55 research outputs found

    Enhancing Distribution Resilience with Mobile Energy Storage: A Progressive Hedging Approach

    Full text link
    Electrochemical energy storage (ES) units (e.g. batteries) have been field-validated as an efficient back-up resource that enhance resilience of the distribution system in case of natural disasters. However, using these units for resilience is not sufficient to economically justify their installation and, therefore, these units are often installed in locations where they incur the greatest economic value during normal operations. Motivated by the recent progress in transportable ES technologies, i.e. ES units can be moved using public transportation routes, this paper proposes to use this spatial flexibility to bridge the gap between the economically optimal locations during normal operations and disaster-specific locations where extra back-up capacity is necessary. We propose a two-stage optimization model that optimizes investments in mobile ES units in the first stage and can re-route the installed mobile ES units in the second stage to avoid the expected load shedding caused by disaster forecasts. Since the proposed model cannot be solved efficiently with off-the-shelf solvers, even for relatively small instances, we apply a progressive hedging algorithm. The proposed model and progressive hedging algorithm are tested through two illustrative examples on a 15-bus radial distribution test system.Comment: Accepted for publication in the Proc. of the 2018 IEEE General Meeting in Portland, Orego

    Local retail electricity markets for distribution grid services

    Full text link
    We propose a hierarchical local electricity market (LEM) at the primary and secondary feeder levels in a distribution grid, to optimally coordinate and schedule distributed energy resources (DER) and provide valuable grid services like voltage control. At the primary level, we use a current injection-based model that is valid for both radial and meshed, balanced and unbalanced, multi-phase systems. The primary and secondary markets leverage the flexibility offered by DERs to optimize grid operation and maximize social welfare. Numerical simulations on an IEEE-123 bus modified to include DERs, show that the LEM successfully achieves voltage control and reduces overall network costs, while also allowing us to decompose the price and value associated with different grid services so as to accurately compensate DERs.Comment: 9 pages, 13 figures, submitted to 7th IEEE Conference on Control Technology and Applications (CCTA) 202
    corecore