2 research outputs found

    Review of Fault Mitigation Approaches for Deep Neural Networks for Computer Vision in Autonomous Driving

    Get PDF
    The aim of this work is to identify and present challenges and risks related to the employment of DNNs in Computer Vision for Autonomous Driving. Nowadays one of the major technological challenges is to choose the right technology among the abundance that is available on the market. Specifically, in this thesis it is collected a synopsis of the state-of-the-art architectures, techniques and methodologies adopted for building fault-tolerant hardware and ensuring robustness in DNNs-based Computer Vision applications for Autonomous Driving

    Analysis of circuit aging on accuracy degradation of deep neural network accelerator

    No full text
    Deep neural networks have achieved phenomenal successes in vision recognition tasks, which motivate the deployment of deep learning in portable and smart wearable devices. To overcome the fundamental challenges of power and resource limitation, application-specific integrated circuit accelerators have emerged to compact the model and use lower precision arithmetic to increase the throughput of computation with reduced power consumption. Although very high energy efficiency has been achieved by removing redundant weights, compressing data and even sacrificing timing margin, such trend in hardware acceleration that pushes the deep learning systems to the error threshold can be disastrous for the tasks they performed due to failure or degraded performance of circuit components. Concerned by the lack of attention on the evolving unreliability effects in artificial intelligent accelerators implemented by the continuously scaled CMOS technology, this paper is the first to evaluate the effect of circuit aging on performance degradation of deep learning accelerator. Our findings indicate that DNN system running at their peak throughput rate can experience up to 84% accuracy drop after a year of aging and the accumulation of errors aggravates with the depth of learning. It is also found that relaxation of throughput rate can slow down the loss of classification accuracy considerably.MOE (Min. of Education, S’pore)Accepted versio
    corecore