481 research outputs found

    Multilabel Consensus Classification

    Full text link
    In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods

    A Contextual Bandit Bake-off

    Get PDF
    Contextual bandit algorithms are essential for solving many real-world interactive machine learning problems. Despite multiple recent successes on statistically and computationally efficient methods, the practical behavior of these algorithms is still poorly understood. We leverage the availability of large numbers of supervised learning datasets to empirically evaluate contextual bandit algorithms, focusing on practical methods that learn by relying on optimization oracles from supervised learning. We find that a recent method (Foster et al., 2018) using optimism under uncertainty works the best overall. A surprisingly close second is a simple greedy baseline that only explores implicitly through the diversity of contexts, followed by a variant of Online Cover (Agarwal et al., 2014) which tends to be more conservative but robust to problem specification by design. Along the way, we also evaluate various components of contextual bandit algorithm design such as loss estimators. Overall, this is a thorough study and review of contextual bandit methodology

    Surrogate regret bounds for generalized classification performance metrics

    Full text link
    We consider optimization of generalized performance metrics for binary classification by means of surrogate losses. We focus on a class of metrics, which are linear-fractional functions of the false positive and false negative rates (examples of which include FβF_{\beta}-measure, Jaccard similarity coefficient, AM measure, and many others). Our analysis concerns the following two-step procedure. First, a real-valued function ff is learned by minimizing a surrogate loss for binary classification on the training sample. It is assumed that the surrogate loss is a strongly proper composite loss function (examples of which include logistic loss, squared-error loss, exponential loss, etc.). Then, given ff, a threshold θ^\widehat{\theta} is tuned on a separate validation sample, by direct optimization of the target performance metric. We show that the regret of the resulting classifier (obtained from thresholding ff on θ^\widehat{\theta}) measured with respect to the target metric is upperbounded by the regret of ff measured with respect to the surrogate loss. We also extend our results to cover multilabel classification and provide regret bounds for micro- and macro-averaging measures. Our findings are further analyzed in a computational study on both synthetic and real data sets.Comment: 22 page
    • …
    corecore