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Introduction 

 

 
Recently, the development of technology has led to a widespread usage 

of Machine Learning (ML) algorithms in autonomous systems, in particular in 

safety-critical autonomous cyber-physical systems. One of the key beneficiaries 

is Autonomous Driving. Nowadays, Deep Neural Networks (DNNs) are the 

trending state-of-the-art ML algorithms for most of the Artificial Intelligence 

(AI) applications. Computer vision is crucial to guarantee autonomous control, 

and DNNs promise to perform tasks as object detection, classification and 

localization with particularly high correctness. Nevertheless, the automotive 

industry has always been a competitive market in terms of strict safety 

requirements for both hardware and software designers. One purpose of 

Autonomous Driving is to exclude the human role on vehicle control. 

Therefore, it is essential to guarantee high reliability: developing a robust 

DNN algorithm represents only a single side of the problem. The other side is 

the safety and reliability of the underlying hardware architecture: DNNs have 

an high non-linear nature, hence their decision bounds are not precise. Thus, 

hardware-level faults represent a substantial problem for DNNs implementation 

as they might expose to risk the entire system safety by leading to unforeseen 

network decisions. 
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Motivation 

 

 
The aim of this work is to identify and present challenges and risks 

related to the employment of DNNs in Computer Vision for Autonomous 

Driving. Nowadays one of the major technological challenges is to choose the 

right technology among the abundance that is available on the market. 

Specifically, here it is collected a synopsis of the state-of-the-art 

architectures, techniques and methodologies adopted for building fault-tolerant 

hardware and ensuring robustness in DNNs-based Computer Vision 

applications for Autonomous Driving. 
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Chapter 1 

Preliminary Concepts 

 

 
In the first chapter of this thesis work there will be a brief description of the 

most common characterization of the autonomous driving, a review of the 

typical hardware failures and threats, a summary of the main standard (ISO 

26262) that rules the reliability of Autonomous Driving, and an introduction to 

Deep Neural Networks and their application on safety-critical systems. 
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1.1. Characterization of Autonomous Driving 

 
In the SAE International’s standard J3016: Taxonomy and Definitions for 

Terms Related to On-Road Motor Vehicle Automated Driving Systems [1] six 

levels of driving automation are identified. This is done in order to provide a 

common taxonomy to make simpler communication and collaboration between 

technicians.  

 

Figure 1.1. Levels of driving automation [1] 

 

A key demarcation line can be drawn between level 2 and level 3: considering 

levels from 0 to 2 the human driver is in charge of monitoring the driving 

environment, while from level 3 to 5, it is the automated driving system the 

actual responsible of performing the entire dynamic driving task. It is worth 

noting that a specific vehicle under consideration can be provided by multiple 
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features, and depending on the number of features that are activated it could 

operate at different levels. These levels are summarized in a table, shown in 

figure 1.2: 

 

 

Figure 1.2. Description of levels of driving automation [1] 

 

 

1.2. Review of typical Hardware Failures and Threats 

 
In literature, the main idea behind dealing with failures, is not to target physical 

defects, but to classify them by the effect they have on the circuitry behaviour: 

this approach is known as finding and describing Fault Models. This strategy is 

crucial in testing and in diagnosis, but also in an approach called Fault 

Tolerance. The last one is referring to guarantee the correctness of operations 

of systems in the field, meaning that systems must be able to detect eventual 

faults and then to mask them or correct them as fast as possible. Depending on 

the target system, the consequences of a fault can be catastrophic or not. 

Autonomous Driving, which is the topic of this work, is a very important 
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example of safety critical application, with high dependability needs. 

Dependability is a global concept including Reliability, Availability, Safety 

and Security. The fundamental concept characterizing the Fault Tolerance 

approach is the fact that the design of products is reinvented in order to tolerate 

faults in the field: this is as successful as the designer is able to predict the kind 

of faults that can happen in the field. Therefore, it is very important to have 

available accurate and extensible fault models. Between traditional hardware 

fault tolerance techniques, it is possible to mention Modular Redundancy, 

Online Testing and Recovery and, specifically for memories, Error Correcting 

Codes.  

Coming to the most common threats and hardware failures, they can be 

classified as hazards, potential sources of harm caused by malfunctioning 

behaviour of one circuit. It is worth noting the following ones: 

• Permanent faults: faults that are always present from the moment in 

which they appear. Examples of these are transistor stuck-at, transistor 

stuck-on, transistor stuck-open, resistive bridging faults, crosstalk faults. 

Faults of this kind can be generated by Process Variations, meaning that 

there are imperfections in the chip fabrication process, and also by 

Aging, so degradation in circuit’s characteristics over time.  

• Transient faults: faults that are only temporarily present, then the 

system goes back to its correct operation. Faults of this kind are usually 

generated by external environmental events, like high energy particle 

strikes (cosmic rays producing energetic neutrons or alpha particles 

coming from package decay) or electromagnetic interferences. Also 

temperature of operation has a role in this context. The consequence of 

this class of faults are the so-called Soft Errors, that are basically 

transient bit flips. 

• Intermittent faults: faults that are only sometimes present, an example 

are the ones due to external vibrations. 
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One of the key purpose of fault tolerance is to achieve a sufficiently high fault 

coverage with respect to the considered fault models, and to keep fault models 

considering a wide scope of possible failures. 

 

1.3. Summary of the standard ISO 26262 

 
Reliability study and its assessment is structured by different standards, released 

referring to different application domains. 

ISO 26262: Functional Safety – Road Vehicles has been the main standard 

regarding Functional Safety in the automotive domain since 2011, when its first 

edition was published. Its purpose was to address specific safety requirements 

of Electrical and Electronic (E/E) systems embedded in road vehicles. It is a 

general standard: it is oriented to the whole safety lifecycle of systems’ 

development. Indeed, functional safety features are part of each automotive 

product’s development phase: specification, design, implementation, 

integration, verification, validation and product release. ISO 26262 does not 

address the nominal performance of E/E systems; it is about the possible 

hazards caused by malfunctioning behaviour of E/E safety-related systems. 

First, there is an identification of safety goals aiming to detect and moderate the 

effect of hazards, then as a consequence of these goals some requirements for 

the final architecture, in terms of both hardware and software, are listed. 

Nowadays it is applied the second version of this standard. In the standard 

functional safety is defined as “The absence of unreasonable risk due to any 

potential source of harm caused by malfunctioning behavior of electrical and or 

electronic systems” [2]. Then safety is instead defined as “The absence of 

unreasonable risk due to any potential source of harm caused by malfunctioning 

behavior of electrical and or electronic systems” [2]. In the standard there is 

also a portion (Part 2) regarding the Functional Safety Management, which 

discusses the activities to be completed during the safety lifecycle with annexed 

requirements. In the third part, there is a categorization of the potential hazards, 

that is done by the identification of three aspects: severity (importance of 
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consequences), probability of exposure (of the driver to the risky situation) and 

controllability (evaluated as action taken by a driver, it is the capability to avoid 

unsafe events). At the end of this, it is possible to do a classification, assigning 

to different hazards a certain level called Automotive Safety Integrity Level 

(ASIL). Everything is summarized in the table of figure 1.3. To properly read it, 

it is worth noting that the three aspects under investigation are evaluated as 

follows: 

• Severity: between S1 (light and moderate injures) and S3 (fatal injuries); 

• Probability of exposure: between E1 (very low probability) and E4 (high 

probability); 

• Controllability: between C1 (simply controllable) and C3 (difficult to 

control or uncontrollable)   

As a result, there is the definition of four ASILs: 

• From ASIL A (the lowest safety integrity level) to ASIL D (the strictest 

safety integrity level). 

It is possible to notice that there is also another label, QM, that stands for 

Quality Management, which is there to represent the cases in which there is no 

requirement in accordance with ISO 26262. Anyway, for other kind of 

requirements in fields of Durability, Quality, Reliability etc., those situations 

should be considered. 

 

Figure 1.3. ASIL Determination [2] 
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The same typology of levels (ASILs) is assigned also to the safety goals, which 

are expressed to avoid or moderate the effect of an hazard. Finally, as a 

consequence, from safety goals, safety requirements are stated, and then they 

inherit the corresponding ASIL level. 

The product development is directed by the Technical Safety Concept, that is 

locating the requirements in a precise way to the system components (hardware 

and software). When the final product is ready, to be compliant with the 

standard it is needed to pass a Safety Validation step, in which each requirement 

is verified. The whole process can be summarized in the following figure: 

 

 

Figure 1.4. Flow of identifying hazards to creating functional safety requirements [3] 

 

 

The portion of the standard which is of particular interest of this thesis work, is 

the one regarding the technical safety concepts in the hardware development. It 

is well summarized in the article by Jung et al. [4]. Every level of ASILs is 

characterized by its own procedures regarding items development. Technical 

specifications about hardware compliance are based on some metrics that relate 

an hardware element with respect to its failure modes. The analysis specified by 

the standard is referred to random hardware failures affecting E/E parts. The 

neglection of systematic failures is done supposing they are detected and treated 

during initial tests. 

To define and evaluate the hardware architectural metrics, it is needed a list 

with precise definitions of failure modes. Figure 1.5 is summarizing them. 
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Figure 1.5. “Failure modes classification of a hardware element” [4] 

 

Jung et al. in [4] report the following definitions from the standard: 

• “Safe fault: fault whose occurrence will not significantly increase the 

probability of violation of a safety goal” [4] 

• “Multiple point fault: one fault or several independent faults that in 

combination, leads to a multiple point failure (either perceived, detected 

or latent) 

- Perceived: This fault is deduced by the driver without detection 

by a safety mechanism within a prescribed time. 

- Detected: This fault is detected by a safety mechanism to prevent 

the fault from being latent within a prescribed time. 

- Latent: This fault is neither detected by a safety mechanism nor 

perceived by the driver.” [4] 

• “Single point fault: fault in an element which is not covered by a safety 

mechanism and where the fault leads directly to the violation of a safety 

goal” [4] 

• “Residual fault: portion of a fault which by itself leads to the violation 

of a safety goal, occurring in a hardware element, where that portion of 

the fault is not covered by existing safety mechanisms” [4] 
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For each of these definitions it is possible to evaluate the corresponding failure 

rate. Given these characterizations, the procedure described by the standard 

concerns the evaluation of two specific metrics: the Single Point Faults Metric 

(SPFM) and the Latent Faults Metric (LFM). These systems of measurement 

are representing, respectively, the robustness of the element under consideration 

to single point faults and to latent faults. This robustness is guaranteed either by 

safety mechanisms of by design. 

There is another important metric to take into account, called the Probability of 

Dangerous Failure per Hour (PFH). The Failures in Time metric (FIT) 

metric is obtained in this way: 1 FIT corresponds to a value of 10-9 of PHF. 

Kafka in [5] describes also the way to evaluate the mentioned metrics. What is 

important for this thesis work, is their relationship with the ASIL levels, and 

this connexion is clear from the figure 1.6: 

 

Figure 1.6. “Target values of SPFM, LFM, PFH dependant from ASIL A, B, C, D” [5] 

 

 

1.4. Introduction to Deep Neural Networks 

 
Based on Machine Learning (ML) and historical data, Artificial Intelligence 

(AI) consists in implementing and deploying algorithms for machines to solve 

and act on problems by themselves. Deep Learning is one of ML methods 

whose purpose is to extract features from data. Neural Networks were 

mentioned for the first time in the 1940s [6], with the purpose to emulate the 

human brain system to find the solution to general learning problems. In the 

1980s and 1990s this methodology was sufficiently common. Nonetheless, it 



16 
 

experimented a decline basically due to the lack of computational power. Then, 

since 2006, Deep Learning has become widespread, thanks to the comparison in 

the market of some large-scale annotated data, to fast progress in designing of 

systems able to provide high computational power also exploiting parallelism 

(i.e. GPU). Moreover, some problems were more acceptably handled, like the 

management of a good initialization and the reduction of overfitting. 

Furthermore, with the advent of DNNs, it was possible to obtain better results 

thanks to their deeper architectures: using an augmented and larger amount of 

layers they started to be able to capture higher levels of patterns and this can be 

translated in the ability to learn more complex features.  

A Deep Neural Network is usually made by different layers. Commonly, it is 

composed by an input layer, followed by multiple intermediate layers (named 

hidden layers) and an output layer. Each layer transforms the data to create a 

new representation (in a hyperplane) and processes each complexity in turn. In 

each layer there is a certain number of nodes (artificial neurons), each node has 

an activation function, which is a non-linear function (i.e. max[0, value]) of a 

weighted sum of the inputs. Depending on the number of mutual connections 

between nodes, layers can belong to different types. The activation functions 

are the way in which learning happens: it is necessary that they are non-linear to 

guarantee the learning process. There exist a lot of different types of activation 

functions. One common weakness of Neural Networks in general is that they 

can’t be explained, so we can consider them fully a black box: this happens 

mostly because of the non-linearity which is present thanks to the activation 

functions. 
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Figure 1.7. An example of a DNN Architecture from [7] 

 

Going into details and referring to figure 1.7, it is possible to briefly describe 

the operation of a DNN. The learning knowledge is situated in weights and 

biases of neurons.  

 

Where: 

• Wj is the general weight vector; 

• Xi is the input vector of features; 

• Wj · Xi is the inner product between weights and inputs; 

• bj is the bias of each layer; 

• g(x) is the activation function; 

• ti is the output vector; 

• N is the number of layers. 
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To determine weights there are basically two phases: Training and Validation. 

Briefly, in the first phase, thanks to a training dataset, weights are evaluated. 

Then in the Validation phase, with a disjoint dataset the model is checked. Then 

if it is sufficiently convincing, the model is considered ready to be put into 

operation: this phase is called inference. DNNs, as just described, have a 

particularly parallel structure. To perform efficiently their typical kind of 

processing they are needed high computational capabilities, due mainly to the 

increased number of filter, neurons and parameters adopted, to provide a 

significant improvement in performances. 

DNNs have found suitable for computer vision tasks. During the years, thanks 

to the lowered price of expensive processing hardware, to the growing 

processing capabilities and to the increasing amount of data that is started to 

appear online, it was possible to use DNNs with larger data sets and in real-life 

scenarios as Autonomous Driving. 

It is possible to notice the hierarchical structure of layers in modern DNNs. One 

branch of DNNs that are actually deployed into self-driving cars, are 

Convolutional Neural Networks (CNN): in this particular type of network the 

first computation happens in convolutional layers (that are a certain number, 

from 3 to few tens), performing multi-dimensional convolution calculations. 

These layers are in charge to apply a filter to obtain the main features present at 

the input and to describe a feature map. Usually, there is a certain number of 

fully connected layers, that are dedicated to classification purposes. These kind 

of layers can be of Pooling type, extracting the local maximum value to be 

forwarded, or of Normalization type, averaging the inputs. 

Concerning Computer Vision, the problem to which this work is oriented is 

Object Detection and Localization. So, the aim is, starting from data collection 

coming from sensors (mostly cameras), to assess where and what kind of 

objects are present in a certain image. Current algorithms are able to provide 

bounding boxes around objects that are detected and to deliver also the so called 

Confidence Score, assessing the probability with which the detected object 
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belongs to the provided category. Then, based on the results of Object Detection 

and Localization, path decisions are taken. 

 

1.5. Deep Neural Networks in Safety-Critical Systems 

 
A critical requirement for Safety-Critical systems based on DNNs’ learning is 

the estimation of how much trust should be put in DNNs’ output. Definitely, in 

applications like Autonomous Driving, even a single misprediction can have 

catastrophic consequences. Henne et al. in [8], present a Benchmark Analysis of 

Estimation Methods. They assert that it is very important to minimize the 

amount of mistakes made by such systems, and one way to do so is to improve 

performances, in terms of accuracy, as much as possible. The other side of the 

medal is that it is needed a certain degree of awareness concerning the 

reliability of the provided outputs: mistakes and errors can lead the system to 

different kinds of scenarios, with different criticality in terms of consequences.  

Regrettably, the standard method to evaluate the confidence when dealing with 

DNNs is based on the outcome of a typical final layer, called SoftMax, which is 

providing the class to which the detected object belongs and a so-called 

confidence score. This score is usually read as a posterior probability, providing 

a relative mark of the considered output with respect to all the other outputs that 

are being produced. So, the confidence score cannot be considered as reliability 

score, and this is one of the big challenges of this field. The problem is that the 

SoftMax score tends to give an overconfidence. This is particularly true in two 

cases: 

• Out-of-Distribution (OOD): When the input is not very similar to the 

training data. Out-of-Distribution Detection is a kind of analysis which 

aims to minimize the misclassifications in outputs given by a DNN. This 

analysis’ purpose is to try to find kinds of data that in some 

circumstances can be at the input of the network and are hardly different 

with respect to the ones on which the network was trained on. 

• Adversarial example: When the input is crafted to attack the network.  
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Chapter 2 

General Reliability Evaluation Framework 

 

 
In the second chapter of this thesis work there will be a brief analysis of the 

impact of general errors on the classification accuracy of the inference phase of 

Deep Neural Networks, followed by a case study highlighting the fact that each 

system should be completely characterized to be safely put into operation. Then 

there will be a description of the most common reliability tests, and finally 

evaluation of criticality of errors happening in Deep Neural Networks 

execution. 
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2.1. Impact of General Errors on DNNs’ Accuracy 

 

Ozen and Orailoglu in [9] present an experimental analysis regarding the impact 

of general errors, assumed being bit flips during the computation of the 

activation functions or mistakes affecting weights and bias. The purpose is 

simply to show the importance of the topic because of the fact that human lives 

are involved. 

 

Figure 2.1. “The error impact on the DNN accuracy” [9] 

 

 

From the results shown in figure 2.1, it is possible to infer the existence of a 

threshold for the error rate: when it is exceeded, it occurs a high degradation of 

the accuracy and therefore it is very likely to violate safety critical constraints. 
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Moreover, errors affecting weights and bias are more dangerous because of the 

practise of reuse of these values, consequently leading to an increased error 

probability. 

A popular structure adopted to perform the typical computation of neural 

networks is a Systolic Architecture, made by a set of interconnected processing 

elements. In the case of DNNs, each processing element is only in charge to 

perform a multiply and accumulation (MAC) operation. A detailed description 

of the mentioned architecture will be outlined in Chapter 3. Concerning the 

impact of stuck-at faults, in [10], it is evaluated their impact on classification 

accuracy. In the analysis Zhang et al. focused only data-path faults since it was 

representing a significant fraction of the whole chip. Errors in memories are not 

taken into account because of the fact that they can be corrected, most of the 

times, thanks to the adoption of suitable Error Correcting Codes.  

 

Figure 2.2. “Classification Accuracy Drop Due to Stuck-at-Fault MACs.” [10] 

 

In figure 2.2 are presented the results of the analysis of the impact of simulated 

stuck-at faults on classification accuracy: it is worth noting that even with little 

MACs affected there is a considerable drop in the accuracy.  
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2.2. A Case Study on Bit Transitions 

 
Hanif et al. in [11] present a case study highlighting the fact that each system 

should be completely characterized to be safely put into operation. It regards 

one singular aspect: they distinguish the faults only in two kinds: transition of a 

bit value from 1 to 0 and the opposite case. In this investigation it is set a 

simulation in which there are memory faults, affecting network’s parameters. 

The structure considered is shown in figure 2.3. 

 

Figure 2.3. “Experimental setup for illustrating the impact of memory faults in DNN 

execution.” [11] 

 

To represent both weights and inputs, it is assumed also to use a 32-bit floating 

point precision, whose structure is shown in the figure 2.4. 

 

 

Figure 2.4. “Single precision floating point storage format used in our DNN design.” [11] 

 

In this study, to mark the difference of the impact of the bit flip when it happens 

in different locations in the word, the injection of faults is done separately and 

analyzing the impact of the failure of one bit at a time. The outcomes of this 

analysis are exhibited in figure 2.5.  
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Figure 2.5. Impact of bit flip errors, distinguishing different transitions [11] 

 

They performed a thousand of tests to compute this accuracy. The first outcome 

is that the impact of any kind of fault drops as the bit significance goes down. 

The second one is obtained comparing the impact of transitions: the bit flips 

from 0 to 1 have a drastic effect on the accuracy of the network if related to bit 

flips from 1 to 0. The reason in this particular case of the denoted behaviour is 

that when it happens a 0 to 1 transition in an exponent bit, the result is a large 

growth of the output, and this mismatch results in a misclassification. 

The aforementioned case study reveals one kind of analysis that is possible to 

do to better characterize the consequences of different kinds of faults in a 

specific application.  

 

2.3. Reliability Tests 

 
Reliability tests are mainly implemented through the so-called fault-injection 

campaigns. In general, these operations require a huge number of simulations 

and therefore they are often expensive in terms of time and energy 

consumption. 

In literature there exist two main categories of fault injection techniques: 

• Hardware-based techniques: in this case faults are directly injected in 

the target hardware; hence these methods are more realistic and are able 

to provide true-to-life results. 
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• Software-based techniques: here hardware faults are simulated at an 

abstract level; they are able to provide sufficient accuracy and in general 

they are cheaper with respect to the previous ones. 

 

2.3.1. Neutron Beam Experiments 

 
The first methodology to test the reliability, mentioned by Dos Santos et al. in 

[12], is related to neutron beam experiments. The purpose of this experiments is 

to characterize the behaviour of the chip with respect to soft errors. 

The whole device under test is irradiated with a controlled neutron beam, hence 

in a realistic way every kind of fault can arise. Conceiving this class of 

experiments, it must be taken into account the conventional assumption that is 

always made when dealing with high reliability in the field: Faults occur one at 

a time (instant by instant). Typically, the neutron flux used in this kind of 

experiments is 5-10 orders of magnitude higher with respect to the actual 

(terrestrial) one at the sea level. This detail allows the characterization of 

periods of time that are much longer with respect to the periods in which the 

chip under test will be employed in reality. 

For this kind of reliability characterization, it is needed a golden (fault-free) 

evaluation of each output and a comparison with the output of the device under 

test. Whenever a discrepancy is found, the situation is underlined as altered by a 

Silent Data Corruption (SDC). 

There exists another kind of error that can happen and it is called Detected 

Uncoverable Error (DUE). As described by their name, these errors can be 

discovered by hardware or software means, but it is impossible to correct them. 

An example of DUE is a crash of the program. During neutron beam 

experiments it is possible to insert watchdogs with the aim to find DUEs. At the 

end of the experiment there is a post-processing phase in which outcomes are 

translated in a standard way, measuring the Failures In Time (FIT) rate, as 

stated by the standard ISO 26262. 
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2.3.2. Fault-Injection Framework 

 
One limitation of neutron beam methodology is that the effective detection of a 

fault happens only in the case it is shown at output. So the fault propagation 

process is not clearly observed. To analyze this other particular case, there 

exists another kind of experiment called fault-injection, mentioned by Dos 

Santos et al. in [12]. It is software-based and there exist many open source 

programs performing properly this task. 

The idea is to put in a casually chosen register a random value, in a randomly 

picked moment. The choice of where to inject the fault can be done based on an 

uniform distribution, considering the number of bits used to represent weights 

or values, as proposed by Neggaz et al. in [13]. To better emulate hardware 

faults propagation, random values are injected at low level: transient faults may 

result in a bit flip that, if propagated to memory, can cause the storage of a 

wrong value. 

Bosio et al. in [14] use a Fault Injection Framework to study the impact of 

permanent faults, that can easily be generalized to each kind of fault whose 

effect is to determine a bit flip. They consider a context in which the fault 

location is defined punctually by a field called Flo in which they are specified 

in turn the correspondent faulty layer, the edge connecting the faulty node to 

that layer, the faulty bit in the weight representation and the polarity of the 

stuck-at. A pseudocode representing the injection is presented in figure 2.6. 

 

Figure 2.6. “Fault Injection Pseudo-Code” [14] 

At the beginning there is a golden evaluation of the faulty-free network and, 

after that, the fault injection process is induced. Actually a list of locations 

where to inject the fault is provided, then for each component of this list an 
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execution of the faulty resulting network is run and the result is compared with 

the faulty-free one. After this step, it is possible to make a classification of 

errors, and it is possible to identify a masked phenomenon as a situation in 

which there is no difference between the golden prediction and the faulty one. 

In case of a difference, Bosio et al. in [14], decided to consider as a safe error 

an error in which the confidence score of the mainly detected element is within 

a variation of ± 5% with respect to the golden prediction. Otherwise, it is an 

unsafe error.  

 

2.4. A Fault Vulnerability Evaluation Methodology 
 

Lotfi et al. in [15] introduce an interesting parameter-based Fault 

Vulnerability Evaluation Methodology, based on the assumption of using a 

Neural Network that provides a confidence score for the detected bounding 

boxes using logistic regression. It can be easily extended to Neural Networks 

using other methods to determine the confidence score of the boxes. As it is 

possible to see in Figure 2.7, it is assumed to have the possibility of running in 

parallel, receiving the same inputs, a Golden Network – Fault free and a Faulty 

Network, in which it is simulated the arising of a fault. 

 

 

Figure 2.7. "Evaluating the impact of faults on the inference object detection network 

accelerated by GPUs” [15] 

 

 

• In this process there is a bit of post processing done in order to adjust the 

output of both networks to better provide an evaluation. The first step aims 
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to get rid of the bounding boxes having a confidence lower than a threshold, 

to be properly set. 

• The second step is dedicated to merge bounding boxes that are discovered to 

represent the same object in the same region: it is defined a metric called 

Intersection over Union (IoU): it is the ratio between the intersection area of 

two different boxes, over the union area. The nearer is the value of IoU to 

the unit value, the better is the overlap between the two boxes taken into 

consideration. Again, in this case there is the need to set another threshold to 

decide whether to merge or not the two bounding boxes under investigation. 

Later the confidence scores of the two boxes are summed, and if this value 

is higher than a third specific threshold (as usual, to be properly established), 

then that cluster of bounding boxes is picked as a detected object in the final 

set. 

• The rest of bounding boxes not passing the thresholds-analysis are discarded 

and not presented at the output. 

This is the moment at which happens the comparison between the bounding 

boxes of the object revealed by the two networks. It is considered the overlap 

ratio, evaluated reusing the aforementioned metric (IoU): a fourth threshold 

value is set and based on it, a decision is made. The decision process is shown 

in Figure 2.8. 
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Figure 2.8. “Comparison outcomes for faulty and golden objection detection networks (bbox 

stands for bounding box)” [15] 

 

The authors introduce basically three possible scenarios: 

1. Masked: It happens when the IoU ratio is higher than the threshold. In 

this case the error has no effect on the network output, the object is 

correctly detected and classified and therefore it is a safe scenario. 

2. Silent Data Corruption (SDC): It happens in the case in which the IoU 

is lower than the threshold. Here the fault succeeded in generating an 

error that is translated into an incorrect output. 

3. Inclusion: This is an intermediary situation, in which the IoU ratio is 

lower than the threshold but the faulty network at the end detects and 

classifies the correct object. This scenario can be classified either as safe 

or SDC: the trajectory planner in the autonomous vehicle can either 

avoid the obstacles or react in advance or with a certain delay. 

Now, given the fact that this discussion is dealing with a strong safety critical 

application in which human lives are involved, the inclusion case should be 

included in the unsafe scenario. Some examples are shown in Figure 2.9. 
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Figure 2.9. “Examples of fault effect on the output of object detection network” [15] 

 

This methodology, anyway, is strongly dependent on parameters, that should be 

properly set. 

 

2.5. Error Criticality Evaluation 
 

Dos Santos et al. in [12] describe an interesting classification of errors, based 

on the evidence that errors are not all equal. Indeed, certain output errors can be 

considered as tolerable if the predicted object’s classification and localization 

are adequately close to the fault-free output, that in this case is represented by 

the environment around the autonomous vehicle. The fundamental idea behind 

this classification is to combine metrics already known, characterizing the 

behaviour of Deep Neural Networks: 

 

Precision, or positive predictive value is the ratio between the number of True 

Positives (TP), that are objects correctly detected and classified, and the sum of 

TP and FP, where FP stands for False Positives, representing the number of 

objects incorrectly detected (assuming that a fault-free DNN is never giving a 
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FP as an output). Precision is the fraction of relevant instances among the 

retrieved instances and it indicates the amount of selected objects that are 

relevant. If the precision score is 100%, it means that all the detections made by 

the classifier are correct. 

 

Recall is defined as the ratio between the number of True Positives (TP) and the 

sum of TP and FN, where FN stands for False Negatives, representing the 

number of objects that are present but not detected.  Recall is the fraction of the 

total amount of relevant instances that were actually retrieved and it indicates 

the quantity of relevant items that are selected. If the recall score is 100%, it 

means that all the objects in the environment were perfectly classified. 

Based on a combination of the two metrics just mentioned, Dos Santos et al. in 

[12] separate errors in two classes: non critical errors and critical errors. 

• The first class is the one labelled as non critical error, and it is 

characterized by the following conditions: Precision higher than 90% 

and Recall equal to 100%. The strict condition on Recall means that 

every object in the environment is actually detected, but the relaxed 

condition on the Precision value means that it is possible that an object 

could be incorrectly classified. 

• The second class is categorized as critical errors, and it is denoted by 

the subsequent circumstances:  Precision lower than 90% and Recall 

different from 100%. Thanks to the first circumstance there is an amount 

of non-existing objects identified and this can lead the autonomous 

vehicle to make superfluous stops. Moreover, the fact that the Recall is 

not perfect means that there exist real objects which are not seen by the 

vehicle and this can produce accidents. 

Another important observation that can be done, as considered by Neggaz et al. 

in [13], is to distinguish the critical impact that a fault brings if it affects values 

or weights that are going to be wrongly stored in memory and the lighter effect 

of a fault affecting a combinational evaluation which is only made once. 
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Chapter 3 

Permanent Faults Mitigation on Deep Neural 

Networks’ Hardware Accelerators 

 

In the third chapter of this thesis work there will be a description of some 

innovative techniques to mitigate the impact of permanent faults (stuck-at) 

generally in Hardware Accelerators. These methods regard the post-

manufacturing phase. The structure of the chapter is the following: at the 

beginning there is a summary of a general methodology, then an error resilience 

analysis and finally some specific methods are detailed. 
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3.1. A Methodology for Designing Reliable AI Systems 

 

Henne et al. in [8] show a perception chain dedicated for an autonomous 

driving system. Here it is possible to see implemented a countermeasure to 

include a possibly unreliable DNNs’ based Computer Vision algorithm, into an 

autonomous vehicle. The core idea is to delineate borders of the unreliable part 

in a box called safety-envelop. An example is shown in figure 3.1. 

 

Figure 3.1. “Concept overview for utilizing uncertainty information of modular perception 

stages for dynamic dependability management” [8] 

In each step of the perception, it is involved the use of a certain kind of DNN. 

There are basically two outcomes after each stage: a first one that is directed to 

the next step for further processing and a second one assessing its reliability, 

which is sent to a runtime monitor. Then online decisions regarding which 

information to trust are taken and in case of a decision to not trust that 

information, the Artificial Intelligence part is excluded and it is activated a 

Low-Performance safe path taking the overall system in a safe scenario.  

Hanif et al. in [11] propose a general approach thanks to which it is possible to 

deal with design of resilient and reliable systems running machine learning and 

artificial intelligence applications. The procedures are divided in two big 

categories: Design-Time and Run-Time, and are described in Figure 3.2. 



34 
 

 
Figure 3.2. “Methodology for designing reliable systems for ML applications” [11] 

 

The core problem in design time is to define an high reliable error-resilient 

Deep Neural Network Accelerator. It is strictly oriented to the kind of networks 

that will run on it. It is rendered an error resilience analysis focused on 

modelling the robustness of the network. Then from the outcomes of this 

analysis, together with design constraints a zero-accelerator is designed. Later 

they suggest adding additional circuitry to provide support for run-time 

reliability (i.e. timing error detection and mitigation circuitry). Finally the 

accelerator is developed, using a Reliability Aware-Synthesis technique. For 

what concerns reliability of memories, Error Correction Code (ECC)-based 

practices can be adopted and they can be really effective. The authors here do 

not recommend the use of redundancy because of the significant overhead 

introduced and since each element added is hungry of resources. 

A detail which is included in this methodology is the fact that the outcome 

structure can sustain instruction-level redundancy or partial hardening of critical 

hardware modules. 

Regarding the run-time methods here are suggested basically two approaches: 

• Fault-aware mapping of the networks: It is needed a post-production 

permanent-faults identification, whose outcomes are intersected with the 

ones of the aforementioned error resilience analysis to apply a fault-

aware mapping of the networks. This approach is exploiting the error 
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resilience analysis for offering as considerable performance and 

resource benefits as feasible. 

• Adaptive voltage and frequency scaling: Approach based on a 

monitoring of soft/timing errors, trying to guarantee reliability trading 

off with performance and energy efficiency. This can be achieved 

applying adaptive voltage and frequency scaling. If required, it is 

possible to add Software redundancy.  

 

3.2. Deep Neural Networks’ Accelerators and Graphic 

Processing Units 
 

It has already been discussed about the fact that DNN-based inference 

applications need a significant amount of computational power to be efficiently 

run. One possibility is to use a certain kind of accelerator. The first one that this 

analysis is taking into account is a Graphic Processing Unit (GPU). Indeed it is 

a family of architectures well-suited to improve the performances of such 

DNNs because those chips offer a good leverage of data and an efficient thread-

parallelism, necessary for the kind of operations they have to perform, that as 

mentioned are multiplications and accumulations. GPUs are one of the enabling 

technologies to allow object detection and classification in the Autonomous 

Driving applications, since they can offer high-throughput computational 

performances. There is the need to assess the vulnerability to hardware faults to 

ensure that the safety requirements imposed by the standard ISO 26262 are 

fulfilled. The investigation is based on the evidence that any kind of fault 

arising in the GPU hardware may result in a failure in the network running on 

top of it, which on turn may cause an infringement of a safety requirement. 

The basic internal structure of GPUs is shown in figure 3.3. It is possible to see 

that internally there is a partition into blocks called streaming multiprocessors 

(SM). Each of these cells is a computing unit that can run different threads in 

parallel, but each one owns dedicated memory cells. Then to schedule these 

threads it is needed only a simple control unit, since each thread can count on a 
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dedicated memory and so the sharing of complex resources is avoided. 

Moreover, to reduce latency, threads are not interacting with each other. 

 

Figure 3.3. “Simplified internal structures of a GPU.” [16] 

 

Since GPUs were originally designed for non-safety-critical applications like 

the ones related to entertainment or video/image editing products, they may 

result particularly susceptible to transient errors [16]. Moreover, given their 

massively parallel structure and thus their need to sustain a considerable 

number of parallel processes, in the GPU there are large caches and register 

files, very vulnerable to transient faults. 

The acceleration based on GPUs is only one way to reduce the computational 

load due to the presence of DNNs. Actually, there exists an increasing interest 

of the market in designing special purpose hardware accelerators in order to 

obtain better performances and simultaneously to be energy efficient.  

There exists a list of properties that are common to all the DNNs computation, 

that can be exploited in the design of DNN Accelerators: 

• The dependency between each computation is not strong: different 

operations can be executed in parallel; 

• There is a strong dependency between used data: the reuse can be 

strategically adopted. 

An accelerator involves basically a series of processing elements, like MACs, 

and a global buffer. Then it should be connected to a memory from which 
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transfer the data, like a DRAM, and a CPU usually performing scheduling and 

basically off-loading tasks from the accelerator. 

A first point that should be taken into account is the difference between faults 

that can propagate in different ways: the ones affecting the datapath, that can 

only happen once, differently with respect to the ones in the buffer, that instead 

can be scanned multiple times because of the reuse. 
Nowadays, almost all the training phase is made with floating point operations, 

and this is one reason because of the fact that the employment of GPUs has 

been so widespread. Then it is made a step called quantization, converting 

floating point numbers into relatively-small-precision integers (usually just 

made of 8 bits), because they are considered well-suited for an acceptable level 

of accuracy in inference [17]. This choice is improving energy consumption and 

area requirements. 

Jouppi et al. in [17] propose an architecture of a DNN hardware accelerator 

called Tensor Processing Unit (TPU). It is employed mostly in Google 

Datacenters to accelerate the inference phase of some algorithms of Neural 

Networks. Since this chip is designed to be only an accelerator, it is more like a 

coprocessor, it needs the cooperation of a complete processor. For the purposes 

of this work, it is provided a brief description of the structure of this 

architecture. 
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Figure 3.4. TPU Block Diagram [17] 

 

In Figure 3.4 it is presented the block diagram. For the purposes of this work, it 

is worth noting that most of the computation happens in the Matrix Multiply 

Unit (yellow). The basic idea behind the architecture under consideration is to 

maintain the mentioned unit busy as much as possible, trying to overlap the 

Matrix Multiplication operations execution with the one of other instructions. 

Inspecting more in detail the considered fundamental unit, it is possible to 

notice the presence of a Systolic execution (Figure 3.5). 
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Figure 3.5. “Systolic data flow of the Matrix Multiply Unit” [17] 

 

Data flow from the left, while weights are preloaded from the top: the multiply-

accumulate process transfers through the matrix as a diagonal wavefront. 

This architecture efficiently implements matrix multiplications and 

convolutions exploiting Systolic Arrays. Systolic Architecture studies can date 

back to the ‘80s [18], but are very efficient nowadays. More in details, a 

systolic architecture is made by a set of interconnected processing elements, but 

each of them is only able to communicate with its neighbours. In the case of 

DNNs, each processing element is only in charge to perform a multiply and 

accumulation (MAC) operation, before passing ahead the computed value. 

Therefore, data are streamed through the grid in a synchronized mode: in this 

way it is bypassed the need for computing and apply complex routing 

algorithms. Moreover, this architecture is able to provide energy efficiency, and 

this is due to the fact that reading’s cost of inputs from memory can be 

amortized over several cycles. 
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Figure 3.6. More detailed Matrix Multiplication Unit [10] 

 

In figure 3.6 it is shown the systolic array containing N x N MAC units, able to 

perform matrix multiplications and convolution operations [10].  

One advantage of this structure is that it is able to maximize the percentage of 

computing time to I/O operations’ time. Different layers are processed one at a 

time. Different kind of analysis that are detailed in [17], show that the 

bottlenecks that can happen can actually relate more to lack of memory 

bandwidth with respect to peak of computing. It is worth saying also that this 

chip was designed considering also some requirements related to response time, 

since it was employed in Natural Language Processing applications, that are 

actually end-user-facing services. The important fact is that it is reduced the 

dependency with the host CPU: the TPU is able to entirely sustain the whole 

execution of Neural Network models; this feature can be crucial in the sense 

that dividing tasks between different chips it can be easier to build reliable 

architecture, as a set of safe components. 
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3.3. Error Resilience Analysis 
 

Hanif et al. in [19] underline the essential necessity for an Error Resilience 

Analysis whose aim is to contextualize strength and weaknesses of a specific 

DNN. Therefore, based on this result, is it possible to apply the methodology 

described at the beginning of this chapter, but also to apply techniques, like 

pruning, whose purpose is to achieve an optimal gain in energy consumption or 

in execution time. Indeed, thanks to this kind of analysis it is possible to 

recognize probable candidates, ready to be modified (through suppression or 

optimization), without invalidating the global accuracy. The goal of the 

considered analysis is to examine the network resilience against errors of any 

sort. Thus, the authors divide the process in two steps: hardware level and 

software level error resilience analysis. For the purposes of the current work it 

is worth underlying the first approach. 

One key assumption, often made dealing with general errors, is to consider the 

errors as independent and identically distributed. Therefore, the addition of 

errors caused by multiple and independent faults, for a sufficient amount of 

errors, can be considered as a Gaussian distribution. Consequently, the main 

concept is to test the error resilience of a specific network by electrically 

introducing a White Gaussian Noise (0-mean, as shown in figure 3.7) in 

particular locations of the network, modifying nodes’ voltage. 

 

Figure 3.7. “White Gaussian Noise (WGN)” [19] 
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Specifically, the procedure establishes to insert WGN at the output of each layer 

of the network and to evaluate one by one the modification of the accuracy. 

This technique is emulating random hardware errors but also the effect of a 

reduced-precision computing aimed to reduce the computational complexity. 

The results of an exemplary analysis are shown in figure 3.8. 

 

Figure 3.8. “Effects of introducing WGN at the output of different convolutional layers on the 

accuracy of the CNN” [19] 

 

As case study, Hanif et al. used a VGG-f network architecture, whose structure 

is primarily made by eight layers (five convolutional and three fully-connected), 

as shown in figure 3.9. It can be trained for classifying images. 

 

 

Figure 3.9. “VGG-f architecture. For illustrative purposes the activation, normalization, and 

pooling layers are not shown.” [19] 

 

The authors applied the analysis only to convolutional layers, since they are the 

most compute-intensive layers [19]. The important outcome is that, from this 

analysis, it is possible to identify the layers that shows more weaknesses. Based 

on these results it is now feasible to implement some countermeasures. 
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Moreover, they analyze also the consequences of the application of a non-0-

mean WGN, but the optimal behaviour of the network is found to be shown in 

the case of 0-mean, which is the most likely case in the real world. Results are 

shown in figure 3.10. 

 

Figure 3.10. “Effects of introducing bias + 20dBW WGN on the accuracy of the CNN” [19] 

 

 
3.4. Methodologies Reducing the Impact of Permanent 

Faults 
 

Nowadays, permanent faults can be identified through specific tests after 

manufacturing. Anyway, the process of discarding all the chips showing one or 

more permanent fault can be a remarkable reason for yield losses. Zhang et al. 

in [10] propose two post-manufacturing methodologies for fault-tolerant design 

against permanent faults, which are fault-aware. These solutions are based on 

the concept of pruning connections, which was demonstrated to little affect the 

accuracy of DNNs. The methodologies under considerations are applied to the 

Google TPU architecture, previously described, simply adding minor 

modifications as bypass circuitry. 

In the first works regarding systolic architectures from a fault-tolerant 

viewpoint the basic idea was to search for permanent fault and, once 

individuated, to simply deactivate the rows and columns of MAC units 
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containing faulty MAC. It was a very general solution conceived for each kind 

of application, nevertheless this solution was leading to important performances 

reduction.  

Both the solutions proposed in [10] start from the observation that each weight 

is statically mapped exactly into one MAC unit: the idea is to take advantage of 

this kind of mapping to state the rules of pruning. The first solution is called 

Fault-Aware Pruning (FAP) and it is illustrated in figure 3.11: 

 

Figure 3.11. FAP Illustration [10] 

 

Basically, given the information regarding (permanent) faulty MACs, coming 

from post-manufacturing tests, the main principle of FAP is to set to 0 (prune) 

each weight (or weights) which is mapped on a faulty MAC. The hardware 

bypassing circuitry is very simple, and it is exposed in figure 3.11. Obviously, 

this is representing an increasing in the area overhead, however it is estimated 

by Zhang et al. to be around the 9%, which can be acceptable. 

The second solution is named Fault-Aware Pruning + Retraining (FAP+T) 

and it adds a second step with respect to the previous one: after the pruning 
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operation, there is the retraining of the not-pruned weights of the network, while 

the pruned ones are required to be zero.  

 

Figure 3.12. FAP+T Algorithm [10] 

 

This operation allows an improvement of the classification accuracy, but it 

requires a specific retraining part for each TPU. Some results from their 

simulations are shown in the figure 3.13: 

 

Figure 3.13. “Classification accuracy vs. Percentage of Faulty MACs using FAP and FAP+T 

for MNIST and TIMIT and AlexNet.” [10] 

 

A limitation of this work is provided by Chitty-Venkata and Somani in [20], 

which argue that it is not very effective as a methodology in case of column 

faults, as shown in figures 3.14 and 3.15. 
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Figure 3.14. “Column Faults on Systolic Array” [20] 

 

 

Figure 3.15. “Effect of Pruning Weights at Column Fault Locations plus Retraining” [20] 

 

If a whole column is composed by faulty MACs, the result is a more dangerous 

situation with respect to the one that it is happening when there is an entire row 

made by faulty MACs. This is because pruning input neurons has little impact 
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with respect to the one made from an output node [20]. The idea exposed in this 

article is to apply some remapping techniques, as Matrix Transpose (for 

example in the case of low column faults to transform them in a low row faults) 

or Array Reduction (bypassing entire column through Matrix Transpose it was 

not possible to improve the accuracy, accepting a reduction in performance), 

avoiding to re-train the network. 

Referring to the study, of Bosio et al. in [14] it is possible to state that it is very 

difficult to give general results regarding the impact of permanent faults on 

DNN-based architectures. Every combination of DNN and the corresponding 

hardware supporting its execution should be analyzed in order to find the most 

critical elements. Nevertheless, a valuable result is related to the underlined 

criticality of exponent’s bits of the variables expressing the weights: since these 

bits are the most critical ones, one design solution could be to exploit 

redundancy applied only to the critical part of the system. 
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Chapter 4 

Transient Faults Mitigation 

 

In the fourth chapter of this thesis work there will be a description of the 

general impact of transient faults on DNN, then some innovative techniques to 

mitigate the impact of transient faults, firstly in Hardware Accelerators and then 

in Field Programmable Gate Arrays, followed by a brief observation about 

aging. 
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4.1. General Impact of Soft Errors on Deep Neural 

Networks 

 

Neggaz et al. in [13] analyze the effect of transient faults on the accuracy of 

DNN models for safety-critical systems. The study is conducted injecting 

logical bit flips and the choice of where to inject the fault is done based on an 

uniform distribution. The network chosen for the current task is LeNet5, whose 

architecture is basically made of two sections: a feature extractor, built with two 

convolutional layers and a classifier, developed with three fully connected 

layers followed by a SoftMax one. The dataset used to train the network is 

MNIST (handwritten digits to be recognized, divided in 10 classes). Then it is 

studied the accuracy after fault injection. Since the aim is to provide a complete 

analysis, the evaluation of the effects of transient faults is divided in two 

categories:  

• Errors affecting combinational circuits (called here Single Event 

Transient, SET): the impact is transient, indeed it is affecting once the 

specific current evaluation. To emulate this kind of errors in simulation, 

each transient event affects only the result of that given run. 

• Errors affecting storage in memory (named Single Event Upset, SEU): 

here a transient event succeeds in flipping a bit in memory, then the 

result is to have a corrupted data stored. To simulate this behaviour, it is 

considered the impact of consecutive transient events, causing bit flips in 

turn, that should be seen by successive evaluations. 
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Figure 4.1. “Comparison between single and multiple event transients and their impact on 

overall network performance.” [13] 

 

 

In figure 4.1 it is shown the behaviour of the accuracy while rising the fault 

injection probability, in case of SET. The first observation that comes out is that 

the impact of injecting multiple errors on the drop in accuracy is more 

important with respect to the case of single error injection. Moreover, the 

accuracy starts to drop from a fault injection probability of 10-2, but it is 

possible to notice that the global loss is still acceptable, and this is due to some 

natural DNN properties that make them strong with respect to SET [13]. 

Concerning the case of SEU, the cumulative factor of multiple errors in storage 

comes out and then its impact is more significant. 
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Figure 4.2. “Evolution of average accuracy (in black) when the number of errors augments. 

The dispersion and the extreme cases are shown in red and gray respectively.” [13] 

 

In figure 4.2 it is shown the impact of memory errors, which are translated in 

modifications of weights, on the accuracy of the network. It is worth noting that 

in the worst-case scenario the network becomes almost a random number 

producer, obviously violating safety requirements. Anyway, before 10 errors the 

network is still working properly. 

Hence, this analysis is remarking that errors introduced in combinational 

circuits have a relatively small impact, and their effect is mitigated naturally 

from the network, while errors happening in memories have a bigger impact on 

network accuracy. 

 

4.2. General Impact of Soft Errors in Hardware 

Accelerators 

 

Li et al. in [21] highlight the different parameters that should be considered 

while searching for impact and consequences of soft errors in Hardware 

Accelerators: 
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• Topology and Data Type: the topology of the specific network under 

consideration should be carefully evaluated, since it is one major player 

in propagation of errors. Additionally, distinct data types can be 

differently affected by errors.  

• Bit Position and Value: this parameter is strictly related to the data type, 

indeed it is possible to find more vulnerable bits depending on their 

location, and therefore it is possible to better protect them. One example 

here is the difference in relevance between an exponent’s bit and a 

mantissa’s one. 

• Layers: errors happening in some layers can be more critical than bit 

flips occurring in other ones. 

• Data Reuse: the last parameter is taking into account the fact that there 

are some computations that are made once and then reused, like weights. 

The criticality of an error can depend on the reuse factor of the word 

containing that fault. 

 

4.3. Methodologies Reducing Impact of Transient Faults 

on DNNs’ Accelerators 

 

Li et al. in [21] continue proposing an interesting mitigation methodology for 

transient faults happening in DNNs accelerators. The analysis is started by 

excluding combinational logic’s faults since they are usually much less critical 

with respect to memory components. Then given the nature of the accelerators, 

also it is omitted the contribute of errors in control logic units (that occupy only 

a very small part in accelerators). The method is called Symptom-Based Error 

Detectors (SED), and it is implemented via software. The mentioned technique 

monitors value ranges of the activation functions, and they are judged as 

symptoms to detect the possible faults: the idea justifying it is that if the output 

of an activation function acquires an high magnitude due to an error, it is very 

likely to obtain a Silent Data Corruption (SDC) at the output. The monitoring 
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task is assigned to a properly trained neural network, which is trained on a 

faulty-free operation to learn to judge the right ranges for the output of the 

activation functions. Then once trained, the detector can be implemented and 

executed asynchronously with respect to the nominal operation to check the 

ranges. As a result, the average precision obtained from experiments is 90,21% 

and the average recall is 92,5%.  
Based on the Algorithm Based Fault Tolerance (ABFT) philosophy, firstly 

introduced in the 1980s by Huang and Abraham [22], Dos Santos et al. in [23] 

propose a strategy to reduce the impact of transient faults in GPU-based safety-

critical systems. The core idea of ABFT strategies is to study the algorithm 

structure searching for a smart and effective way to reinforce it. 

In this case the main concept is to encode the input data, to adjust the algorithm 

to work with these data and to introduce a check phase in the output to benefit 

from the encoding. In the case in which an error is detected, if there is much 

information, it can be corrected, otherwise the computation is stopped and re-

launched. Basically, it is an extension of the ECC-based techniques to cases in 

which it is required computation and not just transfer of data. 

The case in which faults happen at the beginning of the network, affecting the 

initial layers, could be one of the most dangerous because of the fact that errors 

can propagate in an uncontrolled way to the following layers. 

Concerning the case under consideration in this paragraph, the idea is to 

strengthen the matrix multiplication operations, which are of crucial importance 

when running DNN-based algorithms. The methodology is shown in figure 4.3. 
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Figure 4.3. “Algorithm-Based Fault Tolerance for matrix multiplication” [23] 

 

This algorithm comes from an adaptation suitable for DNNs from a more 

general algorithm presented by Rech et al. in [16]. Basically, input matrices are 

encoded before the actual operation, adding a row and a column checksum 

vector, evaluated as the ordered list of sums of the items present in the 

correspondent column or row. The original algorithm [16] planned to increase 

by one the number of row and columns, implementing the check row and 

column, to not lose accuracy. In this case the authors decided to replace one 

column and one row of the original matrix with the check vectors because when 

dealing with a specific hardware like GPUs, specific accelerators or FPGAs, 

they are specifically tuned on the dimension of the final application matrices. 

Thus, this choice is based on the desire to not increment too much the execution 

time. The price to pay is related to a decreased detection accuracy, that anyway 

it is proven to be sufficiently high to meet the standard requirements. 

Then, once the computation is completed, the check vectors are re-evaluated in 

a separate calculation, and then it happens the comparison. In this particular 

case if it is detected only one error (mismatch) it is possible to correct it, 

otherwise a re-evaluation is required. This theory is aligned with the principal 

assumption that is at the fundamentals of the reliability theory that is that faults 

happen once at a time. The aforementioned result can be easily implemented to 

reduce the impact of soft errors in the field. 
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4.4. Selective Hardening on FPGA 
 

An important category of chips which is promising to efficiently and safely 

implement DNNs based algorithms is the one represented by Field-

Programmable Gate Arrays (FPGA). It is possible to underline, among others, 

some key characteristics of these circuits, like their affordability, low-power 

consumption and flexibility. The typical FPGA structure is suitable for the 

execution of parallel tasks. On the other hand, FPGAs are particularly 

vulnerable to radiation-induced errors, leading to critical consequences: more 

precisely if the transient error happens in the Static Random Access Memory 

(SRAM) in which it is stored the map of active routing connections, it is 

possible that the outcome is a modification of the configuration of some internal 

block (i.e. a Lookup Table (LUT) or a Block RAM (BRAM)). 

Libano et al. in [24] propose an innovative reliability analysis of Neural 

Networks algorithms implemented through FPGAs. They start emphasizing 

some remarks similar to the ones found in every work evaluated by this thesis. 

The important preliminary statement declares that, given the innate nature of 

neural networks, not all the errors affecting the output are able to generate a 

meaningful impact on the execution. Thus, the error criticality is split in two 

categories for this study:  

• Tolerable error: the output of the network is faulty but the behaviour is 

correct, meaning that the classification mechanism is concluded 

correctly; 

• Critical error: output errors are severe enough to lead to 

misclassifications. 

The research begins from an assessment on reliability of two different neural 

networks, whose training phase was performed in a faulty-free manner. The two 

networks under consideration are the Iris Flower ANN, composed by only two 

fully connected layers, and the MNIST CNN, made by 8 different layers 

(Convolutional, Pooling, ReLU and Inner Product ones). The main reason for 

this choice is that the case studies are hardly different between each other but 
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they share the improvement of reliability following the same trend: thus the 

approach proposed can be fairly generic. 

The experiments are made as radiation beam bombardments, following the 

framework described in chapter 2. 

The methodology proposed by Libano et al. in [24] is called Selective 

Hardening. A very effective solution would be the Triple Modular Redundancy 

(TMR) applied to the whole FPGA circuit: the problem is the scarcity of 

resources to actually implement it, and also the significant overhead introduced 

by this technique in terms of area and power consumption. Here the idea is to 

reinforce only the layers in the network that, if corrupted, are likely causing 

critical errors. 

Hence, a preliminary fault-injection campaign (software-based) was performed 

to identify the critical layers of the two networks under test. It was found that in 

general the first layers are more vulnerable because there is more room for a 

fault to propagate. Nevertheless, each network should be carefully analyzed: the 

sensitivity of layers depends on the topology. In the current case study the most 

critical layers are found as the hidden layer of the Iris Flower ANN and the last 

layer (Inner Product) of the MNIST CNN. 

Thereafter, the radiation experiments were performed. There are four situations 

of chips that are compared: Unhardened (without protection), Selective TMR 

(protecting only the most critical layer) and Full TMR (in the cases of Hardware 

and Software voter). The results are presented in figures 4.4 - 4.5 - 4.6 - 4.7. 



57 
 

 

Figure 4.4. “FIT rate of the Iris Flower ANN using four different hardening configurations.” 

[24] 

 

 

Figure 4.5. “Percentage of the masked faults divided by resource utilization of the four 

different hardening configurations of the Iris Flower ANN.” [24] 
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Figure 4.6. “FIT rate of the MNIST CNN using three different hardening configurations.” 

[24] 

 

Figure 4.7. “Percentage of the masked faults divided by resource utilization of the three 

different hardening configurations of the MNIST CNN.” [24] 

 

Generally, it is worth noting that the majority of errors are tolerable. Then, the 

full TMR is more effective than the selective one in terms of percentage of 

errors, while it is less efficient since it needs a lot of resources to be sustained. 
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Hence, Selective Hardening technique is found to be a good trade off between 

the resource utilization and the percentage of the errors. From the graphs it is 

possible also to notice that it was not possible to implement the full TMR in 

MNIST CNN because of the lack of resources, and this fact emphasize the 

necessity of smartly protect only the most vulnerable parts of the network.  

Finally, a possible improvement of this technique can be to iteratively apply this 

approach, protecting not only the most vulnerable layer but also the second, the 

third and so on, up to reach the target reliability. 

 

4.5. Brief Observation on Aging 
 

There exist two main aging phenomena that can have a considerable effect on 

the transistors of a chip: Hot Carrier Injection (HCI), mostly affecting NMOS 

devices, and Negative Bias Temperature Instability (NBTI), impacting mainly 

PMOS transistors. Both stated phenomena result in an increase of the MOS 

transistors’ threshold voltage. This leads to a reduction of the drive current and 

then to an increment of the propagation delay around computation’s paths. 

Consequently, the values whose evaluation comes from critical paths are 

frequently affected by aging; unfortunately, often the critical paths are used in 

the evaluation of significant bits in the intermediate products and this translates 

into considerable errors (i.e. considering the two’s complement number 

representation, errors in higher order position can produce huge changes). 

Anyway, the effect of aging can be very different studying distinct instances, 

even when taking into account the same category of gates, but also the way 

gates are affected by these phenomena is related to their own stress condition 

(related to their actual switching activity). Another point to be evaluated is that 

aging is basically unavoidable, after a certain time of the operation of the chip 

in the field, and also that it is not possible to “reset” to its initial performances 

an aged transistor. 

Given these facts, Liu and Chang in [25] explore the impact of circuit Aging on 

DNNs-based accelerators, evaluating the degradation of the accuracy that this 
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phenomenon is able to cause. In this study it is simulated the aging on MAC 

units, along days, months and years of operation and essentially in simulations 

they are used models for degraded MOS transistors. The neural network used 

here is AlexNet. 

Observing the results, it is possible to provide an operative solution in order to 

prevent the effects on accuracy of the aging phenomenon.  

 

Figure 4.8. Aging simulation and evaluation [25] 

 

In the first graph of figure 4.8, dashed lines characterize results related to single 

layers for which the input presented at each layer is correct and not influenced 

by previous stages. In this case, it is possible to notice that in the worst situation 

is related to the final layer, while the others’ accuracy is essentially not affected. 

Instead, solid lines consider the situation in which it is enabled the propagation 

of errors, due to aging phenomena, through different layers. Here, the whole 

calculation suffers bigger accuracy reduction, and this can be easily 

reconducted to the fact that, in the considered situation, errors are propagating. 
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Generally, the rapid degradation of the accuracy in the final layer witnesses the 

fact that networks made by an high number of layers can be more vulnerable to 

aging phenomena. A solution comes out from the work of Liu and Chang: 

observing the simulation results reported in the second graph of figure 4.8, 

relaxing the nominal frequency of operation of the entire chip operation (920 

MHz in the current case) by 10-20 MHz can significantly improve the 

robustness of the chip to aging phenomena. This is due to the fact that relaxing 

frequency there is more space for critical paths, and now they are able to mask 

the delay errors caused by aging.  

 

 

Figure 4.9. Liu and Wang simulations  [25] 

 

In the first graph of figure 4.9, there is the representation of the accuracy 

degradation of the first and fifth convolutional layer of AlexNet, due to aging 

phenomena. These results are coherent with the previous ones, stating that the 

final layer is suffering much more with respect to the first one. A curious 
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phenomenon that can be observed by this simulation is the fact that the 

accuracy of the fifth layer starts to recover after one years, and this is caused by 

the flipping of several internal signals and then it is increased the probability of 

accidentally correct errors. Clearly, referring to safety-critical applications, this 

totally unpredictable situation must definitely be avoided. In the second chart of 

figure 4.9, there is another confirmation of the conclusions of the study; indeed 

relaxing the operating frequency, chips can maintain longer their nominal 

performances. 

Hence, device aging can result in a substantial accuracy drop after one year of 

deployment, and different layers have different sensitivities to this kind of 

phenomena. 
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Conclusions 

 

This work presents an exploration of the adoption of Deep Neural Networks in 

Safety-Critical Systems. It was made an accurate bibliographic research about 

requirements that should be respected, about the main procedures to evaluate 

the reliability of systems to be compliant with standards, about the effects of the 

principal faults on Deep Neural Networks operation when implemented in 

different hardware architectures, and about some innovative methodologies and 

techniques that can be implemented to improve the reliability of such systems. 

Challenges and risks related to the employment of DNNs in Computer Vision 

for Autonomous Driving are identified and analyzed, through a collection of 

state-of-the-art approaches, strategies and practices.  
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Abbreviations 
 

AI Artificial Intelligence 

ABFT Algorithm Based Fault Tolerance 

ASIL Automotive Safety Integrity Level 

BRAM Block Random Access Memory 

CNN Convolutional Neural Networks 

DUE Detected Uncoverable Error 

DNN Deep Neural Network 

E/E Electrical and Electronic 

FAP Fault-Aware Pruning 

FAP+T Fault-Aware Pruning + Retraining 

FIT Failures In Time 

FN False Negative 

FP False Positive 

FPGA Field-Programmable Gate Array 

GPU Graphic Processing Unit 

HCI Hot Carrier Injection  

IoU Intersection over Union 

LFM Latent Faults Metric 

LUT Lookup Table 

MAC Multiply and Accumulation 

ML Machine Learning 

NBTI Negative Bias Temperature Instability 

NN Neural Network 

OOD Out-of-Distribution 
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PFH Probability of Dangerous Failure per Hour 

QM Quality Management 

SED Symptom-Based Error Detectors 

SET Single Event Transient 

SEU Single Event Upset 

SDC Silent Data Corruption 

SM Streaming Multiprocessor 

SPFM Single Point Faults Metric 

SRAM Static Random Access Memory 

TMR Triple Modular Redundancy 

TN True Negative 

TP True Positive 

TPU Tensor Processing Unit 

WGN White Gaussian Noise 
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