1,908 research outputs found

    On the Behavior of the Distributed Coordination Function of IEEE 802.11 with Multirate Capability under General Transmission Conditions

    Full text link
    The aim of this paper is threefold. First, it presents a multi-dimensional Markovian state transition model characterizing the behavior of the IEEE 802.11 protocol at the Medium Access Control layer which accounts for packet transmission failures due to channel errors modeling both saturated and non-saturated traffic conditions. Second, it provides a throughput analysis of the IEEE 802.11 protocol at the data link layer in both saturated and non-saturated traffic conditions taking into account the impact of both the physical propagation channel and multirate transmission in Rayleigh fading environment. The general traffic model assumed is M/M/1/K. Finally, it shows that the behavior of the throughput in non-saturated traffic conditions is a linear combination of two system parameters; the payload size and the packet rates, λ(s)\lambda^{(s)}, of each contending station. The validity interval of the proposed model is also derived. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed models.Comment: Submitted to IEEE Transactions on Wireless Communications, October 21, 200

    Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Evaluation of error control mechanisms for 802.11b multicast transmissions

    Get PDF
    This article first presents several packet loss profiles collected during 802.11b multicast transmissions carried out under variable reception conditions (mobile and fixed receivers). Then, an original approach consisting in mapping a posteriori some error control mechanisms over these observations is presented. This approach allows to evaluate the performance of these mechanisms according to their parameters and various channel properties. It is shown in particular that relatively simple mechanisms based on retransmissions and/or error correcting codes of small length achieve very good performance in this context (92% of the best performance)

    W-NINE: a two-stage emulation platform for mobile and wireless systems

    Get PDF
    More and more applications and protocols are now running on wireless networks. Testing the implementation of such applications and protocols is a real challenge as the position of the mobile terminals and environmental effects strongly affect the overall performance. Network emulation is often perceived as a good trade-off between experiments on operational wireless networks and discrete-event simulations on Opnet or ns-2. However, ensuring repeatability and realism in network emulation while taking into account mobility in a wireless environment is very difficult. This paper proposes a network emulation platform, called W-NINE, based on off-line computations preceding online pattern-based traffic shaping. The underlying concepts of repeatability, dynamicity, accuracy and realism are defined in the emulation context. Two different simple case studies illustrate the validity of our approach with respect to these concepts

    Cross-Layer Optimization of Message Broadcast in MANETs

    Get PDF
    • …
    corecore