6 research outputs found

    Quality assessment for virtual reality technology based on real scene

    Get PDF
    Virtual reality technology is a new display technology, which provides users with real viewing experience. As known, most of the virtual reality display through stereoscopic images. However, image quality will be influenced by the collection, storage and transmission process. If the stereoscopic image quality in the virtual reality technology is seriously damaged, the user will feel uncomfortable, and this can even cause healthy problems. In this paper, we establish a set of accurate and effective evaluations for the virtual reality. In the preprocessing, we segment the original reference and distorted image into binocular regions and monocular regions. Then, the Information-weighted SSIM (IW-SSIM) or Information-weighted PSNR (IW-PSNR) values over the monocular regions are applied to obtain the IW-score. At the same time, the Stereo-weighted-SSIM (SW-SSIM) or Stereo-weighted-PSNR (SW-PSNR) can be used to calculate the SW-score. Finally, we pool the stereoscopic images score by combing the IW-score and SW-score. Experiments show that our method is very consistent with human subjective judgment standard in the evaluation of virtual reality technology

    Positioning Techniques with Smartphone Technology: Performances and Methodologies in Outdoor and Indoor Scenarios

    Get PDF
    Smartphone technology is widespread both in the academy and in the commercial world. Almost every people have today a smartphone in their pocket, that are not only used to call other people but also to share their location on social networks or to plan activities. Today with a smartphone we can compute our position using the sensors settled inside the device that may also include accelerometers, gyroscopes and magnetometers, teslameter, proximity sensors, barometer, and GPS/GNSS chipset. In this chapter we want to analyze the state-of-the-art of the positioning with smartphone technology, considering both outdoor and indoor scenarios. Particular attention will be paid to this last situation, where the accuracy can be improved fusing information coming from more than one sensor. In particular, we will investigate an innovative method of image recognition based (IRB) technology, particularly useful in GNSS denied environment, taking into account the two main problems that arise when the IRB positioning methods are considered: the first one is the optimization of the battery, that implies the minimization of the frame rate, and secondly the latencies due to image processing for visual search solutions, required by the size of the database with the 3D environment images

    Interaction with Three-Dimensional Gesture and Character Input in Virtual Reality Recognizing gestures in different directions and improving user input

    Get PDF
    Hand gesture recognition is a key aspect to make interaction of virtual reality more convenient. A good way to make users’ idea understood by computers including characters input plays an important role in interaction. Current methods of hand gesture and character input are too limited to make full use of powerful capacity that computers have nowadays. In this paper, we propose a natural 3D input method based on stereo cameras as an interface of human and machine. We segment the hand out based on skin-color detection and train a neural network based on Hu moments to recognize valid and invalid gestures defined in our paper. For valid gestures, we implement stereo matching and 3D coordinate calculation and line them up to formulate characters. Our method can robustly recognize 3D gestures in different directions and make users’ input more free compared with traditional ways

    An original application of image recognition based location in complex indoor environments

    Get PDF
    This paper describes the first results of an image recognition based location (IRBL) for a mobile application focusing on the procedure to generate a database of range images (RGB-D). In an indoor environment, to estimate the camera position and orientation, a prior spatial knowledge of the surroundings is needed. To achieve this objective, a complete 3D survey of two different environments (Bangbae metro station of Seoul and the Electronic and Telecommunications Research Institute (ETRI) building in Daejeon, Republic of Korea) was performed using a LiDAR (Light Detection and Ranging) instrument, and the obtained scans were processed to obtain a spatial model of the environments. From this, two databases of reference images were generated using specific software realised by the Geomatics group of Politecnico di Torino (ScanToRGBDImage). This tool allows us to generate synthetically different RGB-D images centred in each scan position in the environment. Later, the external parameters (X, Y, Z, ω, ϕ, and κ) and the range information extracted from the retrieved database images are used as reference information for pose estimation of a set of acquired mobile pictures in the IRBL procedure. In this paper, the survey operations, the approach for generating the RGB-D images, and the IRB strategy are reported. Finally, the analysis of the results and the validation test are described

    Analysis of Camera Arrays Applicable to the Internet of Things

    Get PDF
    The Internet of Things is built based on various sensors and networks. Sensors for stereo capture are essential for acquiring information and have been applied in different fields. In this paper, we focus on the camera modeling and analysis, which is very important for stereo display and helps with viewing. We model two kinds of cameras, a parallel and a converged one, and analyze the difference between them in vertical and horizontal parallax. Even though different kinds of camera arrays are used in various applications and analyzed in the research work, there are few discussions on the comparison of them. Therefore, we make a detailed analysis about their performance over different shooting distances. From our analysis, we find that the threshold of shooting distance for converged cameras is 7 m. In addition, we design a camera array in our work that can be used as a parallel camera array, as well as a converged camera array and take some images and videos with it to identify the threshold
    corecore