8 research outputs found

    Deep Reinforcement Learning for Practical Phase Shift Optimization in RIS-aided MISO URLLC Systems

    Full text link
    Reconfigurable intelligent surfaces (RISs) can assist the wireless systems in providing reliable and low-latency links to realize the requirements in Industry 4.0. In this paper, the practical phase shift optimization in a RIS-aided ultra-reliable and low-latency communication (URLLC) system at a factory setting is performed by applying a novel deep reinforcement learning (DRL) algorithm named as twin-delayed deep deterministic policy gradient (TD3). First, the system achievable rate in finite blocklength (FBL) regime is identified for each actuator then, the problem is formulated where the objective is to maximize the total achievable FBL rate, subject to non-linear amplitude response and the phase shift values constraint. Since the amplitude response equality constraint is highly non-convex and non-linear, we employ the TD3 to tackle the problem. The considered method relies on interacting RIS with industrial scenario by taking actions which are the phase shifts at the RIS elements, to maximize the total FBL rate. We assess the performance loss of the system when the RIS is non-ideal, i.e., non-linear amplitude response with/without phase quantization and compare it with ideal RIS. The numerical results show that optimizing phase shifts in non-ideal RIS via the considered TD3 method is highly beneficial to improve the performance.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Optimization of RIS-aided Integrated Localization and Communication

    Full text link
    Reconfigurable intelligent surfaces (RISs) have tremendous potential to boost communication performance, especially when the line-of-sight (LOS) path between the user equipment (UE) and base station (BS) is blocked. To control the RIS, channel state information (CSI) is needed, which entails significant pilot overhead. To reduce this overhead and the need for frequent RIS reconfiguration, we propose a novel framework for integrated localization and communication, where RIS configurations are fixed during location coherence intervals, while BS precoders are optimized every channel coherence interval. This framework leverages accurate location information obtained with the aid of several RISs as well as novel RIS optimization and channel estimation methods. Performance in terms of localization accuracy, channel estimation error, and achievable rate demonstrates the efficacy of the proposed approach.Comment: 30 pages, 8 figure

    Power Scaling Law Analysis and Phase Shift Optimization of RIS-aided Massive MIMO Systems with Statistical CSI

    Get PDF
    This paper considers an uplink reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) system, where the phase shifts of the RIS are designed relying on statistical channel state information (CSI). Considering the complex environment, the general Rician channel model is adopted for both the users-RIS links and RIS-BS links. We first derive the closed-form approximate expressions for the achievable rate which holds for arbitrary numbers of base station (BS) antennas and RIS elements. Then, we utilize the derived expressions to provide some insights, including the asymptotic rate performance, the power scaling laws, and the impacts of various system parameters on the achievable rate. We also tackle the sum-rate maximization and the minimum user rate maximization problems by optimizing the phase shifts at the RIS based on genetic algorithm (GA). Finally, extensive simulations are provided to validate the benefits by integrating RIS into conventional massive MIMO systems. Our simulations also demonstrate the feasibility of deploying large-size but low-resolution RIS in massive MIMO systems

    Analysis and Optimization of A Double-IRS Cooperatively Assisted System with A Quasi-Static Phase Shift Design

    Full text link
    The analysis and optimization of single intelligent reflecting surface (IRS)-assisted systems have been extensively studied, whereas little is known regarding multiple-IRS-assisted systems. This paper investigates the analysis and optimization of a double-IRS cooperatively assisted downlink system, where a multi-antenna base station (BS) serves a single-antenna user with the help of two multi-element IRSs, connected by an inter-IRS channel. The channel between any two nodes is modeled with Rician fading. The BS adopts the instantaneous CSI-adaptive maximum-ratio transmission (MRT) beamformer, and the two IRSs adopt a cooperative quasi-static phase shift design. The goal is to maximize the average achievable rate, which can be reflected by the average channel power of the equivalent channel between the BS and user, at a low phase adjustment cost and computational complexity. First, we obtain tractable expressions of the average channel power of the equivalent channel in the general Rician factor, pure line of sight (LoS), and pure non-line of sight (NLoS) regimes, respectively. Then, we jointly optimize the phase shifts of the two IRSs to maximize the average channel power of the equivalent channel in these regimes. The optimization problems are challenging non-convex problems. We obtain globally optimal closed-form solutions for some cases and propose computationally efficient iterative algorithms to obtain stationary points for the other cases. Next, we compare the computational complexity for optimizing the phase shifts and the optimal average channel power of the double-IRS cooperatively assisted system with those of a counterpart single-IRS-assisted system at a large number of reflecting elements in the three regimes. Finally, we numerically demonstrate notable gains of the proposed solutions over the existing solutions at different system parameters.Comment: 40 pages, 7 figures. This work is submitted to IEEE Trans.Wireless Commun. (under major revision
    corecore