are also observed in other closely related disorders such as

dermatomyositis, and mixed connective tissue diseases. Typical SD patterns show

enlargement of capillary loops, loss of capillaries, disruption of the capillary bed

and distortion and budding of capillaries.

The degree of these abnormalities gives an indication of the severity and pro-

gression of diseases, and allows the classification into three SD patterns [24] as

shown in Figure 7.1:

• Early: few giant capillaries, few capillary haemorrhages, relatively well pre-

served capillary distribution, no evident loss of capillaries.

• Active: frequent giant capillaries, frequent capillary haemorrhages, moderate

loss of capillaries with some avascular areas, mild disorganisation of the

capillary architecture, absent or some ramified capillaries.



CHAPTER 7. NAILFOLD CAPILLAROSCOPY USINGMD-LBP DESCRIPTORS84

• Late: irregular enlargement of the capillaries, few or absent giant capillaries,

absence of haemorrhages, severe loss of capillaries with large avascular areas,

severe disorganisation of the normal capillary array, frequent ramified/bushy

capillaries.

These patterns are also used as reference patterns to evaluate other rheumatic

diseases. For example, an SD capillary pattern is often present in dermatositis/

polymyositis. Also, the presence of a scleroderma capillary pattern among pa-

tients with Raynaud’s syndrome and undifferentiated connective tissue disease is

observed [74]. An abnormality in capillary length, capillary width, and apical

length and width is significant in patients who developed SSc.

7.2 Computerised Nailfold Capillaroscopy

7.2.1 Semi-automatic NC Analysis

Earlier NC automation systems required user interaction, with the majority of

proposed semi-automatic algorithms being dedicated to image enhancement and

capillary extraction. In [98], low contrast in NC images is addressed by producing a

hand drawing, which is performed using a magnifying projector and measurements

are conducted in an area of 3 × 3 mm, centred with respect to the midpoint of

the hand-drawing. The Leitz Quantimet 570 c image analysis system was used for

image evaluation.

Clearly, drawing/tracing is a time consuming task and dependent on the in-

dividual’s skill. In [57], an image processing application (Adobe Photoshop) was

used for colour filtering and a grid display used to measure lengths and other ca-

pillary parameters. Photoshop can also be used for image enhancement but was

not suitable for automatic capillary parameter extraction.

In [73], an NC image is filtered by a low pass filter and subtracted from the

original image to remove lighting variations. Then, a threshold is applied to ob-

tain a binary image of capillaries and connectivity analysis is performed to reduce

the noise in the image. Based on a user defined region of interest, measurements

are then taken for capillaries inside the selected area. The employed image en-

hancement was found to be able to minimise various types of noise present in the

images. It was observed that computer aided analysis had low inter-observer vari-

ability and provided a quantitative and sensitive method for assessing capillary

abnormalities.

In [49], captured NC images are enhanced by a simple transform where im-

age contrast is stretched based on the minimum and maximum intensity values.
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The user defines several regions of interest (ROIs) which are then digitally magni-

fied using interpolation. After pre-processing, each ROI is marked as capillary or

non-capillary by the user. Finally, gradient information is used for capillary edge

detection and a skeleton is extracted to measure the various capillary parameters.

This skeleton is divided into the venous limb, transitional segment (loop of ca-

pillary) and arterial limb. Tortuosity is calculated as the ratio of skeleton length

to the shortest distance between the skeleton end points. Local limb diameters

for various points across the skeleton are calculated, and a final limb diameter is

reported as the average over these.

More recently, a semi-automatic method for capillary vessel tracking was sug-

gested that makes use of a non-directional graph technique for capillary extrac-

tion [85]. First, a point on the capillary is manually located, and then the al-

gorithm seeks for neighbouring points, until the whole vessel is extracted. One

seed point per capillary is taken as an input for graph construction, although it is

possible to select more than one point per capillary. For each point, model identi-

fication is performed and based on the selected model a set of neighbour vertices

generated.

7.2.2 NC Image Analysis

In general, image based algorithms focus on image enhancement, capillary extrac-

tion and capillary parameter measurement. In related work, the author of this

thesis has shown that, an edge preserving smoothing and contrast enhancing filter

is suitable for subsequent image analysis algorithms [A.21] where various filters

were applied on NC images and their edge preserving and noise removing ability

were examined. A bilateral filter and enhancer algorithms were found to lead to

better NC image quality compared to various other techniques. Nevertheless, even

the best techniques were found to be insufficient to deal with very poor quality

images and with motion artefacts.

Image enhancement is typically followed by capillary extraction which is im-

portant for measuring capillary size and characterising its shape. Region growing

based on pre-defined conditions is widely used for this purpose. A set of conditions

is checked for neighbouring pixels and those neighbours that meet the conditions

included in the capillary region. Often, prior to capillary extraction, the image

is binarised using thresholding and the binarised images analysed in an iterative

skeletonisation procedure [119, 118].

The results depend on the binarisation quality and are confounded by noise

and image quality. A Markov chain based edge detector may lead to improved

performance as was suggested in [45] where it is argued that classical edge detectors
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are insufficient as intensity changes continuously perpendicular to the capillaries.

Consequently, a second order derivative and the relation between pixel locations

is used to search for the centre line of vessels.

For a work by the author of this thesis [A.19], following image enhancement

using bilateral enhancer, and prior to a capillary skeleton extraction algorithm,

the image is processed by a difference of Gaussian filter (DoG) which addresses

the problem of varying illumination and non-uniform background.

After extraction, capillary parameters are measured in a final step. A very

simple approach for thickness analysis is to directly measure the thickness from

the image [119, 118]. After vessel skeletonisation, the distance from the border

to the median is used to evaluate enlarged or giant capillaries. A somewhat more

complex approach is described in [82]. Here, for each point of the skeleton image,

thickness and curvature are calculated. Thickness estimation is performed in pixel

units whereas arc-chord ratio is used for curvature estimation. A feature vector

for the purpose of classification is created from the data obtained by capillary

analysis. An extension to thickness analysis is proposed in [54], where a cuticular

class is developed to consider the length and width of capillaries. The area is

determined by calculating the number of pixels contained within the capillary,

while capillary length is calculated by segmenting the image from base to tip and

then counting the segments. The mean capillary width is then calculated by the

ratio of area and length.

Tortuosity analysis is carried out on whole vessels and not on the single curves

connected to each other, and describes how twisted a capillary is, how many turns

it has etc. A simple approach is presented in [54], where the change in gradient

over a limb is considered to calculate tortuosity. If the tortuosity angle is greater

than a threshold, then the capillary is classified as tortuous. A more complex

method for tortuosity measurement of nailfold capillaries is proposed in [84] and

returns a single numerical value which represents the tortuosity of a vessel. Non-

directed and directed graph analysis, curvature sign calculation and arch-cord

ratio is employed to derive this tortuosity index.

An approach for avascular area detection in NC images is presented in [83].

Histogram analysis and classification techniques are employed, and after enhance-

ment each image is cut into horizontal slices of constant width. Vertical projection

is then used for each slice of an image. Since capillaries appear dark in the image,

local minima in the projection are considered as capillary centres and this centres

are used to find local maxima.

In all of the above approaches, individual capillaries are extracted and ana-

lysed. In [119, 118, 82], a classifier is used to characterise capillaries based on their

properties. The parameters for all capillaries in the image are then considered to
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Table 7.1: Experimental results, expressed in terms of Pratt’s figure of merit.

original
image

median
filter

Gaussian
filter

α-trim.
filter

bandpass
ε-filter

aniso-
tropic

diffusion

Average 0.2096 0.3078 0.1857 0.1629 0.1727 0.3652

bilateral
filter

bilateral
enhancer

wavelet
filter

non local
means

ADW
equation

Average 0.3774 0.3872 0.1690 0.3691 0.2768

classify the image into control, early, active or late groups.

7.3 MD-LBP Based NC Image Classification

In section 7.2, it is observed that computer based NC analysis is typically per-

formed by extracting capillaries and analysing different capillary parameters. In

this section a novel approach for capillary image analysis based on textural prop-

erties of NC images is proposed.

In proposed algorithm, first the NC image is pre-process by edge enhancing

smoothing filter and then extract the LBP features. Finally the SVM classifier is

used for image classification. This approach is different than the one proposed in

[A.19] by the author of this thesis, where after pre-processing the enhanced image

is thresholded for capillary extraction.

7.3.1 Pre-processing

In [A.20, A.21], the author of this thesis has evaluated several filters for capillary

image analysis. To evaluate different filters, [A.20, A.21] first applied the filter on

capillary images, then a edge map of enhance image was generated. This edge map

is then compared with the ground-truth edge map. This comparison is performed

using the Pratt’s figure of merit [3] which is a well-known measure to express the

closeness of a generated edge map to an ideal edge map, with a higher figure of

merit signifying better agreement with the ground truth. In Table 7.1 comparison

results are given, from which it can be observed that the bilateral enhancer gives

the best results. To understand the bilateral enhancer filter, first the bilateral

filter is discussed below.

The bilateral filter is a non-iterative, relatively simple algorithm which smoothens

an image while preserving edges by means of a non-linear combination of nearby
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image values based on both their spatial closeness c(ξ, x) and their photometric

similarity s(f(ξ), f(x)). It is suggested that the two pixels can be close to one an-

other, that is occupy nearby spatial location (c(ξ, x)) or they can be similar to one

another, that is, have nearby values (s(f(ξ), f(x))). Bilateral filtering, basically

the combination of domain and range filtering, is defined as

h(x) =

∫
Ω(x)

f(ξ)c(ξ, x)s(f(ξ), f(x))dξ∫
Ω(x)

c(ξ, x)s(f(ξ), f(x))dξ
. (7.1)

The bilateral enhancer is an extended concept of bilateral filter where edge pre-

serving smoothing and selective sharpening is done simultaneously [35]. Perform-

ing the weighted average independent from the design of c and s as in Equation 7.1

is improved by the bilateral enhancer. Further, it considers a special case, when

ξ = x and adds a constant g. This does not change the nature of bilateral filter,

but for ξ = x, the contribution of c and s is summarised in to g. The resulting

formula for bilateral enhancer is obtained as

j(x) = gf(x) +

∫
Ω(x)
x

c(ξ, x)p(f(x), f(ξ))dξ (7.2)

where g = c(x, x)s(f(x), f(x)) and s has been renamed to p. Edge preserving

smoothing in addition to selective sharping is achieved by carefully designing the

function p from Equation 7.2.

ps(., .) = ηs(f(ξ)− f(x))e
− (f(x)−f(ξ))2

2σ2
s (7.3)

where ηs regulates the intensity of blurring and σs controls how strong an edge

should be preserved. Design of selective sharpening (pe) is given below:

pe(., .) = ηe(f(x)− f(ξ))
(

1− e−
(f(x)−f(ξ))2

2σ2
e

)
(7.4)

where, ηe and σs have the same effect as in pe. Linear blending of function p

is possible and hence, the two p functions are added to perform edge preserving

smoothing and selective sharpening. A resulting equation is as follows:

p(., .) = ps(., .) + pe(., .) (7.5)

and thus this function p(., .) when put into the Equation 7.2, achieves the edge

preserving smoothing and selective sharpening simultaneously. An example of

image enhancement using Bilataral enhancer filter is shown in Figure 7.2.
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Figure 7.2: Example of bilateral enhancer filtering: (left) original image, (right)
enhanced image.

7.3.2 Classification

After the image is enhanced, LBP based features are extracted from the image. In

particular, MD-LBP and MD-LBPV features are extracted and its performances

are evaluated against the performance of multi-scale LBP and LBPV for NC image

classification. For the classification, first finger classification is performed using

SVM classifier and LBP based texture features and then final patient classification

is performed by voting for each finger.

7.3.2.1 Finger Classification

Finger classification is nothing but classifying each image into a SD pattern. For

this a support vector machine is used to train and classify the image features

as discussed in Section 4.3.1. The input for the SVM is multi-dimensional LBP

features. As mention before, only linear kernel is used for SVM training.

7.3.2.2 Patient Classification

In general, it is advisable to examine all fingers, except the finger affected by local

trauma during NC trials. It is common practice to examine six to eight fingers

of each patient for diagnosis. This fact can be used to improve the accuracy

of algorithm. The final result from finger classification is voted for measuring

frequency of class detected during finger classification. That is, for each patient

all of his fingers classification results are aggregated and ordered by each class. The

class with highest frequency of occurrence from one patient is selected as patient’s

final class. When two or more different classes shown the highest frequency of

occurrences, then that patient is classified as reject, indicating that the interaction

of an expert is required.
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7.4 Experimental Results

In the experiment each image is enhanced using a bilateral enhancer and LBPriu2
R=1,3,

LBPriu2
R=1,3,5, MD-LBPriu2

R=1,3, MD-LBPriu2
R=1,3,5 are extracted. Also, LBP variance fea-

ture, LBPVriu2
R=1,3, LBPVriu2

R=1,3,5, MD-LBPVriu2
R=1,3 and MD-LBPriu2

R=1,3,5 are extracted.

The experiments are carried out on a dataset of 12 subjects with NC images for

three to four fingers for each patient and three patients for each class(i.e. Con-

trol, Early Active and Late). The images were obtained at the Dermatology Unit,

Clinical Hospital of Chieti, following their standard protocol. A ground truth for

all patients was also obtained by manual inspection carried out by a consultant.

For evaluation, a standard leave-one-out cross validation on a patient basis is per-

formed. That is, the classifier is trained on all but one subject for which the test

is run, and the procedure is repeated for all patients (i.e., 12 times in total)

Table 7.2 to 7.9 report the detailed results on both finger classification of each

patient and final patient classification using the texture classification techniques

mentioned above. Table 7.10 summarised the overall results for all methods.

Looking at the Table 7.2, LBPriu2
R=1,3 gives only four correctly classified of

subjects and four rejections. This is improved upon by LBPriu2
R=1,3,5 as given in

Table 7.3, where six correct classified and only two rejections are obtained. In

both results it is observed that the Control group and Active group give poor

results. Now, looking at LBPV results, an improved classification performance is

observed. While LBPVriu2
R=1,3 gives eight correct classification and one rejections,

LBPVriu2
R=1,3,5 give nine correct classification and one rejection.

From these results it is observed that LBPV performs better than simple LBP.

This means that, for classification of NC images variance information is important.

Looking at Table 7.10, where performance of multi-scale and multi-dimensional

texture descriptors is presented, clearly, MD-LBPV gives best performance. How-

ever, on this occasion two radii multi-dimensional features performed better than

the three radii multi-dimensional features. This is the case for MD-LBPV in

which MD-LBPVriu2
R=1,3 outperformed MD-LBPVriu2

R=1,3,5 by almost 8%. There is no

difference in the performance of two radii and three radii MD-LBP features.

Multi-dimensional LBP with two radii improves patient classification results as

compared to LBPriu2
R=1,3 by almost 8%. However that is not the case for the three

radii MD-LBP where the results are dropped by 17%. Interestingly, the finger

classification rate for two and three radii MD-LBP is same.

A further improvement is observed for MD-LBPV. Both two radii and three

radii MD-LBPV are top performers with an accuracy of 83.33%, i.e. 10 subjects

correctly classified. Two radii MD-LBPV is slightly better than three radii MD-

LBPV with a finger classification rate of 73.17%. Both methods give no rejections.
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finger 1 finger 2 finger 3 finger 4
Control 1 A A C - A
Control 2 E A C - -
Control 3 L C L E L
Early 1 E E E - E
Early 2 E L E E E
Early 3 E E C - E
Active 1 L L C - L
Active 2 C C C - C
Active 3 C C A A -
Late 1 A E L - -
Late 2 A L C E -
Late 3 L L L L L

Table 7.2: Classification results for nailfold capillary analysis using LBPriu2
R=1,3

finger 1 finger 2 finger 3 finger 4
Control 1 C C A - C
Control 2 E A C - -
Control 3 L A L E L
Early 1 E E E - E
Early 2 E L E E E
Early 3 E C C - C
Active 1 L A C - -
Active 2 C C C - C
Active 3 C A A A A
Late 1 A A L - A
Late 2 A L L L L
Late 3 A L L L L

Table 7.3: Classification results for nailfold capillary analysis using LBPriu2
R=1,3,5

finger 1 finger 2 finger 3 finger 4
Control 1 A A C - A
Control 2 E A C - -
Control 3 L C L E L
Early 1 E E E - E
Early 2 E A E E E
Early 3 E E C - E
Active 1 L L C - L
Active 2 C C C - C
Active 3 C L A A A
Late 1 A A L - A
Late 2 C A A L A
Late 3 C L L L L

Table 7.4: Classification results for nailfold capillary analysis using MD-LBPriu2
R=1,3
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finger 1 finger 2 finger 3 finger 4
Control 1 A A E - A
Control 2 A A C - A
Control 3 L A C E -
Early 1 E E E - E
Early 2 E C E E E
Early 3 C E E - E
Active 1 L A C - -
Active 2 C C C - C
Active 3 A L L L L
Late 1 A A L - A
Late 2 L E L L L
Late 3 A L A L -

Table 7.5: Classification results for nailfold capillary analysis using MD-LBPriu2
R=1,3,5

finger 1 finger 2 finger 3 finger 4
Control 1 C C C - C
Control 2 C A A - A
Control 3 C C C C C
Early 1 E E E - E
Early 2 E E L E E
Early 3 E C C - C
Active 1 A A A - A
Active 2 L L L - L
Active 3 C A C A -
Late 1 L L L - L
Late 2 C E L L L
Late 3 L L L L L

Table 7.6: Classification results for nailfold capillary analysis using LBPVriu2
R=1,3

finger 1 finger 2 finger 3 finger 4
Control 1 C C A - C
Control 2 C C A - C
Control 3 C C C C C
Early 1 E E E - E
Early 2 E E L E E
Early 3 E L L - L
Active 1 A A A - A
Active 2 L L L - L
Active 3 C A A A A
Late 1 L L L - L
Late 2 L E L L L
Late 3 L L A A -

Table 7.7: Classification results for nailfold capillary analysis using LBPVriu2
R=1,3,5
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In another experiment the compact MD-LBPV is tested where feature length

of two radii MD-LBPV is reduced using PCA as given in section 6.3. On this

occasion the results are rather very poor, giving only two correct patient classific-

ation. Considering the fact that the dataset size is very small and hence further

investigation is needed.

7.5 Summary

This chapter proposed a holistic method to classify NC images in Early, Active and

Late patterns. For this the texture classification algorithm based on LBP patterns

is employed and evaluate the classification results on a set of 12 patients. It is first

confirmed that texture analysis and pattern recognition algorithms can be used to

classify NC images. This NC image classification approach is different than the

earlier approaches which performed using algorithms like capillary extraction and

measurements.

From the results it is observed that multi-dimensional features are giving the

best accuracy, especially MD-LBPV. As the work reported in this chapter is novel

and one of its kind, it can not be compared with other’s work. In [A.14, A.15 and

A.16] nailfold capillary results are improved using a ensemble based classification

approch. From the results it is clear that ensemble classifier and MD-LBP/MD-

LBPV can give better performance.
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finger 1 finger 2 finger 3 finger 4
Control 1 C C C - C
Control 2 C C C - C
Control 3 C C C C C
Early 1 E E E - E
Early 2 E E L E E
Early 3 E C C - C
Active 1 L L A - L
Active 2 L A A - A
Active 3 C A A E A
Late 1 L L A - L
Late 2 C E L L L
Late 3 L L L L L

Table 7.8: Classification results for nailfold capillary analysis using MD-
LBPV(MAX)riu2

R=1,3

finger 1 finger 2 finger 3 finger 4
Control 1 A C A - A
Control 2 C C L - C
Control 3 L C C C C
Early 1 E E E - E
Early 2 E E L E E
Early 3 E E E - E
Active 1 L A A - A
Active 2 L L L - L
Active 3 C L A A A
Late 1 L A L - L
Late 2 L E L L L
Late 3 L L A L L

Table 7.9: Classification results for nailfold capillary analysis using MD-
LBPV(MAX)riu2

R=1,3,5

Finger Classification (%) Patient Classification (%) Reject (%)

LBPriu2
R=1,3 46.34 33.33 33.33

LBPriu2
R=1,3,5 51.22 50.00 16.67

MD-LBPriu2
R=1,3 43.90 41.67 08.33

MD-LBPriu2
R=1,3,5 43.90 33.33 25.00

LBPVriu2
R=1,3 70.73 66.67 08.33

LBPVriu2
R=1,3,5 70.73 75.00 08.33

MD-LBPVriu2
R=1,3 73.17 83.33 00.00

MD-LBPVriu2
R=1,3,5 65.85 83.33 00.00

Table 7.10: Accuracy in percentage for finger classification and patient classifica-
tion.



Chapter 8

HEp-2 Cell Classification using

MD-LBP Descriptors

This chapter proposed to employ multi-dimensional LBP to classify human epi-

thelial cells (HEp-2) captured by indirect immunofluorescence imaging (IIF). IIF

is a fundamental technique for detecting antinuclear antibodies in HEp-2 cells and

consequently important for the diagnosis of autoimmune diseases and other im-

portant pathological conditions involving the immune system. In general, HEp-2

cells are categorised into several groups which give indications of different autoim-

mune diseases. Typically, this categorisation is performed manually by an expert

and is hence time consuming and subjective.

This chapter present a method for automatic classification of HEp-2 cells using

MD-LBP texture descriptors. The result shows that multi-dimensional features

outperform the multi-scale LBP, especially MD-LBP gives the good performance.

The proposed descriptors are evaluated on HEp-2 benchmark dataset used in ICPR

2012 contest. It is shown that the proposed approach is outperform all algorithms

that were entered in the competition.

8.1 Medical Background

Close observation and evaluation of antinuclear antibodies (ANAs) based on (HEp-

2) cells is important in the diagnosis of various medical conditions including sys-

temic rheumatic disease, systemic sclerosis and mellitus (type-I) diabetes [28].

Indirect immunofluorescence (IIF) is a recommended method for the screening

of ANAs in HEp-2 cells. In general, IIF imaging captures several cells for a pa-

tient and each cell is observed by a specialist under a fluorescence microscope.

This manual inspection of cells involves the classification based on fluorescence

intensity and on the type of staining patterns.

95
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Classification of cells in to staining patterns is an important step as several dif-

ferent patterns may indicate different autoimmune diseases, yet it is challenging

and time consuming process. Although there are several visual patterns, HEp-2

cells are categorised into six groups, namely homogeneous, fine speckled, coarse

speckled, nucleolar, cytoplasmic, and centromere as shown in Figure 8.1. Unfor-

tunately the visual classification of HEp-2 cells is less reliable as the classification

is relay on the expertise of a specialist which also limits the reproducibility. A

computer assisted classification can thus be employed to increase the speed of

operation and remove the inherent ambiguity present in the human judgement.

8.2 Computerised HEp-2 Cell Classification

A variety of algorithms and features have been suggested for computer-aided clas-

sification of HEp-2 cells in IIF images, most of them in the context of a recent

ICPR 2012 contest [88, 31].

Cataldo et al. [26] perform image contrast normalisation and extract statist-

ical texture features based on the grey level co-occurrence matrix (GLCM) [46] as

well as frequency domain texture features based on the discrete cosine transform

(DCT) [105]. To improve classification performance, a two-step feature selection

method is employed, where the first step is based on a minimum redundancy max-

imum relevance algorithm to select a candidate feature set, while a final compact

feature set is obtained using a sequential forward selection method. For classific-

ation, a support vector machine (SVM) is employed.

In the method by Li et al. [60], DCT coefficient features, local binary patterns

(LBP) [79] and Gabor texture descriptors [71] together with various global appear-

ance statistical features (area, perimeter, average intensity and standard deviation

of the cell region as well as the ratio of cell and background) are extracted. A

multiclass boosting SVM [38] is used for classification with different SVMs merged

into a classifier and boosted using a modified AdaBoost.M1 algorithm [63].

Shape and texture features are combined by Strandmark et al. [106]. The cell

images are thresholded at different intensity levels and shape based descriptors

(perimeter, eccentricity, etc.) as well as intensity based features (average intens-

ity, standard deviation, etc.) are calculated at each level. Following this, gradient

magnitude features are calculated after smoothing the image using Gaussian ker-

nels with different parameters. Finally, GLCM texture features are also calculated.

The obtained features are then fed to a Random Forest classifier [10].

Ersoy et al. [29] employed shape features based on the Hessian matrix, where

the eigenvalues of the Hessian and the related eigenvector orientations are used

to describe shape. Edge features are extracted using an adaptive robust struc-
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ture tensor and histogram of oriented gradients (ARST-HOG) [80] approach. In

addition, texture information, based on LBP, is also utilised. Classification is per-

formed using regression trees as base classifiers and a ShareBoost algorithm [86]

for classifier fusion.

Ghosh and Chaudhary [37] use, along with GLCM and HOG [25] features,

region-of-interest (ROI)-based descriptors which include shape features (eccentri-

city, perimeter, etc.) and intensity based features (derived from intensity percent-

iles). For classification, a SVM is chosen as the best performing algorithm.

In Wiliem et al.’s algorithm [122], the inner (cell interior) and outer (cell bor-

der) regions of the cell are represented using a variant of probabilistic histograms

of visual words [97]. Each region is analysed at two scales, yielding four histograms

which are then combined using a multi-cue kernel. Finally, a nearest neighbour

classifier is applied to obtain the classification label.

Many of the 28 ICPR contest entries are unpublished though summarised

in [88, 31]. Among them is the one developed by Nosaka and Fukui, which proved

to be the best performing method in the competition. Their algorithm filters the

green channel using a Gaussian filter for noise reduction. Then, co-occurrence of

neighbouring local binary patterns (CoALBP) texture features as explained in sec-

tion 3.5.1, which describe spatial relations between adjacent LBP descriptors [75],

are extracted. A linear SVM is used as classifier.

Kong et al.’s approach ended up as runner-up in the same contest. Their

(unpublished) algorithm adopts MR8 texture filters [115]. A texton dictionary is

obtained using clustering, and a frequency histogram of textons is built. Classi-

fication is performed based on a k-nearest neighbour classifier.

Another competition entry, by Wang et al. (unpublished), is based on an

improvement of the standard bag of words approach. In a pre-processing step,

images are intensity normalised. Discriminative descriptors are then learnt from

the raw image pixels, and fed to a linear SVM.

Similar contest was organised at ICIP 2013 conference [1]. The dataset used

for ICIP 2013 contest was larger than the one utilised at ICPR 2012. The larger

dataset is also used in ICPR 2014 contest [68]. The dataset contains more than

10,000 images of cells. The authors of [93] have compared their results with top

performer of all the three contest and found that there results is outperforming

the result of ICPR 2012 winner, ICIP 2013 winner and it is comparable with ICPR

2014 winner.

In [93] the multi-resolution texture information is captured by a novel Pairwise

Rotation Invariant Co-occurrence of Local Gabor Binary Pattern (PRICoLGBP)

descriptor, which is able to capture multi-resolution texture information effectively.

Then the richer shape information is depicted by using an Improved Fisher Vector
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(IFV) model with RootSIFT features. It is observed that by combining the multi-

resolution texture and richer shape information, superior classification accuracy is

yield.

8.3 MD-LBP Based HEp-2 Cell Classification

From Section 8.2 it is evident that generally more than one type of feature and

complex classifier algorithms are used for the classification. Furthermore, texture

information found to be useful for the correct identification of the various HEp-

2 cell types. We consequently also use texture features, especially the multi-

dimensional LBP approach which worked very well before for nailfold capillary

image classification. As a classifier, linear SVM is employed.

8.3.1 Pre-processing

As shown in Figure 8.2, the cell is better observed in the green channel. Thus

the green channel for each cell image is selected and the monochrome image is

rescaled to 64× 64 pixels.

8.3.2 HEp-2 Cell Classification

The MD-LBP feature as discussed in chapter 5 are extracted from the image

for the classification purpose. Only those patterns that are inside the cells are

considered to build MD-LBP histograms. A mask for each cell is provided with

the dataset which is use for this purpose.

8.4 Experimental Results

For evaluation, the ICPR 2012 HEp-2 classification contest dataset [32] is use

which is based on 28 HEp-2 images acquired by means of a fluorescence microscope

under 40-fold magnification coupled with a 50W mercury vapour lamp. Images

were taken with a SLIM system digital camera, and stored in 24-bit true-colour

format with a resolution of 1388 × 1038 pixels. Cells were manually segmented

and annotated by a specialist to obtain a ground truth.

The training dataset provided to contestants comprises 721 samples of indi-

vidual cells, extracted from part of the captured images. There are 150 homo-

geneous, 94 fine speckled, 109 coarse speckled, 102 nucleolar, 58 cytoplasmic, and

208 centromere cells (an example for each is given in Figure 8.1). The dataset

provided contains 734 samples of individual cells with 172 homogeneous, 114 fine
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homogeneous fine speckled coarse speckled

nucleolar cytoplasmic centromere

Figure 8.1: Sample HEp-2 cell images (with manually defined borders in white)
from the ICPR 2012 contest dataset.

RGB image red-channel green-channel blue-channel

Figure 8.2: Sample HEp-2 cell image and its three channels

Accuracy (%)
LBPR=1,3 64.99
MD-LBPriu2

R=1,3 66.62
LBPVriu2

R=1,3 53.30
MD-LBPVriu2

R=1,3 54.77

Table 8.1: Classification accuracy of HEp-2 cell images from the ICPR 2012 contest
dataset using two radii LBP.

Accuracy (%)
LBPR=1,3,5 67.03
MD-LBPriu2

R=1,3,5 70.30
LBPVriu2

R=1,3,5 56.27
MD-LBPVriu2

R=1,3,5 58.58

Table 8.2: Classification accuracy of HEp-2 cell images from the ICPR 2012 contest
dataset using three radii LBP.
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speckled, 101 coarse speckled, 139 nucleolar, 51 cytoplasmic, and 149 centromere

cells, obtained from different images to those used for the training dataset.

Table 8.1, reports the classification accuracies of different LBP variants using

two scales LBP on the HEp-2 dataset. Clearly multi-dimensional approach have

improved the classification accuracy for both LBP (MD-LBP in Table 8.1) and

LBPV (MD-LBPV in Table 8.2). Almost 1.6% improvement is observed with

MD-LBP and 1.4% improvement is observed with MD-LBPV. It is interesting to

note that LBP performs better than LBPV.

The next experiment is performed with three radii LBP and the observation

shows again the improvement using multi dimensional features. Three radii LBP

performs better than two radii LBP. The improvement due to the addition of

another radius is more than 2.00%. The MD-LBPriu2
R=1,2,3 is giving the highest

accuracy of 70.30%. Again LBP performs better than LBPV.

It is important to note that, HEp-2 datasets contents positive and intermediate

images. The positive images are well illuminated and one can see the details of

the cell, however the intermediate images shows the illumination variations and

looks darker. LBP on its own is invariant to any monotonic changes, however

when it is combined with the variance information, it becomes sensitive to gray

scale changes. It is thus recommended that LBP should not be combined with the

variance information if the gray scale invariance is an important criteria. This is

also confirm from the above results. As MD-LBPV has the variance information

it is performing poor than the MD-LBP which is invariant to gray scale changes.

In Table 8.3, performance of multi dimensional features is given when its fea-

ture length is reduced. Here, the feature length is reduced to the length of multi-

scale LBP using PCA as discussed in Section 6.3. The results shows that the

accuracy is not much affected when the feature length is reduced.

In Table 8.4, a comparison of top entries in ICPR contest and MD-LBP ap-

proach is given. In the Table 8.4, it can be seen that the MD-LBP method ranks at

second position and only behind of human expert. The close next is the compact

MD-LBP and then the top performer of the ICPR contest.

A confusion matrix is given in 8.5 gives detail inside of the performance of

MD-LBP method. It is clear that MD-LBP perform very well on cytoplasmic

class with accuracy of 94.12% and worse on fine speckled with accuracy of 53.51%.

Homogeneous class is giving accuracy of 71.67%, however it is miss-classified with

all other classes. Example image of miss-classification is given in Figure 8.3. Form

there it is evident that, it is difficult to classify those images. Looking at the

fine speckled image, it is difficult to evaluate its properties. Also the cytoplasmic

image looks continuous and close to coarse speckled. That means, most of the miss

classifications are from the border line, where the characteristics of each class are
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less visible.

8.5 Summary

This chapter address the classification problem of HEp-2 cells using Multi-dimension

LBP methods. Clearly, MD-LBP perform better than other LBP variants. On

this particular dataset MD-LBPV marks the poor performance. Further the res-

ults are compared with the top contestant participated in ICPR 2012 contest on

HEp-2 dataset. Only Human experts have beaten the classification accuracy of

HEp-2 dataset.

In another set of experiments, the classification results are further enhance

using complex classification algorithm for example in [A.25] classification is per-

form using ensemble learning and found accuracy more than human expert and in

[A.24] multiple kernel learning approach is employed to increase the classification

performance.
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Feature Length Accuracy(%)
MD-LBPriu2

R=1,3 100 66.62
PCA-MD-LBPriu2

R=1,3 20 63.35
MD-LBPriu2

R=1,3,5 1000 70.30
PCA-MD-LBPriu2

R=1,3,5 30 69.62

MD-LBPVriu2
R=1,3 100 54.77

PCA-MD-LBPVriu2
R=1,3 20 54.63

MD-LBPVriu2
R=1,3,5 1000 58.58

PCA-MD-LBPVriu2
R=1,3,5 30 57.36

Table 8.3: Classification accuracy of HEp-2 cell images from the ICPR 2012 contest
dataset using PCA-MD-LBP and PCA-MD-LBPV.

actual homogeneous fine speckled coarse speckled
predicated coarse speckled centromere fine speckled

Actual nucleolar cytoplasmic centromere
predicated homogeneous coarse speckled nucleolar

Figure 8.3: Sample HEp-2 cell miss-classification images using MD-LBPriu2
R=1,3,5

texture descriptor
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method accuracy (%)
human expert 73.30
MD-LBPriu2

R=1,3,5 70.30
PCA-MD-LBPriu2

R=1,3,5 69.62
Nosaka and Fukui (unpublished) 68.66
Xiangfei et al.(unpublished) 65.80
Kuan et al. [60] 64.17
Wang et al.(unpublished) 62.26
Ghosh and Chaudhary [37] 59.81
Wiliem et al. [121] 57.80
Ersoy et al. [29] 49.18
Cataldo et al. [26] 48.50
Strandmark et al. [106] 47.82

Table 8.4: Top classification results on ICPR test data at cell level.

XXXXXXXXXXXactual
predicted homo-

geneous
fine

speckled
coarse

speckled
nucle-
olar

cyto-
plasmic centromere

homogeneous 129 32 7 1 6 5
fine speckled 18 61 2 0 0 33
coarse speckled 3 16 70 0 1 11
nucleolar 15 0 3 79 23 19
cytoplasmic 0 0 3 0 48 0
centromere 0 5 1 14 0 129

Table 8.5: Confusion matrix for MD-LBPriu2
R=1,3,5 method.



Chapter 9

Conclusions and Future Work

This chapter summarises the key ideas presented in previous chapters and draws

conclusions and emphasises the important contributions made by the research

presented in this thesis. It also gives an insight into possible future directions of

research, particularly with the intention of further extending the functionality and

efficiency of the proposed algorithms.

The main motivation to the research is a work on local binary patterns (LBP)

texture descriptors presents in [79]. LBP are simple yet powerful texture descriptor

and hence different variants of LBP are presented in the literature. In this

thesis, a benchmarking of LBP patterns on common datasets, introduction of

novel multi-resolution LBP descriptors and solutions to some of the open research

problems/challenges in medical image analysis are presented. In particular, the

proposed multi-resolution descriptor address the loss of information in multi-scale

LBP by building a multi dimensional histogram. Not only MD-LBP is proposed

but the concept is also extended for LBP variance (LBPV) descriptors. The per-

formance of both descriptors is found to be impressive and outperforms most of

the LBP variants discussed in this thesis. However, multi-dimensional histograms

result in large feature length, which is addressed by applying three different fea-

ture reduction techniques. Principle component analysis based feature selection

techniques works well on MD-LBP. To prove the effectiveness of the proposed

descriptors, their performance is evaluated on eight texture classification datasets

and one texture retrieval dataset. From the results it is clear that the descriptors

performed very well compared to their original counterparts.

9.1 Contributions

Chapter 4 presents the first contribution of the thesis, in which five original LBP

versions and 14 variants leading to a total of 41 LBP descriptors are benchmarked

104
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on eight texture classification datasets and one texture retrieval dataset. Fur-

ther more two improvements are suggested leading to additional five variants. In

particular. Dominant LBP is improved by recording the information on dominant

patterns and Compound LBP is improved by considering 16-bit code, which allows

to achieve rotation invariant texture description. From this chapter, it is under-

stood that rotation invariant mapping and rotation invariant uniform mappings

give good performance on rotated texture datasets whereas for ideal situation ba-

sic LBP and LBPcir are giving better performance. The best performance is given

by LBP variance (LBPVriu2
R=5,3,1) with an accuracy of 88.65% while improved dom-

inant LBP and Complete LBP (C-LBP) are closest next. From over all results

it can be conclude that the best result is reached by rotation invariant uniform

mapping, multi radii approach and when contrast information is considered as in

LBPVriu2
R=5,3,1. It is also observed that the suggested improvement to dominant LBP

have outperformed its original counterpart except for the colour texture dataset.

Similarly, the proposed modification of Compound LBP (CM-LBP16bit) performs

better than conventional CM-LBP, especially on rotated textures.

In Chapter 5, the second contribution of this thesis is presented. LBP allows

multi-scale description of texture characteristics, however the information at dif-

ferent scales is treated separately, thus losing important joint information and

introducing ambiguity. In Chapter 5 this problem is addressed and shown that by

recording joint multi-scale LBP information, encoded in multi-dimensional LBP

histograms, improved texture analysis is possible. This is confirmed by an extens-

ive set of experiments on texture classification and retrieval datasets and show

that the proposed algorithm consistently outperforms the original LBP approach.

This approach is then extended to local binary pattern variance (LBPV). LBPV

provides a powerful texture descriptor that integrates local neighbourhood stat-

istics with local image contrast. Improved texture classification can be obtained

by calculating these features at multiple scales. In this chapter it is shown that

generating a multi-dimensional LBPV histogram and hence preserving the rela-

tionships between the scales which leads to better texture classification. Extensive

experimental results on several Outex benchmark datasets confirm that proposed

MD-LBPV approach does indeed support improved texture recognition. Out of six

methods presented for combining variance maps of different scale; MAX of vari-

ance of different scales and AVG of variance of different scales gives consistence

performance. Comparing MD-LBP and MD-LBPV, it is observed that MD-LBPV

performs slightly better than MD-LBP.

It is important to note that multi-scale information may or may not be useful

for a particular application. It is observed that some LBP variant works better

than others and in many cases they are designed for particular application only. In
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general, when texture descriptors are used for the segmentation purpose, increasing

scale of descriptors will give distorted results. For texture based segmentation it

is important to analyse the textural information in the small scale and generate a

precise border of object. In this thesis, the MD-LBP descriptors are not evaluated

for texture segmentation and may perform poor for the reason mention above. It

is also interesting to note that the proposed method generates the LBP at different

scales while keeping the centre pixel constant. It means, one can expect relatively

easy to find the precise cut for segmentation problem. It will be interesting future

work where the performance of MD-LBP is benchmarked on segmentation dataset.

It is observed that although multi-dimensional features gives the best perform-

ance, they generates large feature length. Some of the information in MD-LBP

features can be removed. Thus in Chapter 6 three feature length reduction tech-

niques are proposed to reduced the high feature length of MD-LBP. Dominant

LBP patterns is the basic technique proposed which selects the dominant patterns

from the feature set. Performance using this technique improves as more and more

patterns are selected. Principal component analysis (PCA) is a statistical method

which performs very well on the Outex texture datasets. Basically, PCA projects

the feature sets on principle components and selects the first few principle com-

ponents which gives the highest variance. The dominant feature selection method

is preferable if the simple algorithm is a priority and PCA will be good option if

the small feature set is a high priority. PCA over dominant features is intermedi-

ate level where the performance is better than dominant pattern approch but not

so good as PCA approch.

Chapter 7 proposed a holistic method to classify nailfold capillary (NC) images

into Early, Active and Late patterns. Previous approaches in the literature on

NC image classification, typically perform capillary extraction after which their

parameters are measured to classify the image. Also, few NC image analysis

approaches are semi-automatic and required human interactions. In the proposed

approch NC images, first enhanced using a bilateral enhancer, then MD-LBP and

MD-LBPV texture features are extracted which are used as input to the SVM

classifier.

In the experiments, it is first confirmed that texture analysis and pattern re-

cognition algorithms can be used to classify NC images. On a set of 41 images

from 12 patients, it is found that multi-dimensional features are giving the best

accuracy, especially MD-LBPV. Surprisingly two radii MD-LBPV has given better

performance than three radii LBP, although there was no difference in terms of

patient classification. It is also observed that none of the feature length reduction

technique worked on this dataset. This may be the reason of very small data size.

Chapter 8 presents final contribution of the thesis in which a HEp-2 cells
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classification algorithm is proposed using multi-dimensional LBP features. Ana-

lysis of antinuclear antibodies based on HEp-2 cells is an important procedure for

diagnosis of rheumatic diseases, systemic sclerosis and type-I mellitus diabetes.

Indirect immunofluorescence (IIF) is a standard method to observe and categor-

ise HEp-2 cells under a microscope. While this is typically performed manually,

which requires extensive time and expertise, Chapter 8 introduces an automated

approach for classifying HEp-2 cells from IIF images based on texture features.

First the green colour channel is selected for the processing and then the image is

resized to 64× 64. Then the multi-dimensional features are extracted and classify

them using the SVM. From the results it is found that MD-LBP performs better

than MD-LBPV. Even though algorithm uses only a single type of feature, it is

able to achieve excellent classification performance. In particular, on the ICPR

2012 HEp-2 cell classification competition dataset proposed algorithm outperforms

all 28 contest entries.

9.2 Future Work

No matter how many times the benchmarking is done; it can never reach to the

top and cover each and every variants of LBP, especially when the new variants

are continuously evolving. Thus the Benchmarking shall be continuously updated.

Furthermore, there will be always some difference in the real life data and syn-

thesised data. This gap shall be fill by benchmarking LBP variants on the real

life datasets. The current trends in computer vision are based on the 3D data, it

will be challenging to evaluate the performance of LBP on the datasets with some

degree of 3D variations. Dataset like [58] gives the facial images in different pose

and this may derived a different conclusion than the one reported in this thesis.

Especially the multi-resolution information for the face data may derived different

conclusion. Thus as mentioned before, benchmarking of LBP variants includ-

ing MD-LBP and MD-LBPV on other datasets like face detection, texture based

segmentation with challenges such as variation in pose, orientation is important

future work.

Multi-dimensional LBP features have shown good performance and thus in the

future work this concept can be extended to make powerful and efficient texture

description. It will be interesting to investigate the relationships of different scales

and there by propose mapping which can reduce the feature length of MD-LBP and

improve the performance. For example, like uniform patterns, the most occurring

MD-LBP features can be studied and proposed a new set of mappings for multi-

dimensional features. Fast calculation of multi-dimensional patterns and small

feature length may perform significantly better than proposed MD-LBP features.
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LBP variants such as multi-block LBP, Line LBP can be modified to generate

multi-dimensional features.

Another approch for feature length reduction investigated in this thesis is us-

ing principle component analysis (PCA) which can be evaluated further for two-

dimension PCA.

When it comes to applying multi-dimensional features for medical image ana-

lysis, there is a good scope for improvements. Combining shape information along

with LBP may boost the results. It will be interesting to describe the shapes using

LBP descriptors.

Also, all implementations of the proposed algorithms have been carried out

using MATLAB. One desirable task is to implement the proposed systems in

languages such as C or C++ that will increase speed of execution of the recognition

tasks up to real-time rates. It is anticipated that the conversion of the MATLAB

implementation to C/C++ has the ability to increase the speed eight fold. Also,

the spare information in multi-dimension data is not addressed in the thesis. The

study on spare information in MD-LBP can help to reduce the feature length and

there by increasing the processing speed.
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[39] Y. Guo, G. Zhao, and M. Pietikäinen. Discriminative features for texture

description. Pattern Recognition, 45(10):3834–3843, 2012.

[40] Z. Guo, L. Zhang, and D. Zhang. A completed modeling of local binary

pattern operator for texture classification. IEEE Transactions on Image

Processing, 19(6):1657–1663, 2010.

[41] Z. Guo, L. Zhang, and D. Zhang. Rotation invariant texture classification

using LBP variance (LBPV) with global matching. Pattern Recognition,

43(3):706 – 719, 2010.

[42] Z. Guo, L. Zhang, D. Zhang, and X. Mou. Hierarchical multiscale LBP for

face and palmprint recognition. In 17th IEEE Int. Conference on Image

Processing, pages 4521–4524, 2010.

[43] Z. Guo, L. Zhang, D. Zhang, and S. Zhang. Rotation invariant texture

classification using adaptive LBP with directional statistical features. In

17th IEEE Int. Conference on Image Processing, pages 285–288, 2010.



REFERENCES 113

[44] E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar. Multiresolution histo-

grams and their use for recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(7):831–847, 2004.

[45] G. Hamar, G. Horvath, Z. Tarjan, and T. Virag. Markov chain based

edge detection algorithm for evaluation of capillary microscopic images. In

11th Mediterranean Conference On Medical and Biomedical Engineering and

Computing, pages 818–821, 2007.

[46] R.M. Haralick, K. Shanmugam, and Its’Hak Dinstein. Textural features for

image classification. IEEE Transactions on Systems, Man and Cybernetics,

3(6):610–621, 1973.

[47] X. Hong, G. Zhao, M. Pietikinen, and X. Chen. Combining lbp difference and

feature correlation for texture description. IEEE Trans. Image Processing,

23(6):2557–2568, 2014.

[48] C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support

vector machines. IEEE Transactions on Neural Networks, 13(2):415–425,

2002.

[49] Q. Hu and F. Mahler. New system for image analysis in nailfold capillaro-

scopy. Microcirculation, 6(3):227–235, 1999.

[50] F. Huet and J. Mattioli. A textural analysis by mathematical morphology

transformations: structural opening and top-hat. In International Confer-

ence on Image Processing, volume 3, pages 49–52, 1996.

[51] S. U. Hussain and W. Triggs. Feature sets and dimensionality reduction for

visual object detection. In British Machine Vision Conference, pages 112–1,

2010.

[52] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Inc.,

1989.

[53] A. K. Jain and K. Karu. Learning texture discrimination masks. IEEE

International Conference on Neural Networks, 18(2):195–205, 1996.

[54] B. F. Jones, M. Oral, C. W. Morris, and E. F. J. Ring. A proposed taxonomy

for nailfold capillaries based on their morphology. IEEE Transactions on

Medical Imaging, 20(4):333–341, 2001.

[55] B. Julesz. Visual pattern discrimination. IRE Transactions on Information

Theory, 8(2):84–92, 1962.



REFERENCES 114

[56] B. Julesz. Textons, the elements of texture perception, and their interactions.

Nature, 1981.

[57] H. S. Kim, M. K. Park, H. Y. Kim, and S. H. Park. Capillary dimen-

sion measured by computer-based digitalized image correlated with plasma

endothelin-1 levels in patients with systemic sclerosis. Clinical Rheumato-

logy, 29:247–254, 2010.

[58] M. Koestinger, P. Wohlhart, P.M. Roth, and H. Bischof. Annotated facial

landmarks in the wild: A large-scale, real-world database for facial landmark

localization. In In First IEEE International Workshop on Benchmarking

Facial Image Analysis Technologies, 2011.

[59] T. Kohonen. Self–organizing maps, volume 30. Springer, 2001.

[60] L. Kuan, Y. Jianping, L. Zhi, K. Xiangfei, Z. Rui, and L. Wenyin. Mul-

ticlass boosting svm using different texture features in hep-2 cell staining

pattern classification. In 21st International Conference on Pattern Recogni-

tion, pages 170–173, 2012.

[61] K. I. Laws. Textured image segmentation. Technical report, DTIC Docu-

ment, 1980.

[62] D. C. Lee and T. Schenk. Image segmentation from texture measurement.

International Archives of Photogrammetry and Remote Sensing, 29:195–195,

1993.

[63] X. Li, L. Wang, and E. Sung. Adaboost with svm-based component clas-

sifiers. Engineering Applications of Artificial Intelligence, 21(5):785 – 795,

2008.

[64] S. Liao, M.W.K. Law, and A.C.S. Chung. Dominant local binary patterns for

texture classification. IEEE Transactions on Image Processing, 18(5):1107

–1118, 2009.

[65] H.C. Lin, L.L. Wang, and S.N. Yang. Color image retrieval based on hid-

den markov models. IEEE Transactions on Image Processing, 6(2):332–339,

1997.

[66] L. Liu, Y. Long, P. Fieguth, S. Lao, and G. Zhao. Brint: Binary rota-

tion invariant and noise tolerant texture classification. IEEE Trans. Image

Processing, 23(7):3071–3084, 2014.



REFERENCES 115

[67] Y.Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J.S. Schuman, and J.M.

Rehg. Automated macular pathology diagnosis in retinal OCT images using

multi-scale spatial pyramid and local binary patterns in texture and shape

encoding. Medical Image Analysis, 2011.

[68] B. Lovell, G. Percannella, M. Vento, and A. Wiliem. 1st workshop on pat-

tern recognition techniques for indirect immunofluorescence images. 22nd

International Conference on Pattern Recognition. http://i3a2014.unisa.

it/?page_id=91, 2014. Accessed: 15-02-2015.

[69] D. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national journal of computer vision, 60(2):91–110, 2004.

[70] B.B. Mandelbrot. The fractal geometry of nature. New York, WH Freeman

and Co., 1983, 495 p., 1, 1983.

[71] B.S. Manjunath and W.Y. Ma. Texture features for browsing and retrieval

of image data. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 18(8):837–842, 1996.

[72] J. Mao and A.K. Jain. Texture classification and segmentation using

multiresolution simultaneous autoregressive models. Pattern recognition,

25(2):173–188, 1992.

[73] E. Michoud, D. Poensin, and P. H. Carpentier. Digitized nailfold capillaro-

scopy. VASA, Journal for vascular diseases, 23(1):35–42, 1994.

[74] Z. Nagy and L. Czirjak. Nailfold digital capillaroscopy in 447 patients with

connective tissue disease and raynaud’s disease. Journal of the European

Academy of Dermatology and Venereology, 18(1):62–68, 2004.

[75] R. Nosaka, Y. Ohkawa, and K. Fukui. Feature extraction based on co-

occurrence of adjacent local binary patterns. In Advances in Image and

Video Technology, volume 7088, pages 82–91. 2012.

[76] R. Nosaka, Y. Ohkawa, and K. Fukui. Feature extraction based on co-

occurrence of adjacent local binary patterns. In Advances in Image and

Video Technology, pages 82–91. 2012.

[77] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen, and S. Huov-

inen. Outex - new framework for empirical evaluation of texture analysis

algorithms. In 16th Int. Conference on Pattern Recognition, pages 1:701 –

706, 2002.

http://i3a2014.unisa.it/?page_id=91
http://i3a2014.unisa.it/?page_id=91


REFERENCES 116
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