
N ew Q uasi-N ew ton O p tim iza tion
M ethods for M achine L earning

J in Yu

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

September 2009

To my parents, Zuohuang Yu and Zenyu Chen,
and my husband, Dan Liu,

for their unconditional love and support.

D eclara tion

Except where otherwise indicated, this thesis is my own original work.

This thesis is in part based on the following publications completed during my
candidature: Chapters 3 and 4 are based on (Yu et ah, 2008a,b); Chapters 5 and 6 are
based on (Schraudolph et ah, 2007). I was the first or second author of these published
works.

JOSeptember 2009
Jin Yu
30 September 2009

A ck n o w led g em en ts

First and foremost, I would like to thank my primary supervisor A. Prof. S. V. N.
Vishwanathan for his continuous guidance, support, and encouragement throughout
my graduate study. His perpetual energy and enthusiasm for research was always a
source of inspiration to me, and I am especially grateful to him for keeping up his
supervision after leaving for Purdue University in the United States. I am grateful to
my former supervisor, Dr. Nicol N. Schraudolph, who introduced me to the field of
optimization, and offered a great deal of help in sharpening my research skills. My
sincere appreciation also goes to my panel chair Dr. Jochen Trumpf and my advisor
Dr. Knut Hüper for their invaluable advice and support.

I would like to thank Dr. Simon Günter for many constructive discussions and assis-
tance with implementation issues and to Dr. Peter Sunehag for mathematical assistance
and proofreading many chapters of this thesis. My appreciation is extended to A. Prof.
Jian Zhang for fruitful discussions and collaborative work during my stay at Purdue
University.

I was fortunate to work with a group of great researchers at the SML lab, who
were so incredibly helpful and supportive. Thanks to each and every one of them.
In particular, I am grateful to Dr. Wray Buntine for his help with travel funds, Dr.
Marconi Barbosa for keeping our cluster up and running, and Dr. Christfried Webers
for his help with Elefant code and proofreading some chapters of this thesis. It is
without doubt that life would have been considerably less pleasant if my fellow PhD
students were not so fun and great to be with. Their friendship and moral support are
deeply appreciated. Especially, I would like to thank Xinhua Zhang and Choonhui Teo
for proofreading my papers and assistance with implementation issues. Special thanks
go to my friend Bernard Larkin who called regularly to make sure I was doing well.

I am grateful to NICTA and ANU for the scholarship and travel funds that were
generously awarded to me. NICTA is funded by the Australian Government’s Backing
Australia’s Ability and the ICT Center of Excellence program. Thanks also go to
CECS administrative staff Michelle Moravec, Debbie Pioch, Marie Katselas, and Sue
Van Haeften for their indispensable support over these years.

Last but not least, I am in great debt to all of my family for always supporting
me in whatever I choose to do. I am particularly grateful to my husband, Dan, for his
unconditional love and support, and for just being part of my life.

A b strac t

This thesis develops new quasi-Newton optimization methods that exploit the well-
structured functional form of objective functions often encountered in machine learn-
ing, while still maintaining the solid foundation of the standard BFGS quasi-Newton
method. In particular, our algorithms are tailored for two categories of machine learn-
ing problems: (1) regularized risk minimization problems with convex but nonsmooth
objective functions and (2) stochastic convex optimization problems that involve learn-
ing from small subsamples (mini-batches) of a potentially very large set of data.

We first extend the classical BFGS quasi-Newton method and its limited-memory
variant LBFGS to the optimization of nonsmooth convex problems. This is done in a
rigorous fashion by generalizing three components of BFGS to subdifferentials: the lo-
cal quadratic model, the identification of a descent direction, and the Wolfe line search
conditions. We prove that under some technical conditions, the resulting subBFGS
algorithm is globally convergent in objective function value. We apply the limited-
memory variant of subBFGS (subLBFGS) to /^-regularized risk minimization with
the binary hinge loss. To extend our algorithms to the multiclass and multilabel set-
tings, we develop a new, efficient, exact line search algorithm. We prove its worst-case
time complexity bounds, and show that it can also extend a recently developed bundle
method to the multiclass and multilabel settings. Moreover, we apply the direction-
finding component of our algorithms to L \-regularized risk minimization with the lo-
gistic loss. In all these contexts our methods perform comparable to or better than
specialized state-of-the-art solvers on a number of publicly available datasets.

This thesis also provides stochastic variants of the BFGS method, in both full and
memory-limited forms, for large-scale optimization of convex problems where objective
and gradient must be estimated from subsamples of training data. The limited-memory
variant of the resulting online BFGS algorithm performs comparable to a well-tuned
natural gradient descent but is scalable to very high-dimensional problems. On stan-
dard benchmarks in natural language processing it asymptotically outperforms previous
stochastic gradient methods for parameter estimation in Conditional Random Fields.

vii

C ontents

A cknow ledgem ents v

A bstract vii

1 Introduction 1
1.1 Motivation .. 2
1.2 BFGS Quasi-Newton Methods .. 4
1.3 Quasi-Newton Methods for Nonsmooth Optim ization............................... 6

1.3.1 Existing Approaches.. 6
1.3.2 Our Approach .. 7

1.4 Stochastic Quasi-Newton M e th o d s .. 8
1.5 Thesis Contributions... 10
1.6 Outline .. 11
1.7 N otation.. 11

2 C lassical Q uasi-N ew ton M ethods 13
2.1 The BFGS Quasi-Newton M e th o d .. 13

2.1.1 Local Quadratic Model .. 13
2.1.2 Line S ea rch .. 15
2.1.3 Inverse Hessian Approxim ation.. 16

2.2 The Limited-Memory BFGS M eth o d ... 19
2.3 S u m m ary ... 21

3 A Q uasi-N ew ton A pproach to N onsm ooth C onvex O ptim ization 23
3.1 Motivation .. 23

3.1.1 Problems of (L)BFGS on Nonsmooth O b jectiv es 24
3.1.2 Advantage of Incorporating BFGS’ Curvature E s t im a te 27

3.2 Subgradient BFGS M e th o d .. 28
3.2.1 Generalizing the Local Quadratic M odel.. 29
3.2.2 Finding a Descent D irection.. 31
3.2.3 Subgradient Line Search .. 34
3.2.4 Bounded Spectrum of BFGS’ Inverse Hessian Estimate 35
3.2.5 Limited-Memory Subgradient B F G S .. 37
3.2.6 Convergence of Subgradient (L)B F G S ... 37

ix

X Contents

3.3 SubBFGS for /^-Regularized Binary Hinge Loss 38
3.3.1 Efficient Oracle for the Direction-Finding Method 38
3.3.2 Implementing the Line Search.. 39

3.4 Segmenting the Pointwise Maximum of 1-D Linear F u n c tio n s 42
3.5 SubBFGS for Multiclass and Multilabel Hinge Losses............................... 44

3.5.1 Multiclass Hinge L o s s ... 44
3.5.2 Efficient Multiclass Direction-Finding O r a c le 45
3.5.3 Implementing the Multiclass Line Search 46
3.5.4 Multilabel Hinge L o s s ... 49

3.6 Related W o rk ... 50
3.6.1 Nonsmooth Convex Optim ization.. 50
3.6.2 Segmenting the Pointwise Maximum of 1-D Linear Functions . . 52

3.7 Discussion... 52

4 SubLBFG S for N onsm ooth Convex O ptim ization 55
4.1 Experiments.. 55

4.1.1 Convergence Tolerance of the Direction-Finding Procedure . . . 56
4.1.2 Size of SubLBFGS B u ffe r ... 57
4.1.3 /^-Regularized Binary Hinge L o s s ... 58
4.1.4 Li-Regularized Logistic L o s s ... 60
4.1.5 L2-Regularized Multiclass and Multilabel Hinge L oss.................... 02

4.2 Discussion... 65

5 A S tochastic Q uasi-N ew ton M ethod for O nline Convex O ptim ization 67
5.1 Stochastic Gradient-Based L e a rn in g ... 67
5.2 Existing Stochastic Gradient M e th o d s ... 69

5.2.1 Stochastic Gradient Descent ... 69
5.2.2 Stochastic Meta-Descent.. 69
5.2.3 Natural Gradient D escen t... 70

5.3 Online BFGS M e th o d .. 72
5.3.1 Convergence without Line Search.. 72
5.3.2 Modified BFGS Curvature U p d a te ... 73
5.3.3 Consistent Gradient M easurements... 74

5.4 Limited-Memory Online B F G S .. 74
5.5 Stochastic Quadratic P ro b lem s.. 75

5.5.1 Deterministic Q uadra tic .. 75
5.5.2 A Simple Stochastic Q u a d ra tic .. 76
5.5.3 A Non-Realizable Q uadratic.. 77
5.5.4 Choice of Jaco b ian ... 78

5.6 Experiments.. 78

Contents xi

5.6.1 Results on the Realizable Q u a d ra tic ... 78
5.6.2 Results on the Non-Realizable Quadratic 80

5.7 Discussion.. 80

6 Online LBFG S for th e Training o f C onditional R andom F ields 83
6.1 Conditional Random F ie ld s .. 83
6.2 Experimental Tasks ... 84

6.2.1 CoNLL-2000 Base NP C h u n k in g ... 86
6.2.2 BioNLP/NLPBA-2004 Shared Task ... 87
6.2.3 BioCreAtlvE Challenge Task 1 A ... 87

6.3 Discussion... 88

7 C onclusions 89
7.1 Summary of Contributions.. 89
7.2 Future Research D irec tio n s .. 90

A A ppendix 91
A.l Bundle Search for a Descent D irec tion ... 91
A.2 Convergence of the Descent Direction S e a r c h ... 96
A.3 Satisfiability of the Subgradient Wolfe Conditions.. 100
A.4 Global Convergence of SubB FG S.. 101
A.5 SubBFGS Converges on Various Counterexamples 104

A.5.1 Counterexample for Steepest Descent ...105
A.5.2 Counterexample for Steepest Subgradient D e sc e n t......................... 105
A.5.3 Counterexample for BFG S...106

C hapter 1

Introduction

The goal of most machine learning tasks is to estimate the parameters of a model that
enable it to generalize from a set of training instances so as to predict correct outputs on
previously unseen data. For instance, in the example of Figure 1.1, given a set of train-
ing points with their coordinates and the corresponding labels (circles and squares),
we can estimate the separating boundary (e.g., the solid line) between the two classes
of training points, and then use this model to predict the class of an unlabeled point
based on its relative position with respect to the boundary. This example shows that
the process of learning essentially involves adaptation of a model to a training dataset.
Increasingly, this process is translated into optimizing a convex objective function that
measures the performance of the model. The resulting convex optimization problems
are challenging because they can involve massive datasets, millions of parameters, nons-
mooth functions, and streaming inputs. They often violate common assumptions made
by conventional optimization methods, such as differentiability (smoothness) of the
objective function and computational tractability of function (resp. gradient) evalua-
tion. Efficient and scalable optimization methods that are specifically designed for the
machine learning context are therefore needed.

Although conventional methods often fall short of our requirements, they still serve
as a good starting point for devising new optimization methods for machine learning.
Among dominant conventional optimization methods, the BFGS quasi-Newton method
and its limited-memory variant (LBFGS) are widely regarded as the workhorses of
smooth nonlinear optimization due to their combination of computational efficiency and
good asymptotic convergence. We therefore decided to develop analogous quasi-Newton
methods that are tailored for machine learning. In particular, this thesis focuses on
two categories of machine learning problems: (1) regularized risk minimization problem
that is convex but nonsmooth and (2) stochastic optimization problems that involve
learning from small subsamples of the training data.

1

2 Introduction

o °o a t

■■■ ■

Figure 1.1: A simple machine learning problem that involves learning a separating boundary
(solid line) between two classes of points (circles and squares).

1.1 M otivation

A typical supervised machine learning problem involves a set of training instances that
consists of n input feature vectors Xi and their corresponding labels Z{. The goal is to
build a parametrized model with parameter vector w that can predict correct labels
on unseen feature vectors. During the learning process, a domain-specific loss function
l(xiiZi,w) is used to quantify the discrepancy between the true label and the label
predicted by the model. The overall performance of the model is then measured by
an empirical risk R{w) that involves the summation of loss terms over the entire set
of training data. In order to generalize the model to unseen data, one can employ
a regularizer Q(w) that avoids over-fitting the training instances by penalizing com-
plex models. This leads to the following formulation of regularized risk minimization
problem with an objective function J : Rd —> R:

J(w) := \Q(w) + R(w), where (1.1)

1
R{w) Z(*i, Zi, w).n —'

Z=1

The regularization constant A > 0 is a free parameter trading off the model complexity
and the empirical performance in terms of the average loss on the training data. Typ-
ically, the regularizer Q,(w) is easy to compute but the empirical risk R(w) is not, due
to the presence of a summation over the entire training data. The resulting objective
function is convex but not necessarily differentiable everywhere. Minimizing J gives the
desired parameter w*. The model parametrized by w * is then used to predict labels of
unseen data. This general framework underlines many problems in machine learning.
Here we provide two representative examples: L2-regularized risk minimization with

§1.1 Motivation 3

Figure 1.2: Left: the objective function of a typical regularized risk minimization problem (
plotted along a direction) is convex, but zooming into the region around the optimum (center)
reveals its nonsmooth points. Right: the hinge loss: 1(f) := max(0,1 — /) (solid line) is
nonsmooth; the slope of any line that is tangiantial to l at a point (e.g., dashed lines) is a
subgradient.

the hinge loss and Li-regularized risk minimization with the logistic loss.

Z^-regularized risk minimization uses a quadratic regularizer Q(w) := ^ w Tw,
where the superscript T denotes transpose. Binary classification as a typical machine
learning task considers the problem of differentiating between two classes of objects (c/.
Figure 1.1). A common loss function for binary classification is the (binary) hinge loss

l (x , z ,w) := max(0,1 — z w Tx), (1.2)

which measures the discrepancy between the correct label z € {±1} and the prediction
given by sign(w Tx). Obviously, the hinge loss is convex but nonsmooth at points
where z w Tx = 1 (Figure 1.2, right). Figure 1.2 (left) provides a one-dimensional view
of the resulting objective function J: the zoomed-in figure (Figure 1.2, center) shows
that J is nonsmooth. This means that many standard optimizers such as conjugate
gradient (Shewchuk, 1994) and quasi-Newton methods (Nocedal and Wright, 1999) are
not suitable here because they are not able to deal with nonsmooth functions.

Another popular approach to binary classification is to build a probabilistic clas-
sifier that models a conditional probability of a label z given a feature vector x, and
outputs the most likely label as its prediction on a given x. A widely used probabilistic
model for this task is the log-linear model P(z\x \w) := 1/(1 + e~zwTx), parametrized
by w. During the process of learning, the log-linear model is adapted to assign a
higher probability to the true label. This is achieved by minimizing the logistic loss
— In P (z \x ; w) =■ ln(l + e-2™Ta:), i.e., the negative log-likelihood of the log-linear model.
The L\ regularizer \\w\\i := Yli=i lwi! is commonly used to enforce sparsity in the so-

4 Introduction

lution w of dimensionality d, leading to an objective function of the form

1 n
J{w) := A||m||i + - Y ln(l + e " * ^) , (1.3)n ' i=1

where the loss is smooth, but the regularizer is nonsmooth at points where w has zero
elements. Again, standard optimizers for smooth optimization can not be applied here.

The above examples characterize many machine learning problems which are chal-
lenging to solve in general but are often endowed with very special structure. For
instance, the nonsmoothness of the example problems arises both due to the presence
of piecewise linear terms in their objective functions. As will be shown in later chapters,
leveraging this special structure of the objective function can greatly reduce the com-
plexity of solving the problem. General purpose optimizers like the widely used bundle
methods (Hiriart-Urruty and Lemarechal, 1993), however, do not take any advantage
of the special structure inherent to a specific problem. This constrains their potential
to be applied to a wider range of machine learning problems. This thesis sets out to
develop new optimization methods that exploit the well-structured functional form of
objective functions encountered in machine learning. In particular, we are interested
in regularized risk minimization problems that are convex but nonsmooth.

1.2 B F G S Q u a si-N ew to n M eth od s

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method (Dennis and
More, 1977) was invented independently by Broyden, Flecher, Goldfarb, and Shanno in
the early seventies. It revolutionized smooth nonlinear optimization, and has dominated
it to this date, due to its superior practical performance. Given a smooth objective
function J : —> R and a current iterate w t G Rd, BFGS forms a local quadratic
model of J:

Qt(p) ■= J (w t) + \ p TB t lp + V J (w t)Tp, (1.4)

where B t is a symmetric positive definite approximation to the inverse Hessian H of
J , and V J denotes the gradient. Minimizing Qt(p) gives the quasi-Newton direction

p t := - B tVJ{wt), (1.5)

which is used for the parameter update:

m + 1 = w t + r/tpt, (1.6)

§1.2 BFGS Quasi-Newton Methods 5

where the step size r]t > 0 controls how far to move in the given direction p t . r]t is
commonly determined by a line search such that a sufficient decrease in the objective
value is achieved. In other words, the goal of a line search is to decrease the one-
dimensional function $ of the step size 77:

$ (77) : = J(wt + ppt). (1.7)

There are two kinds of line search strategies: Exact line search finds the optimal step
size by minimizing $ (77) but is only feasible when the functional form of $ is known
and amenable to efficient minimization (e.g., explicit solution). Inexact line searches,
on the other hand, only require the access to function and gradient values. They only
seek to find an “appropriate” step size (quantified in terms of line search conditions,
e.g., Wolfe conditions (2.7) and (2.8)).

After each parameter update, the B t matrix is modified via the incremental update

B t + 1 = (I ~ Ptsty J)B t(I - PtVtsJ) + pt8ts j , (1.8)

where

s t := w t+i - w t and y t := V J(w t+i) - V J(wt) (1-9)

denote the most recent steps along the optimization trajectory in parameter and gra-
dient space, respectively, and pt := (y j s t)~l . The process repeats until the norm of
the gradient falls below a pre-specified threshold. Note that replacing B t in (1.5) with
the inverse Hessian H ̂ 1 recovers the familiar Newton direction (Nocedal and Wright,
1999). Although Newton’s method has faster rate of convergence (in terms of iteration
numbers) than BFGS (quadratic vs. super-linear rate), its 0 (d 3) cost of inverting Ht
can be prohibitive. Unlike Newton’s method, BFGS uses past parameter and gradient
displacements (1.9) to build an approximation B t to the inverse Hessian, reducing the
cost per iteration to O(cr).

Liu and Nocedal (1989) proposed a scalable variant of the BFGS method, called
limited-memory BFGS (LBFGS), for solving high-dimensional problems where the
0(d2) cost of storing and updating B t would be prohibitive. LBFGS does not maintain
an approximation matrix to the inverse Hessian. Instead, it approximates the quasi-
Newton direction (1.5) directly via a recursive procedure (Algorithm 2.3). LBFGS has
become the algorithm of choice for high-dimensional smooth nonlinear problems, due
to its scalability and good asymptotic convergence inherited from BFGS.

6 Introduction

1.3 Q u asi-N ew ton M eth o d s for N o n sm o o th O p tim ization

There have been some attempts to apply (L)BFGS directly to nonsmooth optimization
problems in the hope that these dominant algorithms for smooth optimization would
also perform well on nonsmooth functions that are convex and differentiable almost
everywhere; otherwise a subgradient (generalized gradient for nonsmooth functions)
exists. Indeed, it has been noted that in cases where BFGS (resp. LBFGS) does not
encounter any nonsmooth point, it often converges to the optimum (Lemarechal, 1982;
Lewis and Overton, 2008a). However, Lewis and Overton (2008b), Luksan and Vlcek
(1999) and Haarala (2004) also report catastrophic failures of (L)BFGS on nonsmooth
functions. This has motivated various modifications to BFGS and LBFGS to facilitate
their use on nonsmooth problems. In what follows, we briefly discuss these modifica-
tions, before introducing our quasi-Newton approach to nonsmooth optimization.

1.3.1 E x istin g A pproaches

Various modifications to BFGS (resp. LBFGS) (Haarala, 2004; Luksan and Vlcek, 1999;
Rauf and Fukushima, 1996) have been proposed in order to ensure its convergence on
nonsmooth problems. A common feature of these modifications is that they require
repeated evaluation of function (and subgradient) around nonsmooth points (Haarala,
2004; Luksan and Vlcek, 1999), or in some cases also around smooth points (Rauf
and Fukushima, 1996) so as to build a faithful local model of the objective function.
In most machine learning problems, e.g., our targeted regularized risk minimization
problems, the objective function (and hence its subgradient) sums contributions from
every instance in a set of training data. When learning on massive datasets with millions
of training instances, function (resp. subgradient) evaluation is computationally very
expensive. Therefore, existing extensions of (L)BFGS to nonsmooth problems are not
suitable for our problems. In contrast to these approaches, we build a local model of
the objective function from subgradients evaluated only at a single nonsmooth point.
This can be done very efficiently because the special structure present in our problems
allows for the exact evaluation of all subgradients at a nonsmooth point.

Another possible way to bypass the complications caused by lack of smoothness of
an objective function is to work on a smooth approximation instead (Nemirovski, 2005;
Nesterov, 2005). Although this approach has met with some success in recent years, it
is unclear how to build a smooth approximation in general. Furthermore, smooth loss
functions do not preserve sparsity in the solution of a machine learning problem, which
often leads to good generalization performance on unseen data. This thesis therefore
focuses on the underlying optimization problems, and not on the modeling issues such
as the choice of loss function. In what follows we provide a high-level discussion of our
approach to extend (L)BFGS to nonsmooth objective functions.

§1.3 Quasi-Newton Methods for Nonsmooth Optimization 7

F ig u re 1.3: The gradients of the dashed lines give two subgradients of the function (solid line)
at its nonsmooth point (the optimum). Adjusting the parameter in the negative direction of
any of the two subgradients takes us out of the optimality.

1.3.2 Our A pproach

The fundamental reason for the deficiency of (L)BFGS on a nonsmooth function is that
it may not be able to determine a descent (downhill) direction to decrease the objective
function value at a non-differentiable point. Although a convex function might not be
differentiable everywhere, a subgradient always exists (Hiriart-Urruty and Lemarechal,
1993). Let w be a point where a convex function J is finite. Then a subgradient is the
normal vector to any tangential supporting hyper plane of J at w. Formally, g is called
a subgradient of J at w if and only if (Hiriart-Urruty and Lemarechal, 1993, Definition
VI.1.2.1)

(Vti/) J(w ') > J (w) -I- (w ' — w)Tg. (1-10)

The set of all subgradients at a point is called the subdifferential, and is denoted dJ{w).
If this set is not empty, then J is said to be subdifferentiable atw. If it contains exactly
one element, fie., dJ{w) — (VJ(w)}, then J is differentiable at w. Figure 1.2 (right)
provides the geometric illustration of (1.10).

Recall that BFGS assumes the objective function J is differentiable everywhere so
that at the current iterate w t it can construct a local quadratic model (1.4) of J (wt).
For a nonsmooth objective function, such a model becomes ambiguous at nonsmooth
points: replacing the gradient VJ(m^) in (1.4) with different subgradients yields dif-
ferent models. To resolve the ambiguity, we could simply replace the gradient V J (w t)
in (1.4) with an arbitrary subgradient gt G dJ(wt), and minimize this model to obtain
the quasi-Newton direction p t := —B tgt, which, however, is not necessarily a direction
of descent. This is essentially caused by the fact that the negative direction of a sub-
gradient need not be a descent direction, as Figure 1.3 illustrates. Formally, a direction

8 Introduction

Pt is a descent direction at a point Wt if and only if

sup g pt < 0. (1.11)
g edJ (w t)

Since pt may not fulfill this condition, it may not be possible for a line search to find
a valid step size rp > 0. To fix this fundamental modeling problem, we propose a
new model that takes the supremum over all possible quadratic models generated from
different subgradients taking the place of the gradient in the BFGS quadratic model
(1.4). This corresponds to replacing the last term in (1.4) with s u p ^ ^ j^) g Tpt-

Having constructed a local model of J , we can minimize it to obtain a direction of
descent. Minimizing our new model is itself a challenging task due to the presence of
the supremum over the entire set of subgradients. However, since the nonsmoothness
in our problem stems only from piecewise linear terms in the objective function, the
subdifferential is very well structured. Specifically, d J(w t) is a convex and compact
polyhedron characterised as the convex hull of its extreme points. For instance, all
subgradients of the piecewise linear function shown in Figure 1.2 (right) form the in-
terval between the gradients of its left and right linear segments. The fact that the
supremum over a polyhedral set can only be attained at an extreme point (Bertsekas,
1999, Proposition B.21c) allows us to easily compute supg£dJ(wt) 9TPt- Based on this
observation, we are able to develop an efficient iterative procedure that is guaranteed
to produce a quasi-Newton direction that satisfies the descent condition (1.11).

Given a descent direction, we need to find a step size that reduces the objective
function value in this direction, i.e., reduces the value of the one-dimensional function
<f> (1.7). Since <f> is simply the objective function J restricted to a line, the structure of
J is preserved in <f>, e.g., if J is piecewise quadratic, then so is <f>. Using this knowledge,
we can not only generalize standard inexact line searches to the nonsmooth setting, but
also develop efficient exact line searches that take into account the structured functional
form of <f>.

1.4 S tochastic Q uasi-N ew ton M ethods

As we have already seen (e.g., in (1.1)), machine learning poses data-driven optimization
problems in which the objective function involves the summation of loss terms over a
set of data to be modeled. Classical optimization techniques must compute this sum in
its entirety for each evaluation of the objective function, respectively its gradient. As
available datasets grow ever larger, such “batch” (deterministic) optimizers therefore
become increasingly inefficient. They are also ill-suited for the online (incremental)
setting, where partial data must be modeled as it arrives.

Stochastic (online) gradient methods, by contrast, work with function and gradient

§1.4 Stochastic Quasi-Newton Methods 9

estimates obtained from small subsamples (mini-batches) of the data. The stochastic
approximation of the regularized risk (1.1), for instance, takes the form

J(w, X) := Xfl(w) + - ^ 2 l (x i , zi ,w) (1.12)
(® iiZi)&X

where X is a mini-batch of b training instances (cc*, zi), he., pairs of feature vectors and
their corresponding correct labels drawn from the set of training data. It has been noted
(Bottou, 1998) that stochastic methods are generally robust to the nonsmoothness of
the objective function. Intuitively, this is because we can always take another batch of
data to avoid landing on the same nonsmooth points.

Since the batch size b in (1.12) is usually much less than the size of the training
set, function (and hence gradient) evaluation in the stochastic setting is cheap. This
can greatly reduce computational requirements: on large, redundant datasets, simple
stochastic gradient descent:

w t+i = w t - f]tV wJ{wt, X t) (1.13)

routinely outperforms sophisticated second-order batch methods, e.g., LBFGS, by or-
ders of magnitude (Bottou, 2009; Vishwanathan et ah, 2006), in spite of the slow
convergence of first-order gradient descent. In the stochastic setting the step size r/t is
commonly decayed over iterations, e.g., by a decay schedule

Vt = —— ho , (1-14)T + t

where 770, t > 0 are tuning parameters. Schraudolph (1999, 2002) further accelerates
stochastic gradient descent through online adaptation of a step size vector.

Attempts to develop more advanced stochastic methods are hampered by the fact
that core tools of conventional gradient-based optimization, such as line searches and
Krylov subspaces, are not amenable to stochastic approximation (Schraudolph and
Graepel, 2003): online implementations of conjugate gradient methods (Mpller, 1993;
Schraudolph and Graepel, 2003), for instance, have proven largely ineffective.

Natural gradient descent (NG, Amari et ah, 1998) is an online second-order learning
algorithm that works by incrementally maintaining an approximation to the inverse of

Ex [VwJ (w t, X) V wJ (w t , X) T] (1.15)

(the covariance matrix of the stochastic gradient), which is then used to scale the
parameter update. While quite effective, NG does not model the curvature (Hessian)
of the objective function, and requires 0{d2) space and time per iteration to optimize
a system with d parameters.

10 Introduction

We overcome these limitations by systematically modifying BFGS so as to make it
amenable to stochastic approximation of gradients. The changes required to get BFGS
to work well with stochastic approximation fall into three aspects: making do without
a line search, modifying the update of BFGS’ inverse Hessian approximation (1.8), and
taking consistent gradient measurements for the calculation of yt in (1.9). Moreover, by
applying analogous modifications to LBFGS we are able to obtain a stochastic LBFGS
method.

1.5 Thesis Contributions

The major contributions of this thesis are:

1. We systematically extend the classical quasi-Newton framework for smooth non-
linear optimization to nonsmooth objectives. The resulting quasi-Newton al-
gorithms are amenable to subgradients and proven to converge to the optimal
objective value. In addition, our algorithms are able to take advantage of the
polyhedral structure present in the subdifferential of nonsmooth objective func-
tions often encountered in machine learning. This allows our methods to per-
form competitively when benchmarked against state-of-the-art machine learning
solvers on a range of machine learning problems.

2. We develop new exact line search methods specialized for .^-regularized risk min-
imization with the hinge loss (1.2) and its generalizations to the more challenging
multiclass and multilabel classification problems. In the multiclass setting the
class label 2 can take any integer value instead of being restricted to the set {±1},
while in the multilabel setting multiple labels can be assigned to one feature vec-
tor, z.e., 2 becomes a set. By exploiting the piecewise linear structure in this class
of convex but nonsmooth classification problems, our exact line search methods
efficiently find the optimal step size that minimizes the objective function in a
given search direction. These line search methods can be used as black-box pro-
cedures to accelerate the convergence of any adaptive classifier whose parameter
update takes the form of (1.6).

3. Stochastic variants of BFGS and LBFGS are also developed in this thesis. To the
best of our knowledge, this is the first successful extension of the standard quasi-
Newton methods to the stochastic setting. Stochastic LBFGS, in particular, is
significant as the first stochastic gradient algorithm which combines the desirable
properties of quasi-Newton methods with good scaling to both large datasets and
large models (z.e., with many parameters).

§1.6 Outline 11

1.6 Outline

The rest of this thesis is organized as follows:

• C hapter 2:
This chapter provides an overview of the standard BFGS quasi-Newton method
and its limited-memory variant (LBFGS). In particular, we describe in detail the
three building blocks of the BFGS method: (1) the local quadratic model, (2) the
line search method, and (3) the BFGS inverse Hessian approximation.

• C hapter 3:
We extend standard (L)BFGS to nonsmooth convex optimization. This is done in
a rigorous fashion by extending key components of BFGS to subdifferentials. We
then demonstrate the use of the resulting subBFGS (resp. subLBFGS) algorithm
for regularized risk minimization with various hinge losses for binary, multiclass,
and multilabel classification tasks.

• C hapter 4:
An extensive empirical evaluation of subLBFGS is carried out in this chapter. We
compare the performance of subLBFGS with specialized state-of-the-art machine
learning solvers on Z/2-regularized risk minimization with various hinge losses. We
also apply the direction-finding component of our algorithm to L \-regularized risk
minimization with the logistic loss.

• C hapter 5:
We develop stochastic variants of BFGS in both full and memory-limited forms.
The resulting algorithms demonstrate competitive performance in comparison to
previous stochastic approaches.

• C hapter 6:
The online LBFGS method is applied to parameter estimation in Conditional
Random Fields with over 105 parameters, as used in natural language processing.

• C hapter 7:
We conclude with a summary of the thesis and ideas for future work.

1.7 N otation

This section describes notational conventions used throughout this thesis. Scalars are
denoted by non-bold letters, e.g., x. Vectors are denoted by lowercase boldface letters,
e.g., x , and matrices by capital boldface letters, e.g., A . We use boldface numbers to
denote a vector of that number: 1 denotes a vector of all ones and 0 a vector of all

12 Introduction

zeros. Calligraphic letters refer to sets, but we denote the set of natural numbers N,
the set of integers Z, the set of real numbers R and the set of d-dimensional real vectors
R d .

Vectors are viewed as column vectors. A superscript T denotes the transpose of
a vector or matrix. For a vector x G Rf/, x T is therefore a d-dimensional row vector.
The inner product of two vectors x , y G Rd is written as x y. To denote the zth
element of a vector x , we use the notation xf, the entry of a matrix A at the zth row
and the j th column is denoted by Aij. [x\, X2, ■ • ■ , x n] denotes a matrix with columns
X \ , X2i • • • , x n. For an invertible matrix A, A -1 denotes its inverse. We use / ■< A ■< u
to express that all eigenvalues of A lie between l and u. We use || • || as a shorthand
for the Z/2 (Euclidean) norm, z.e., ||cc|| := V r a:; for a matrix, || • || denotes the matrix
norm induced by the L2 vector norm, he., ||A|| := m ax ^o We use || • ||i to
denote the L\ vector norm, he., ||cc||i := \x i\-

If J is a function, we use the notation J : A —► B to indicate that J is defined
on a set A, and takes values from a set B. Following the notational conventions in
convex analysis, we use V J to denote the gradient of a differentiable function J; if
J is non-differentiable, we use dJ to denote its subdifferential. The expectation of a
function J(x, y) with respect to a random variable x is denoted by Ex [J(x, y)]. When
it is clear which random variable an expectation is taken over, we omit the subscript,
e.g., E(x x t).

The “big O” notation O(-) is used in this thesis to characterize the size of a quantity
or the computational complexity of an algorithm. We write y — O(x) if and only if
there exists a constant c > 0 such that for any value of x E R, \y\ < cx. For vectors
and matrices, we use O(-) to quantify their Euclidean norms. For instance, for a vector
y E Rd, we write y = O(x) if and only if there exists a constant c > 0 such that
(Vx G R) \\y\\ < cx.

Subscript t is reserved as an iteration (time) index: Xt means the value of x at
iteration t. When there is an iterative sub-procedure within a main iteration, we use
the superscript (i) to index the sub-iteration: x± denotes the value of xt after i
iterations of the sub-procedure.

C hapter 2

C lassical Q uasi-N ew ton M ethods

In this chapter we review the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method (Dennis and More, 1977) in both its full (Section 2.1) and memory-limited forms
(Section 2.2). Throughout this chapter we assume the objective function J : Rd —> R
is convex, deterministic, and continuously differentiable everywhere. The new quasi-
Newton methods developed in Chapters 3 and 5 will relax these constraints, while
maintaining the solid foundation of this classical optimization technique.

2.1 The BFGS Q uasi-Newton M ethod

The BFGS quasi-Newton algorithm (Dennis and More, 1977; Fletcher, 1989; Nocedal
and Wright, 1999) was invented independently by Broyden, Flecher, Goldfarb, and
Shanno in the early seventies. It is by far the most successful quasi-Newton method for
unconstrained smooth nonlinear optimization due to its combination of computational
efficiency and good asymptotic convergence. In what follows, we review this algorithm
(Algorithm 2.1), focusing on its three key components, namely, the local quadratic
model, the line search method, and the inverse Hessian approximation.

2.1.1 Local Q uadratic M odel

Given a continuously differentiable objective function: J : Rd —> R and a current iterate
Wt € Rd, BFGS forms a local quadratic model of J:

Qt{p) := J{wt) + \ p l B ~ 1p + V J(wt)Tp, (2.1)

where B t is a symmetric positive definite estimate of the inverse Hessian of J (assuming
that J is twice-differentiable), and V J denotes the gradient. The quadratic model (2.1)
can be seen as an approximation to a truncated second-order Taylor expansion of J

13

14 Classical Quasi-Newton Methods

A lgorithm 2.1 C l a s s ic a l BFGS Me t h o d
1: Initialize: t := 0, B o = 7, and Wq
2: Set: convergence tolerance e > 0
3: w hile ||VJ(iat)|| > e do
4: p t = - B tV J (w t)
5: Find r]t that obeys (2.7) and (2.8)
6: s t = T]tpt
7 : W t + l = W t + St

8: yt = V J (w t+1) - V J (w t)
9: if t = 0 then

10: B f . = ^ - I
v l yt

11: end if
12: pt = (s j y t) - 1

13: B t + 1 = {I - pts ty j) B t (I - ptyts j) + pts ts j
14: t :— t 1
15: end w hile

around Wt:

Qt(p) ~ J(wt) + \ p TH t p + \7J(wt)Tp « J(Lei + p), (2.2)

where FT, is the Hessian (second-order derivative of J) at Wt- Taking the derivative of
(2.1) and setting it to zero give the so-called quasi-Newton direction:

p t := - B tV J (w t), (2.3)

which is always a direction of descent, z.e., along pt the objective function value can
be decreased. Formally, a direction p e JRrf is a descent direction at an iterate w if
and only if it satisfies V J(w)Tp < 0. This is true for the quasi-Newton direction (2.3)
because

S/J(wt)"pt = - V J (w t)T< 0 (2.4)

holds due to the positivity of B t.
Given the quasi-Newton direction pt, BFGS adjusts the parameters by taking a

step along this descent direction (Lines 6-7 of Algorithm 2.1):

w t+i = w t + ritPt, (2.5)

where the step size yt > 0 is normally determined by a line search procedure (Line 5
of Algorithm 2.1, see also Section 2.1.2) that enforces technical conditions to ensure
global convergence to the optimum of J . The parameter update (2.5) is carried out

§2.1 The BFGS Quasi-Newton Method 15

acceptable interval

F igu re 2.1: Geometric illustration of the Wolfe conditions (2.7) and (2.8).

iteratively until the norm of the gradient drops below a pre-specified small tolerance,
indicating that the solution is within a close neighbourhood of the optimum.

2.1.2 Line Search

Given the current iterate wt and a descent search direction p t, the task of a line search
is to determine how far to move along the ray: (wt + r)pt) with 77 > 0 to reduce the
value of the objective function, z.e., reducing the value of the one-dimensional function

$(77) := J(wt + r]pt). (2.6)

Exact line search finds the optimal step size by minimizing $(77) but is only feasible
when the exact functional form of the objective function (and hence $) is known and
amenable to efficient minimization. This is, in general, not possible. However, we can
often do it in machine learning because objective functions (resp. <£) of most machine
learning problems are explicitly given.

Inexact line searches only require the access to function and gradient values. They
only seek to minimize (2.6) approximately by enforcing conditions designed to ensure
convergence. As implemented here (Algorithm 2.1), BFGS uses an inexact line search
that obeys the Wolfe conditions (Wolfe, 1969):

J(wt+1) < J(wQ + ciTjtVJ(wt)TPt (sufficient decrease) (2-7)

and V J(wt+i) ' Pt > C2V J (w t)TPt-, (curvature) (2.8)

with 0 < ci < C2 < 1. Typical values for ci and C2 are 10~4 and 0.9, respectively. The
Wolfe conditions facilitate global convergence by guaranteeing a sufficient decrease in
the value of the objective function and excluding pathologically small step sizes via (2.7)

16 Classical Quasi-Newton Methods

and (2.8), respectively (Nocedal and Wright, 1999, Thorem 3.2 and 8.5). Figure 2.1
illustrates this geometrically.

A natural question to ask is whether the optimal step size 77* obtained by exact
line search satisfies the Wolfe conditions. The answer is no because depending on the
choice of ci, 77* may violate the sufficient decrease condition (2.7). For instance, for the
function plotted in Figure 2.1, we can increase the value of c\ such that the acceptable
interval for the step size excludes 77*. To prevent this from happening, in practical
implementations c\ is often set to a small value, e.g., 10~4. On the other hand, the
curvature condition (2.8) is always satisfied by 77*:

VJ(wt + h*Pt)TPt = 0 > J (w t)Tp t (2.9)

because pt is a descent direction (2.4) and the gradient of <f>:

V $(t7) = V J (w t + rjpt)Tpt (2.10)

vanishes at 77*.
The most commonly used inexact line search procedure is a backtracking line search

that obeys the Wolfe conditions. It tries candidate steps of the form rjoßk for k =
0 ,1 ,2 ,... until (2.7) and (2.8) are satisfied, where 0 < ß < 1 is a decay factor, and
770 > 0 an initial step size that satisfies the curvature condition (2 .8), he., 770 must not
be less than the minimal acceptable step size as illustrated in Figure 2.1. Bertsekas
(1999, Proposition 1.2.1) shows that a backtracking line search that obeys the sufficient
descent direction (2.7) can already guarantee global convergence to the optimum of a
convex and smooth objective function, provided that all search directions supplied to
the backtracking line search are descent directions.

2.1.3 Inverse H essian A pp roxim ation

The BFGS' symmetric positive-definite approximation B t to the inverse Hessian (cur-
vature) plays a key role in forming the quasi-Newton direction (2.3). It is maintained
incrementally alongside the parameter update (2.5): as BFGS moves to the new iterate
Wt+1, it adjusts its quadratic model to

Qt+i{p) ■ = J(v>t+i) + k P TB^+iP + VJ(™m)Tp, (2.11)

where the new estimate B t+1 of the inverse Hessian is computed in such a way that
the gradient of Qt+i matches the gradient of J at W t+ \ and wt (Figure 2.2), z.e.,

VQ(+i(0) = VJ(u)f+i) and V Q i + i = VJ(u>t). (2 .12)

§2.1 The BFGS Quasi-Newton Method 17

- - BFGS Model Qt+1
- ■ - • Objective Function J

Figure 2.2: The gradient of the BFGS quadratic model Qt+i constructed at the new iterate
Wt+i matches the gradient of the objective function J at wt and wt+\: tangents of Qt+i and
J (solid lines) are parallel at wt, and coincide at Wt+i.

It is easy to check that VQ*+i(0) = VJ(wt+i) holds independent of the exact form of
Bt+1 - Using the derivative of (2.11) to expand the second equality in (2.12) gives

VJ(u>t+i) - r j tB ^ p t = V J (w t). (2-13)

Rearranging terms in (2.13) gives rise to the so-called secant equation:

B t+iy t = s t, where (2.14)

s t := rjtpt = w t+i - w t and y t := V J(w t+i) - V J (w t) (2.15)

are the most recent steps along the optimization trajectory in parameter and gradient
space, respectively. A matrix B t+1 that satisfies (2.14) is a good approximation to
the inverse Hessian of the objective function. To see this, we use Taylor’s theorem
(Theorem 2.1.1 below) for the gradient of a continuously twice-differentiable function:

T heorem 2.1.1 (Nocedal and Wright, 1999, Theorem 2.1) Let J : Rd —> R be contin-
uously twice-differentiable and p 6 Rd. Then we have

V J(w + p) = V J(w) + f V2J(ie + tp) pdt. (2-16)
J o

Simple manipulation of (2.16) gives

V J(w T p) - VJ (w) = V 2J(w) p + [[V2 J (w + tp) - V2 J(w)] p dt. (2.17)
J o

18 Classical Quasi-Newton Methods

Further assume that the Hessian of J is Lipschitz continuous, then the size of the
integral in (2.17) is 0 (||p ||2) (Dennis and Schnabel, 1996, Lemma 4.1.12). Omitting
the higher order term, we can write

V J(w + p) — VJ(w) « V2 J{w) p, (2.18)

or equivalently

[V2 J(w)]_1 [V J(w + p) - X7J{w)} « p. (2.19)

Comparing (2.19) with (2.14), we can see that B t+\ assumes the role of [V2 J(wt)]~i .
Another implication of the secant equation (2.14) is that we must have

VtBt+iyt = s j y t > 0 (2.20)

for any St,yt 7̂ 0 since B t+\ must be positive definite. For strongly convex functions,
Theorem 2.1.2 (below) shows that (2.20) is always true, provided that the norm of St
is nonzero.

Theorem 2.1.2 (Hiriart-Urruty and Lemarechal, 1993, Theorem VI.6.1.2)
A necessary and sufficient condition for a convex (and possibly nonsmooth) function
J : —> R to be strongly convex (with modulus c > 0) on a convex set C is that the
following inequality holds for all W\, W2 £ C:

(92 ~ gi)J (w2 - Wi) > c \\w2 - Will2, With gi G dJ(wi), i = 1,2. (2.21)

On a general smooth convex function we can achieve this by using a line search that
obeys the curvature condition (2.8). To see this, we rearrange (2.8) to write

[VJ(wt+i) - J(wt)]T pt > (c2 - l)\7J(wt)Tp t > 0 with c2 6 (0,1), (2.22)

where the last inequality holds because pt satisfies the descent condition (2.4).
The secant equation (2.14) itself is not enough to determine B t + 1 uniquely. There-

fore, BFGS additionally requires B t + 1 to be as close as possible to its previous iterate
Bti in the sense that it minimizes a weighted Frobenius norm of the two. This results
in the following constrained optimization problem in B t+p

minimize \\Bt+i — B t\\w (2.23)

s.t. Bj+ 1= B t+1 , B t+iy t = su and W s t = y t ,

lrThis means ||V 2J(m + p) — V 2J { w)|| < c||p|| for some Lipschitz constant c > 0.

§2.2 The Limited-Memory BFGS Method 19

A lgorithm 2.2 L i m i t e d -M e m o r y BFGS (LBFGS)
1: Initialize: t := 0 and Wo
2: Set: convergence tolerance e > 0 and buffer size m > 0
3: while ||V J(iüt)|| > e do
4: Compute pt via Algorithm 2.3
5: Find T]t that obeys (2.7) and (2.8)
6: if t > m th en
7: Discard vectors S t - m , Vt -m
8: end if
9: Store s t = rjtpt

10: Wt+l = W t + St
11: Store yt = V J (w t+i) — WJ(wt)
12: t t 1
13: end while

where the constraint on the weighting matrix W is justified by using an argument based
on the invariant property of the weighted Frobenius norm (Fletcher, 1989, Thorem
3.3.2). The unique solution to (2.23) leads to a rank-two update1’ for B t+\'.

B t + 1 = (I - PtStyJ)Bt(I - ptVtsJ) + pts ts l , where pt := [s] y t)~l . (2.24)

The update (2.24) implicitly enforces the positivity of B t+1 , provided that B t is positive
definite (Dennis and Schnabel, 1996, Thorem 7.8). Substantial experimental evidence
has suggested that (2.24) yields the best inverse Hessian approximation, compared
to other options such as DFP and SRI approximations (Fletcher, 1989; Nocedal and
Wright, 1999). In terms of practical implementation, the initial approximation B q is
usually set to the identity matrix, but subsequently scaled by an estimate of the largest
eigenvalue of the inverse Hessian (Line 10 of Algorithm 2.1).

2.2 T he L im ited-M em ory BFG S M ethod

Limited-memory BFGS (LBFGS, Algorithm 2.2) is a variant of BFGS designed for
solving high-dimensional optimization problems where the 0(d2) cost of storing and
updating B t would be prohibitive (Liu and Nocedal, 1989).

In LBFGS the estimation of the inverse Hessian is based on only the last m steps
in parameter and gradient space. Unrolling the recursive rank-two update (2.24), we

2The update (2.24) can be written as B t + 1 = B t + C , where C is a rank-two correction matrix in
the form C := abT + 6aT; Fletcher (1989, Theorem 3.3.2) provides the exact forms of a and b.

20 Classical Quasi-Newton Methods

Algorithm 2.3 LBFGS D i r e c t io n U pd a t e

1: input buffer size m > 0, current iterate index t > 0, current gradient VJ(iCf),
and V i = 1,2, . . . , min(£, m) : vectors St-i and y t-i from Algorithm 2.2

2: output quasi-Newton direction p t
3 : p t := —V J (w t)
4: for i := 1 , 2 , , min(t, m) : do

Oct —
SJ-rPt

6 : p t := p t - O tiV t-i
7: end for
8: if t > 0 then

s I - i V t - \
9 : p t := - ------- P t

10: end if
yJ-iVt-i

11: for i := min(t, m) , . . . , 2,1 : do

12: ß yJ-iPt
y j - i s t - i

13: p t := p t + (oti - ß)s t—i
14: end for
15: return p t .

obtain the LBFGS inverse Hessian approximation:

B t + i — [A t • • • B q [A t —m + 1 ■ ■ ' A t \

+ P t - m + l [A-t • • • A t_ m + 2] St—m + l s t - m + l [A t —m+2 ' ' ’ A t \

+ Pt—m+ 2 ' ‘ ' - ^ 4—771+ 3] s t - m + 2 5 ^ _ m + 2 [^ t —m + 3 ' ' ‘

+ . . .

+ (2.25)

where the auxiliary matrix At is defined as A t := (/ — ptVtsJ)• It is customary to set
the initial approximation B o to a scaled identity matrix, but unlike in BFGS where the
scaling factor is fixed, here it can vary from iteration to iteration to reflect the latest
estimate of the largest eigenvalue of the inverse Hessian. Nocedal (1980) shows that
the product of a matrix of the form (2.25) with a vector can be efficiently computed via
a recursive procedure. Algorithm 2.3 implements this procedure to obtain the quasi-
Newton direction —B t V J (w t) . Note that B t is not explicitly used by Algorithm 2.3. A
standard implementation of LBFGS (Algorithm 2.2) thus omits Lines 4 and 9-13 from
Algorithm 2.1, maintains a buffer of the last m parameter and gradient displacement
vectors, he., V i = 1, 2, . . . , min(£, m) : vectors St-i and yt-i as in (2.15), and replaces
Line 4 of Algorithm 2.1 with Algorithm 2.3. This reduces the cost from 0 (d 2) to 0(md)
space and time per iteration, with m freely chosen (typically between 3 and 20).

§2.3 Summary 21

2.3 Summary

We reviewed the standard BFGS quasi-Newton method and its limited-memory variant
(LBFGS). These two quasi-Newton optimizers are widely considered as the workhorses
of smooth nonlinear optimization due to their superior practical performance. However,
their application to nonsmooth optimization has been problematic because their key
components critically depend on differentiability of the objective function. In the next
chapter we relax this dependence so as to generalize this framework from smooth to
nonsmooth nonlinear optimization. In Chapter 5 we then extend (L)BFGS to the
stochastic setting where optimization is based on approximate function (resp. gradient)
measurements obtained from small subsamples of the training data.

22 Classical Quasi-Newton Methods

C hapter 3

A Q uasi-N ew ton A pproach to
N onsm oo th C onvex O p tim iza tion

In this chapter we extend the classical BFGS method to nonsmooth convex optimiza-
tion. This is done in a rigorous fashion by generalizing three components of BFGS
to subdifferentials: the local quadratic model, the identification of a descent direction,
and the Wolfe line search conditions. We prove that under some technical conditions,
the resulting subBFGS algorithm is globally convergent in objective function value. We
demonstrate the use of our algorithms for /^-regularized risk minimization with the
hinge loss. To extend them to the multiclass and multilabel settings, we also develop
a new, efficient, exact line search algorithm. Throughout this chapter we assume that
the objective function J : —> R is convex.

We first motivate our work by illustrating the difficulties of (L)BFGS on nonsmooth
functions, and the advantage of incorporating BFGS’ curvature estimate into the pa-
rameter update. In Section 3.2 we develop our optimization algorithms generically,
before discussing their application to Z/2-regularized risk minimization with the hinge
loss in Section 3.3. We describe a new efficient algorithm to identify the nonsmooth
points of a one-dimensional pointwise maximum of linear functions in Section 3.4, then
use it to develop an exact line search that extends our optimization algorithms to the
multiclass and multilabel settings (Section 3.5). We compare and contrast our work
with other recent efforts in this area in Section 3.6, before concluding this chapter with
a discussion (Section 3.7). Our experimental results on a number of public machine
learning datasets are presented in Chapter 4.

3.1 M otiva tion

BFGS (resp. LBFGS) works surprisingly well on some nonsmooth problems but is not
guaranteed to converge (Haarala, 2004; Lewis and Overton, 2008a,b; Luksan and Vlcek,
1999). Various fixes can be used to avoid this problem, but only in an ad-hoc man-
ner. Therefore, subgradient-based approaches such as subgradient descent (Nedic and

23

24 A Quasi-Newton Approach to Nonsmooth Convex Optimization

BFGS subBFGS

.01 0.00 0.01

X X

Figure 3.1: Left: the nonsmooth convex function (3.1); optimization trajectory of BFGS with
inexact line search (center) and subBFGS (right) on this function.

Bertsekas, 2000) or bundle methods (Franc and Sonnenburg, 2008; Joachims, 2006; Teo
et al., 2010) have gained considerable attention for minimizing nonsmooth objectives.
Our aim is to develop principled and robust quasi-Newton methods that are suitable
for solving nonsmooth convex optimization problems in machine learning.

The application of standard (L)BFGS to nonsmooth optimization has been problem-
atic since the quasi-Newton direction generated at a nonsmooth point is not necessarily
a descent direction. Nevertheless, BFGS’ inverse Hessian estimate can still be used to
effectively model the shape of a nonsmooth objective; incorporating it into the pa-
rameter update can therefore be beneficial. We discuss these two aspects of (L)BFGS
to motivate our work on developing new quasi-Newton methods that are amenable to
subgradients while preserving the fast convergence properties of standard (L)BFGS.

3.1.1 P rob lem s o f (L)B FG S on N o n sm ooth O bjectives

Smoothness of the objective function is essential for classical (L)BFGS because both
the local quadratic model (2.1) and the Wolfe conditions (2.7, 2.8) require the existence
of the gradient V J at every point. As pointed out by Hiriart-Urruty and Lemarechal
(1993, Remark VIII.2.1.3), even though nonsmooth convex functions are differentiable
everywhere except on a set of Lebesgue measure zero, it is unwise to just use a smooth
optimizer on a nonsmooth convex problem under the assumption that “it should work
almost surely.” Below we illustrate this on both a toy example and real-world machine
learning problems.

3.1.1.1 A Toy Example

The following simple example demonstrates the problems faced by BFGS when work-
ing with a nonsmooth objective function, and how our subgradient BFGS (subBFGS)
method (to be introduced in Section 3.2) with exact line search overcomes these prob-

§3.1 Motivation 25

lems. Consider the task of minimizing

f (x , y) = 10|x| + |y| (3.1)

with respect to x and y. Clearly, f {x, y) is convex but nonsmooth, with the minimum
located at (0,0) (Figure 3.1, left). It is subdifferentiable whenever x or y is zero:

We call such lines of subdifferentiability in parameter space hinges.
We can minimize (3.1) with the standard BFGS algorithm, employing a backtrack-

ing line search (Nocedal and Wright, 1999, Procedure 3.1) that starts with a step size
that obeys the curvature condition (2.8), then exponentially decays it until both Wolfe
conditions (2.7, 2.8) are satisfied.1 2 The curvature condition forces BFGS to jump across
at least one hinge, thus ensuring that the gradient displacement vector y t in (2.24) is
non-zero; this prevents BFGS from diverging. Moreover, with such an inexact line
search BFGS will generally not step on any hinges directly, thus avoiding (in an ad-hoc
manner) the problem of non-differentiability. Although this algorithm quickly decreases
the objective from the starting point (1,1), it is then slowed down by heavy oscillations
around the optimum (Figure 3.1, center), caused by the utter mismatch between BFGS’
quadratic model and the actual function.

A generally sensible strategy is to use an exact line search that finds the optimum
along a given descent direction (c/. Section 3.3.2.1). However, this line optimum will
often lie on a hinge (as it does in our toy example), where the function is not differ-
entiable. If an arbitrary subgradient is supplied instead, the BFGS update (2.24) can
produce a search direction which is not a descent direction, causing the next line search
to fail. In our toy example, standard BFGS with exact line search consistently fails
after the first step, which takes it to the hinge at x = 0.

Unlike standard BFGS, our subBFGS method can handle hinges and thus reap the
benefits of an exact line search. As Figure 3.1 (right) shows, once the first iteration of
subBFGS lands it on the hinge at x = 0, its direction-finding routine (Algorithm 3.2)
finds a descent direction for the next step. In fact, on this simple example Algorithm 3.2
yields a vector with zero x component, which takes subBFGS straight to the optimum
at the second step.“

3.1 .1 .2 Typical N onsm ooth O ptim ization Problem s in M achine Learning

The problems faced by smooth quasi-Newton methods on nonsmooth objectives are
not only encountered in cleverly constructed toy examples, but also in real-world appli-

1We set ci = 10-3 in (2.7) and C2 = 0.8 in (2.8), and used a decay factor of 0.9.
2This is achieved for any choice of initial subgradient g {l) (Line 3 of Algorithm 3.2).

dxf (0, -) = [-10,10] and dy/(-, 0) = [-1,1]. (3.2)

26 A Quasi-Newton Approach to Nonsmooth Convex Optimization

Leukemia (A = 10 1)

----- LBFGS-LS
....... LBFGS-ILS
------subLBFGS

1 0"1
CPU Seconds

xl0-i Real — sim (A = 10 5)

----- LBFGS-LS
....... LBFGS-ILS

subLBFGS

CPU Seconds

Letter (A = 10 6)

----- LBFGS-LS
LBFGS-ILS

------subLBFGS
— m

1 0 ° 1 0 1 1 0 2

CPU Seconds

Figure 3.2: Performance of subLBFGS (solid) and standard LBFGS with exact (dashed) and
inexact (dotted) line search methods on sample L2-regularized risk minimization problems with
the binary (left and center) and multiclass hinge losses (right). LBFGS with exact line search
(dashed) fails after 3 iterations (marked as x) on the Leukemia dataset (left).

cations. To show this, we apply LBFGS to /^-regularized risk minimization problems
(1.1) with binary hinge loss (1.2), a typical nonsmooth optimization problem encoun-
tered in machine learning. For this particular objective function, an exact line search is
cheap and easy to compute (see Section 3.3.2.1 for details). Figure 3.2 (left Sz center)
shows the behavior of LBFGS with this exact line search (LBFGS-LS) on two datasets,
namely Leukemia and Real-sim.3 It can be seen that LBFGS-LS converges on Real-sim
but diverges on the Leukemia dataset. This is because using an exact line search on a
nonsmooth objective function increases the chance of landing on nonsmooth points, a
situation that standard BFGS (resp. LBFGS) is not designed to deal with. To prevent
(L)BFGS’ sudden breakdown, a scheme that actively avoids nonsmooth points must
be used. One such possibility is to use an inexact line search that obeys the Wolfe
conditions. Here we used an efficient inexact line search that uses a caching scheme
specifically designed for Z/2-regularized hinge loss (c/. end of Section 3.3.2). This im-
plementation of LBFGS (LBFGS-ILS) converges on both datasets shown here but may
fail on others. It is also slower, due to the inexactness of its line search.

For the multiclass hinge loss (3.40) we encounter another problem: if we follow the
usual practice of initializing w = 0, which happens to be a non-differentiable point,
then LBFGS stalls. One way to get around this is to force LBFGS to take a unit step
along its search direction to escape this nonsmooth point. However, as can be seen
on the Letter dataset in Figure 3.2 (right), such an ad-hoc fix increases the value of
the objective above J(0) (solid horizontal line), and it takes several CPU seconds for
the optimizers to recover from this. In all cases shown in Figure 3.2, our subgradient
LBFGS (subLBFGS) method (as will be introduced later) performs comparable to or
better than the best implementation of LBFGS.

3Descriptions of these datasets can be found in Section 4.1.

V
al

u
§3.1 Motivation 27

xl0-i CCAT (A = 10-6) INEX (A = 10-6) TMC2007 (A = 10“5)

GD
- - subGD
----- subLBFGS

GD
- - subGD
----- subLBFGS

GD
— subGD
----- subLBFGS

O1 102
CPU Seconds

102
CPU Seconds

102 10:
CPU Seconds

Figure 3.3: Performance of subLBFGS, GD, and subGD on sample /^-regularized risk min-
imization problems with the binary (left), multiclass (center), and multilabel (right) hinge
losses.

3.1 .2 A dvan tage o f Incorporating B F G S ’ C urvature E stim ate

In machine learning one often encounters /^-regularized risk minimization problems
(1.1) with various hinge losses (1.2, 3.40, 3.55). Since the Hessian of those objective
functions at differentiable points equals XI (where A is the regularization constant),
one might be tempted to argue that for such problems, BFGS’ approximation B t to
the inverse Hessian should be simply set to A-1/ . This would reduce the quasi-Newton
direction p t = —B tg t , gt £ dJ(wt) to simply a scaled subgradient direction.

To check if doing so is beneficial, we compared the performance of our subLBFGS
method with two implementations of subgradient descent: a vanilla gradient descent
method (denoted GD) that uses a random subgradient for its parameter update, and an
improved subgradient descent method (denoted subGD) whose parameter is updated
in the direction produced by our direction-finding routine (Algorithm 3.2) with B t =
I. All algorithms used exact line search, except that GD took a unit step for the
first update in order to avoid the nonsmooth point wo = 0 (c/. the discussion in
Section 3.1.1.2). As can be seen in Figure 3.3, on all sample /^-regularized hinge
loss minimization problems, subLBFGS (solid) converges significantly faster than GD
(dotted) and subGD (dashed). This indicates that BFGS’ B t matrix is able to model
the objective function, including its hinges, better than simply setting B t to a scaled
identity matrix.

We believe that BFGS’ curvature update (2.24) plays an important role in the
performance of subLBFGS seen in Figure 3.3. Recall that (2.24) satisfies the secant
condition B t+\y t = St, where St and yt are displacement vectors in parameter and gra-
dient space, respectively. The secant condition in fact implements a finite differencing

28 A Quasi-Newton Approach to Nonsmooth Convex Optimization

Figure 3.4: BFGS’ quadratic approximation to a piecewise linear function (left), and its
estimate of the gradient of this function (right).

scheme: for a one-dimensional objective function J : R —■> R, we have

_ (w + p) - w
,+1 V J{w + p) — V J{w)

(3.3)

Although the original motivation behind the secant condition was to approximate the
inverse Hessian, the finite differencing scheme (3.3) allows BFGS to model the global
curvature (z.e., overall shape) of the objective function from first-order information.
For instance, Figure 3.4 (left) shows that the BFGS quadratic model (2.1) fits a
piecewise linear function quite well despite the fact that the actual Hessian in this case
is zero almost everywhere, and infinite (in the limit) at nonsmooth points. Figure 3.4
(right) reveals that BFGS captures the global trend of the gradient rather than its
infinitesimal variation, that is, the Hessian. This is beneficial for nonsmooth problems,
where Hessian does not fully represent the overall curvature of the objective function.

3.2 S ubgrad ien t BFG S M ethod

We modify the standard BFGS algorithm to derive our new algorithm (subBFGS, Al-
gorithm 3.1) for nonsmooth convex optimization. Our modifications can be grouped
into three areas, which we elaborate on in turn: generalizing the local quadratic model,
finding a descent direction, and finding a step size that obeys a subgradient reformula-
tion of the Wolfe conditions. We then show that our algorithm’s estimate of the inverse
Hessian has a bounded spectrum, which allows us to prove its convergence.

4For ease of exposition, the model was constructed at a differentiable point.

§3.2 Subgradient BFGS Method 29

Algorithm 3.1 Subgradient BFGS (subBFGS)
1: Initialize: t := 0, wq = 0. Bo = I
2: Set: direction-finding tolerance e > 0, iteration limit /cmax > 0,

lower bound h > 0 on (cf. discussion in Section 3.2.4)

3: Compute subgradient go G dJ(wo)
4: while not converged do
5: p t = d e sc e n tD ir e c tio n (<?£, e,/cmax) (Algorithm 3.2)
6: if pt = failure then
7: Return W t

8: end if
9: Find r/t that obeys (3.17) and (3.18) (e.g., Algorithm 3.3 or 3.5)

10; s t = r]tPt
11: W t + 1 = W t + S t

12: Choose subgradient g t + 1 € dJ{w t+ \) : s j (g t + 1 - ^) > 0
13: V t ■= 9t+l — 9t
14: Sf := s t + m a x (o , h - y t (ensure ^ 7 >h)
15: Update B t + 1 via (2.24) *
16: t :— t -I- 1
17: end while

3 .2 .1 G eneralizing th e L ocal Q uadratic M od el

Recall that BFGS assumes that the objective function J is differentiable everywhere
so that at the current iterate wt it can construct a local quadratic model (2.1) of
J (w t). For a nonsmooth objective function, such a model becomes ambiguous at non-
differentiable points (Figure 3.5, left). To resolve the ambiguity, we could simply replace
the gradient V J (w t) in (2.1) with an arbitrary subgradient gt G dJ(wt). However,
as will be discussed later, the resulting quasi-Newton direction p t := —B tgt is not
necessarily a descent direction. To address this fundamental modeling problem, we
first generalize the local quadratic model (2.1) as follows:

Qt{p) := J{wt) + M t{p), where

M t{p) := \ p B ~ lp + sup g p. (3.4)
ged J(wt)

Note that where J is differentiable, (3.4) reduces to the familiar BFGS quadratic model
(2.1). At non-differentiable points, however, the model is no longer quadratic, as the
supremum may be attained at different elements of dJ(wt) for different directions p.
Instead it can be viewed as the tightest pseudo-quadratic fit to J at Wt (Figure 3.5,
right).

30 A Quasi-Newton Approach to Nonsmooth Convex Optimization

Figure 3.5: Left: selecting arbitrary subgradients yields many possible quadratic models
(dotted lines) for the objective (solid blue line) at a subdifferentiable point. The models were
built by keeping B t fixed, but selecting random subgradients. Right: the tightest pseudo-
quadratic fit (3.4) (bold red dashes); note that it is not a quadratic.

Having constructed the model (3.4), we can minimize Qt(p), or equivalently Mt(p):

min (\ P TB ~lp + sup pTp] (3.5)
p€Kc y gedJ (w t))

to obtain a search direction. We now show that solving (3.5) is closely related to
the problem of finding a normalized steepest descent direction. A normalized steepest
descent direction is defined as the solution to the following problem (Hiriart-Urruty
and Lemarechal, 1993, Chapter VIII):

min J'(wt , p) s.t. |||p||| < 1 , (3.6)
p e R d

where
f (w t , p) +

ViO T)

is the directional derivative of J at Wt in direction p, and ||| • ||| is a norm defined
on Rd. In other words, the normalized steepest descent direction is the direction of
bounded norm along which the maximum rate of decrease in the objective function
value is achieved. Using the property: p) = supgedJ{wt) Q P (Bertsekas, 1999,
Proposition B.24.b), we can rewrite (3.6) as:

min sup g p s.t. |||p||| < 1. (3.7)
pCRd gEdJ(wt)

If the matrix B t y 0 as in (3.5) is used to define the norm ||| • ||| as

| p | 2 •= P B 1 , (3.8)

§3.2 Subgradient BFGS Method 31

then the solution to (3.7) points to the same direction as that obtained by minimiz-
ing our pseudo-quadratic model (3.5). To see this, we write the Lagrangian of the
constrained minimization problem (3.7):

L(p ,a) := a p B ^ lp — a -f sup g p
g ed J (w t)

= \ p T(2a B~[l)p — a + sup g p , (3.9)
g ed J (w t)

where a > 0 is a Lagrangian multiplier. It is easy to see from (3.9) that minimizing the
Lagrangian function L with respect to p is equivalent to solving (3.5) with B ^ 1 scaled
by a scalar 2<a, implying that the steepest descent direction obtained by solving (3.7)
with the weighted norm (3.8) only differs in length from the search direction obtained
by solving (3.5). Therefore, our search direction is essentially an unnomalized steepest
descent direction with respect to the weighted norm (3.8).

Ideally, we would like to solve (3.5) to obtain the best search direction. This is
generally intractable due to the presence a supremum over the entire subdifferential set
dJ(wt). In many machine learning problems, however, dJ(wt) has some special struc-
ture that simplifies the calculation of that supremum. In particular, the subdifferential
of all the problems considered in this chapter is a convex and compact polyhedron
characterised as the convex hull of its extreme points. This dramatically reduces the
cost of calculating supg^dJ{wt) 9 P since the supremum can only be attained at an
extreme point of the polyhedral set dJ(wt) (Bertsekas, 1999, Proposition B.21c). In
what follows, we develop an iterative procedure that is guaranteed to find a quasi-
Newton descent direction, assuming an oracle that supplies a rg s u p ^ ^ j^) g p for a
given direction p E Rd. Efficient oracles for this purpose can be derived for many
machine learning settings; we provides such oracles for Z/2-regularized risk minimiza-
tion with the binary hinge loss (Section 3.3.1), multiclass and multilabel hinge losses
(Section 3.5), and L\ -regularized logistic loss (Section 4.1.4).

3.2 .2 F inding a D escen t D irection

A direction p t is a descent direction if and only if g p t < 0 \/g E dJ(wt) (Hiriart-
Urruty and Lemarechal, 1993, Theorem VIII. 1.1.2), or equivalently

sup g pt < 0. (3.10)
g ed J (w t)

For a smooth convex function, the quasi-Newton direction (2.3) is always a descent
direction because

V J (w t) p, = - V J (w t y B tVJ(wt) < 0

32 A Quasi-Newton Approach to Nonsmooth Convex Optimization

Algorithm 3.2 pt = descentD irection(p(1) ,e, kmax)
1: input (sub)gradient p(1) G dJ(w t), tolerance e > 0, iteration limit kmax > 0,

and an oracle to calculate arg s u p ^ ^ g p for any given w and p
2: output descent direction p t
3: Initialize: i = 1, g ^ = g^l\ p (1) = —B tg l' l')
4: e/(2) = arg sup9eaj(u;t) p ' p (1]
5: gf1) :=r p i 1) 1 g C) _ pH) 1 p i1)
6: while 1 p^ > 0 or > e) and > 0 and i < kmax do

7: g* := min (g (0 - g (i+1))T B t g (0 <
/ ■ ’ (g (i) - £ / (! + 1)) T B t (g O) _ g U + 1)) J ’ cf (A.43)

8: p l ^ 1) = (1 - p*)pW + p*p(i+1)
9: pb+b = 1 - u*)p(0 - / i * B ^ +1); cf. (A.18)

10: pb+2) = arg supffGaj(lt,t) pTp (i+1)
11: ell+1) minj<(i+1) [plJ)Tplj,+1) — ^(p(J)Tp(J) -f p0+1) 1 p(l+1))]
12: 2 := 2 H- 1
13: end while
14: pt = argminj <i Mt(plJ))
15: if supg€aj(tüt) g p t > 0 then
16: re tu rn failure;
17: else
18: re tu rn p t.
19: end if

holds due to the positivity of B t.

For nonsmooth functions, however, the quasi-Newton direction pt := —Btgt for a
given gt G dJ(wt) may not fulfill the descent condition (3.10), making it impossible to
find a step size 77 > 0 that obeys the Wolfe conditions (2.7, 2.8), thus causing a failure
of the line search. We now present an iterative approach to finding a quasi-Newton
descent direction.

Our goal is to minimize the pseudo-quadratic model (3.4), or equivalently minimize
Mt{p). Inspired by bundle methods (Teo et ah, 2010), we achieve this by minimizing
convex lower bounds of Mt(p) that are designed to progressively approach Mt{p) over
iterations. At iteration i we build the following convex lower bound on Mt(p):

M t \ p) := \ p B f lp A suppU)Tp, (3.11)
j<i

where i , j G N and g ^ G dJiwt) Vj < i. Given a pW G the lower bound (3.11) is
successively tightened by computing

pO^1) argsup gTp^l\ (3-12)
gGdJ(wt)

§3.2 Subgradient BFGS Method 33

such that m [1\ p) < M[l+l\ p) < Mt (p) Vp G Rd. Here we set g ^ G dJ(wt) arbitrar-
ily, and assume that (3.12) is provided by an oracle (e.g., as described in Section 3.3.1).
To solve minp€Rci M ^(p), we rewrite it as a constrained optimization problem:

min (j^p B ^ lp + ^j s.t. g r^Tp < £ Vj < z. (3.13)

This problem can be solved exactly via quadratic programming, but doing so may
incur substantial computational expense. Instead we adopt an alternative approach
(Algorithm 3.2) which does not solve (3.13) to optimality. The key idea is to write
the proposed descent direction at iteration i + 1 as a convex combination of p^> and
—B tg (Line 9 of Algorithm 3.2); and as will be shown in Appendix A.2, the returned
search direction takes the form

p t = - B tgu (3.14)

where gt is a subgradient in dJ{wt) that allows pt to satisfy the descent condition
(3.10). The optimal convex combination coefficient p* can be computed exactly (Line
7 of Algorithm 3.2) using an argument based on maximizing the dual objective of
Mt(p); see Appendix A.l for details.

The weak duality theorem (Hiriart-Urruty and Lemarechal, 1993, Theorem XII.2.1.5)
states that the optimal primal value is no less than any dual value, z.e., if Dt(oc) is
the dual of Mt(p), then min €Kd Mt{p) > Dt(ot) holds for all feasible dual solutions a .
Therefore, by iteratively increasing the value of the dual objective we close the gap to
optimality in the primal. Based on this argument, we use the following upper bound
on the duality gap as our measure of progress:

:= min p ^ 1 g ^'+1 ̂ — i (p ^ ' + p (?) 1 g ^)
j<i L

> min Mt(p) - Dt(a *), (3.15)

where g ^ is an aggregated subgradient (Line 8 of Algorithm 3.2) which lies in the
convex hull of g ^ G dJ(w t) Vj < z, and a* is the optimal dual solution; equations
A.19-A.21 in Appendix A.l provide intermediate steps that lead to the inequality in
(3.15). Theorem A.2.3 (Appendix A.2) shows that is monotonically decreasing,
leading us to a practical stopping criterion (Line 6 of Algorithm 3.2) for our direction-
finding procedure.

A detailed derivation of Algorithm 3.2 is given in Appendix A.l, where we also prove
that at a non-optimal iterate a direction-finding tolerance e > 0 exists such that the
search direction produced by Algorithm 3.2 is a descent direction; in Appendix A.2 we
prove that Algorithm 3.2 converges to a solution with precision e in 0 (l/e) iterations.
Our proofs are based on the assumption that the spectrum (eigenvalues) of BFGS’

34 A Quasi-Newton Approach to Nonsmooth Convex Optimization

approximation B t to the inverse Hessian is bounded from above and below. This is a
reasonable assumption if simple safeguards such as those described in Section 3.2.4 are
employed in the practical implementation.

3.2 .3 Subgradient Line Search

Given the current iterate w t and a search direction p t , the task of a line search is to
find a step size 77 > 0 which reduces the objective function value along the ray Wt + gpt,
i.e., reduces the value of the one-dimensional function <f>(rt/) as defined in (2.6). Using
the chain rule, we can obtain the subdifferential of <f>

d$(ri) := {g'pt : g e d J (w t + 7ipt)}. (3.16)

Exact line search finds the optimal step size 77* by minimizing $(77), such that 0 G
inexact line searches solve (2.6) approximately while enforcing conditions de-

signed to ensure convergence. The original Wolfe conditions, however, require the
objective function to be smooth; to extend them to nonsmooth convex problems, we
propose the following subgradient reformulation:

J (wt+i) < J (w t) + ci77t sup g Yp t
g e d J (w t)

and sup g p t > c2 sup gTp t,
g '£ d J (w t+ 1) g e d J (w t)

where 0 < c\ < c2 < 1. Figure 3.6 illustrates how these conditions enforce acceptance
of non-trivial step sizes that decrease the objective function value. In Appendix A.3 we
formally show that for any given descent direction we can always find a positive step
size that satisfies (3.17) and (3.18). Moreover, Appendix A.4 shows that the sufficient
decrease condition (3.17) provides a necessary condition for the global convergence of
subBFGS.

Employing an exact line search is a common strategy to speed up convergence,
but it drastically increases the probability of landing on a non-differentiable point (as
in Figure 3.2, left). In order to leverage the fast convergence provided by an exact
line search, one must therefore use an optimizer that can handle subgradients, like our
subBFGS.

Similar to the case of exact line search on smooth objective functions (c/. Sec-
tion 2.1.2), the optimal step size 77* obtained by an exact line search satisfies the
reformulated Wolfe conditions (resp. the standard Wolfe conditions when J is smooth)
may violate the sufficient decrease condition (3.17). The curvature condition (3.18), on

(sufficient decrease) (3.17)

(curvature) (3.18)

§3.2 Subgradient BFGS Method 35

acceptable interval

Figure 3.6: Geometric illustration of the subgradient Wolfe conditions (3.17) and (3.18). Solid
disks are subdifferentiable points; the slopes of dashed lines are indicated.

the other hand, is always satisfied by 77*, as long as pt is a descent direction (3.10):

sup g p t = sup g > 0 > sup g p t (3.19)
g ' e J { w t +r]*pt) ged${ri*) g e d J (w t)

because 0 6 d$(rj*).

3.2 .4 B ound ed Sp ectrum of B F G S ’ Inverse H essian E stim ate

Recall from Section 2.1.3 that to ensure positivity of BFGS’ estimate B t of the inverse
Hessian, we must have (Vi) s] y t > 0. Extending this condition to nonsmooth functions,
we require

(w t + 1 - w t)T(gt+1 - gt) > 0, where gt + 1 <E d J (w t+1) and gt e dJ (w t). (3.20)

By Theorem 2.1.2 if J is strongly convex and wt+1 ^ w t, then (3.20) holds for any
choice of gt+i and gt- For general convex functions, gt+1 needs to be chosen (Line
12 of Algorithm 3.1) to satisfy (3.20). The existence of such a subgradient is guaranteed
by convexity of the objective function. To see this, we first use the fact that rgPt —
Wt+ 1 — Wt and r]t > 0 to rewrite (3.20) as

P t 9 t + i > p j g t , where gt+\ € dJ{wt+\) and gt e d J (w t). (3.21)

It follows from (3.16) that both sides of inequality (3.21) are subgradients of $ (77) at rg
and 0, respectively. Furthermore, Theorem 3.2.1 below shows that the subdifferenital
d<h(r]) is monotonically increasing with 77:

5We found empirically that no qualitative difference between using random subgradients versus
choosing a particular subgradient when updating the Bt matrix.

36 A Quasi-Newton Approach to Nonsmooth Convex Optimization

T heorem 3.2.1 (Hiriart-Urruty and Lemarechal, 1993, Theorem 1.4.2.1)
Let 4> be a one-dimensional convex function on its domain, then is increasing in
the sense that g\ < g2 whenever g\ € <72 £ (772), and pi < 772•

Therefore, p] gt+1 can not be less than p j gt for any choice of gt+\ and gt, he.,

inf p j q > sup p jq .
g £ d J (w t+i) g € d J (w t)

(3.22)

This means that the only case where inequality (3.21) is violated is when both terms
of (3.22) are equal and in addition

9 t + 1 = arg inf g p t and gt = arg sup gTp t , (3.23)
g e d J { w t+ 1) gedJ (w t)

that is, in this case p j gt+1 = p j gt- To avoid this, we simply need to set gt+1 to a
different subgradient in dJ(wt+1).

Our convergence analysis for the direction-finding procedure (Algorithm 3.2) as well
as the global convergence proof of subBFGS in Appendix A.4 require the spectrum of
B t to be bounded from above and below by a positive scalar:

3 (h, H : 0 < h < H < 00) : (V£) h ■< B t -< H . (3.24)

From a theoretical point of view it is difficult to guarantee (3.24) (Nocedal and Wright,
1999, page 212), but based on the fact that B t is an approximation to the inverse
Hessian H f f 1, it is reasonable to expect (3.24) to be true if

(Vi) 1/H A H t A l/h. (3.25)

Since BFGS “senses” the Hessian via (2.24) only through the parameter and gradient
displacements St and y t , we can translate the bounds on the spectrum of Ht into
conditions that only involve St and yp.

(Vi) ■ > — and , with 0 < h < H < 0 0 . (3.26)
St s t H si y t h

This technique is used in (Nocedal and Wright, 1999, Theorem 8.5). If J is strongly
convex and s t ^ 0. then by Theorem 2.1.2, there exists an H such that the left in-
equality in (3.26) holds. On general convex functions, one can skip BFGS’ curvature
update if (s j y t/ s j s t) falls below a threshold. To establish the second inequality, we
add a fraction of y t to St at Line 14 of Algorithm 3.1 (though this modification is never
actually invoked in our experiments of Chapter 4, where we set h = 10-8).

§3.2 Subgradient BFGS Method 37

INEX (A = 10-6)

500 1000 1500 2000 2500 3000 3500 4000
Iterations

CCAT (A = 1(T6)

200 400 600 800 1000 1200 1400 1600
Iterations

Figure 3.7: Convergence of subLBFGS in objective function value on sample /^-regularized
risk minimization problems with binary (left) and multiclass (right) hinge losses.

3.2 .5 L im ited -M em ory Subgradient B FG S

It is straightforward to implement an LBFGS variant of our subBFGS algorithm: we
simply modify Algorithms 3.1 and 3.2 to compute all products between Bt and a
vector by means of the standard LBFGS matrix-free scheme (Algorithm 2.3). We call
the resulting algorithm subLBFGS.

3.2 .6 C onvergence o f Subgradient (L)B FG S

In Section 3.2.4 we have shown that the spectrum of subBFGS’ inverse Hessian estimate
is bounded. From this and other technical assumptions, we prove in Appendix A.4 that
subBFGS is globally convergent in objective function value, i.e., J (w) —> infw J(w).
Moreover, in Appendix A.5 we show that subBFGS converges for all counterexam-
ples we could find in the literature used to illustrate the non-convergence of existing
optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In most of our
experiments of Section 4.1, we observe that after an initial transient, subLBFGS ob-
serves a period of linear convergence, until close to the optimum it exhibits superlinear
convergence behavior. This is illustrated in Figure 3.7, where we plot (on a log scale)
the excess objective function value J(wt) over its “optimum” J*1' against the itera-
tion number in two typical runs. The same kind of convergence behavior was observed
by Lewis and Overton (2008a, Figure 5.7), who applied the classical BFGS algorithm
with a specially designed line search to nonsmooth functions. They caution that the
apparent superlinear convergence may be an artifact caused by the inaccuracy of the

6Estimated empirically by running subLBFGS for 104 seconds, or until the relative improvement
over 5 iterations was less than 10- 8 .

38 A Quasi-Newton Approach to Nonsmooth Convex Optimization

estimated optimal value of the objective.

3.3 S ubB F G S for /^ -R egu larized B inary H inge Loss

Many machine learning algorithms can be viewed as minimizing the L2-regularized risk
(1.1) . A loss function commonly used for binary classification is the binary hinge loss
(1.2) . Z/2-regularized risk minimization with the binary hinge loss is a convex but non-
smooth optimization problem; in this section we show how subBFGS (Algorithm 3.1)
can be applied to this problem.

Let £, Ad, and W index the set of points which are in error, on the margin, and
well-classified, respectively:

£ := {i 6 {1,2,.. . , n} : 1 — Z{WTXi > 0},
A4 := {i E {1, 2 , . . . , n} : 1 — Z{WTX{ = 0},

W := {i G {1 ,2 , . . . , n} : 1 — ZiWTXi < 0}.

Differentiating (1.1) after plugging in (1.2) then yields

1 , 1
dJ(w) - A w ---- Y" ßiZiXi = w ----- ßiZiXi,

n n '
(3.27)

i=l ieM .

1 . 1 if i e £,
where w := X w ---- Z{Xi and ßi := < [0,1] if i E A4.

ie£ if iG W

3.3.1 Efficient Oracle for th e D irection -F in d in g M eth od

Recall that subBFGS requires an oracle that provides arg supge9J(u,/) g p for a given
direction p. For Z/2-regularized risk minimization with the binary hinge loss we can
implement such an oracle at a computational cost of 0(d \ A4t |), where d is the dimen-
sionality of p and \AAt\ the number of current margin points, which is normally much
less than n. Towards this end, we use (3.27) to obtain

sup gTp = sup U
gedJ (w t) ß i , iCMt \ n i e M t J

= w t p ----y inf (ßiZ{Xj p). (3.28)

§3.3 SubBFGS for L 2~Regularized Binary Hinge Loss 39

A lgorithm 3.3 E x a c t L in e S e a rc h fo r Z/2-R e g u la r iz e d B in a r y H in g e L o ss

1: in p u t w , p , \ , f , and A / as in (3.30)
2: o u tp u t o p tim a l s tep size
3: h = A ||p | |2 , j := 1

4: V := [(1 - /) - / A /<0] (vecto r of subd ifferen tiab le po in ts Sz zero)
5: 7T = argsort(77) (indices so rted by non-descend ing value of r;)
6: w h ile rj7Tj < 0 do
7: j : = j + l
8: en d w h ile
9: V ■= Vnj/2

10: for i := 1 to / . s i z e do

11: g f 1 if fi + V A / i < 1
1 1 0 o therw ise

(value of 6(g) (3.32) for any 77 € (0,gnj))

12: en d for
13: q ör A f /n — Aw Tp
14: 77 := 0, q ' 0
15: 9 := -Q (value of sup 5 ^ (0))
16: w h ile g < 0 do
17: d := e
18: if j > 7r.size th en
19: 77 := 0 0 (no m ore subd ifferen tiab le po in ts)
20: break
21: e lse
22: V ■= Vnj
23: en d if
24: rep ea t

25: f Q - ^ U i / n
\ g + A f n. /n

if Snj = 1
o therw ise

(move to n ex t subd ifferen tiab le
po in t and u p d a te g accord ing ly)

26: 3'-=3 + 1
27: u n til r)n Vnj-i a n d j < 7r.size
28: g := rjh — q (value of supd^(gnj_ß)
29: en d w h ile
30: re tu rn min(77, g'/h) (cf. eq u a tio n 3.35)

Since for a given p the first term of the right-hand side of (3.28) is a constant, the
supremum is attained when we set ßi Vz 6 M t via the following strategy:

ßi :=
if Zix j p t > 0,

if z ^ J p t < 0.

3.3 .2 Im plem enting th e Line Search

The one-dimensional convex function $ (77) := J (w + r/p) (Figure 3.8, left) obtained by
restricting J to a line can be evaluated efficiently. To see this, rewrite (1.1) with the
hinge loss (1.2) as

J{w) := ^ ||rc||2 + — l Tmax(0 , 1 — z • X w) , (3.29)

40 A Quasi-Newton Approach to Nonsmooth Convex Optimization

Figure 3.8: Left: Piecewise quadratic convex function 4> of step size 77; solid disks in the zoomed
inset are subdifferentiable points. Right: The subgradient of 4»(77) increases monotonically with
77, and jumps discontinuously at subdifferentiable points.

where 0 and 1 are column vectors of zeros and ones, respectively, • denotes the Hadamard
(component-wise) product, and z £ Rn collects correct labels corresponding to each
row of data in X [x\ ,X2 , ■ • • , x n]T € Rnxd. Given a search direction p at a point
w, (3.29) allows us to write

^ IM I2 + A 77 w p + ||p | | 2 + - 1 : max [0, (1 - (/ + 77 A /))] , (3.30)
2 A n

where / := z • X w and A f := z ■ Xp. Differentiating (3.30) with respect to 77 gives
the subdifferential of <f>:

£ $ (77) = A w p + 77A||p | |2 - A f , (3.31)
n

where S : R —> Rn outputs a column vector [̂ 1 (77), £2 (77), • • • , 5n(r])]T with

f 1 if fi + t?A fi < 1 ,
^ (77) := i [0,1] if /i + fjA /i = 1, (3.32)

[0 if fi + r]Afi > 1.

We cache / and A f . expending 0(nd) computational effort and using O(n) storage.
We also cache the scalars | | | i e | |2, A w p, and | | |p | |2, each of which requires O(d) work.
The evaluation of 1 — (/ + 77 A /) , <5(77), and the inner products in the final terms of
(3.30) and (3.31) all take 0(n) effort. Given the cached terms, all other terms in (3.30)
can be computed in constant time, thus reducing the cost of evaluating $ (77) (resp.
its subgradient) to O(n). Furthermore, from (3.32) we see that <£(77) is differentiable

§3.3 SubBFGS for L2~Regularized Binary Hinge Loss 41

step size search direction

target segment

step size search direction

target segment

Figure 3.9: Nonsmooth convex function 4> of step size 77. Solid disks are subdifferentiable
points; the optimal step 77* either falls on such a point (left), or lies between two such points
(right).

everywhere except at

rji := (1 - f i) / Af i with A fc ± 0, (3.33)

where it becomes subdifferentiable. At these points an element of the indicator vector
(3.32) changes from 0 to 1 or vice versa (causing the subgradient to jump, as shown
in Figure 3.8, right); otherwise S(rj) remains constant. Using this property of <5(77), we
can update the last term of (3.31) in constant time when passing a hinge point (Line
25 of Algorithm 3.3). We are now in a position to introduce an exact line search which
takes advantage of this scheme.

3.3.2.1 Exact Line Search

Given a direction p, exact line search finds the optimal step size 77* := argminT?>0 ^(rj)
that satisfies 0 G <94>(t7*), or equivalently

inf <9<f>(?7*) < 0 < sup<94>(?7*). (3.34)

By Theorem 3.2.1, sup d >̂(77) is monotonically increasing with 77. Based on this prop-
erty, our algorithm first builds a list of all possible subdifferentiable points and 77 = 0,
sorted by non-descending value of 77 (Lines 4-5 of Algorithm 3.3). Then, it starts with
77 = 0, and walks through the sorted list until it locates the “target segment”, an inter-
val [77a, rib] between two subdifferential points with sup<94>(?7a) < 0 and sup d ${r]b) > 0.
We now know that the optimal step size either coincides with r/b (Figure 3.9, left), or
lies in (770,775) (Figure 3.9, right). If 77* lies in the smooth interval (7/0,775), then setting

42 A Quasi-Newton Approach to Nonsmooth Convex Optimization

(3.31) to zero gives

* 6(r]')TA f /n — A w p
Mr]' <E (77a, 77b).

Otherwise, 77* = 775. See Algorithm 3.3 for the detailed implementation.

(3.35)

3.4 S e g m e n tin g th e P o in tw ise M a x im u m o f 1-D L in ea r

F u n c tio n s

The line search of Algorithm 3.3 requires a vector 77 listing the subdifferentiable points
along the line w + 77p. and sorts it in non-descending order (Line 5). For an objective
function like (1.1) whose nonsmooth component is just a sum of hinge losses (1.2), this
vector is very easy to compute (c/. (3.33)). In order to apply our line search approach
to multiclass and multilabel losses (Sections 3.5.1 and 3.5.4), however, we must solve a
more general problem: we need to efficiently find the subdifferentiable points of a one-
dimensional piecewise linear function g : R —> R defined to be the pointwise maximum
of r lines:

0(77) = max (bp + 7] CLP), (3.36)
l< p < r

where ap and bp denote the slope and offset of the pth line, respectively. Clearly, g is
convex since it is the pointwise maximum of linear functions (Boyd and Vandenberghe,
2004, Section 3.2.3), cf. Figure 3.10(a). The difficulty here is that although g consists
of at most r line segments bounded by at most r — 1 subdifferentiable points, there are
r(r — l)/2 candidates for these points, namely all intersections between any two of the
r lines. A naive algorithm to find the subdifferentiable points of g would therefore take
0 (r 2) time. In what follows, however, we show how this can be done in just 0 (r log r)
time. In Section 3.5 we will then use this technique (Algorithm 3.4) to perform efficient
exact line search in the multiclass and multilabel settings.

We begin by specifying an interval [L,U] (0 < L < U < 00) in which to find
the subdifferentiable points of g, and set y := b + La, where a = [ai,a2, • • • , ar] and
b — [61, &25 • • • , br]. In other words, y contains the intersections of the r lines defining
0(77) with the vertical line 77 = L. Let 7r denote the permutation that sorts y in non-
ascending order, z.e., p < q ==> ynp > ynq: and let g^ be the function obtained by
considering only the top q < r lines at 77 = L, i.e., the first q lines in 7r:

Q{q\v) = max (6^ + 770^) . (3.37)

§3.4 Segmenting the Pointwise Maximum of 1-D Linear Functions 43

Algorithm 3.4 Segmenting a Pointwise Maximum of 1-D Linear Functions
1: input vectors a and b of slopes and offsets

lower bound L, upper bound U , with 0 < L < U < oo
2: output sorted stack of subdifferentiable points 77

and corresponding active line indices £
3: y := b + La
4: 7T := argsort(—y) (indices sorted by non-ascending value of y)
5: 5.push (L, 7Ti) (initialize stack)
6: for q := 2 to y .s ize do
7: while not S'.empty do
8; (77, £) := 5.top

9: / b * q k
Ö-7T q

(intersection of two lines)

10: if L < 77' < 77 or (t)' = L and anq > a)̂ th e n
ll: 5.pop (c/. Figure 3.10(c))
12: else
13: b re a k
14: en d if
15: en d w hile
16: if L < v! < U or (77' = L and a7Tq > a)̂ th e n
17: 5.push (77', 7Tq) (c/. Figure 3.10(b))
18: end if
19: en d for
20-, r e tu r n S

It is clear that q^ = q . Let 77 contain all q' < q — 1 subdifferentiable points of q ^
in [L, U] in ascending order, and £ the indices of the corresponding active lines, he.,
the maximum in (3.37) is attained for line £j_i over the interval [77̂ _ 1,77̂]: 1 7rp«,
where p* = argmax1<p<g(67rp + 77^) for 77 e [77.7 _ 1,77̂], and lines 1 and £7 intersect
at rjj.

Initially we set 770 := L and £0 := the leftmost bold segment in Figure 3.10(a).
Algorithm 3.4 goes through lines in n sequentially, and maintains a Last-In-First-Out
stack S which at the end of the qih iteration consists of the tuples

(7/0 , Co), (m, £1), • • • , £9') (3-38)

in order of ascending 77*, with (rjq/,£qt) at the top. After r iterations S' contains a sorted
list of all subdifferentiable points (and the corresponding active lines) of g = g ^ in
[L,U], as required by our line searches.

In iteration q -f- 1 Algorithm 3.4 examines the intersection 77' between lines ^q> and
7Tg+i: If 77' > U, line 7rq+\ is irrelevant, and we proceed to the next iteration. If
r)q/ < rj' < U as in Figure 3.10(b), then line 7t9+i is becoming active at 77', and we simply
push (77'7t 9 + i) onto the stack. If 77' < 77̂ as in Figure 3.10(c), on the other hand, then

44 A Quasi-Newton Approach to Nonsmooth Convex Optimization

(a) Pointwise maximum of lines (b) Case 1 (c) Case 2

Figure 3.10: (a) Convex piecewise linear function defined as the maximum of 5 lines, but
comprising only 4 active line segments (bold) separated by 3 subdifferentiable points (black
dots), (b, c) Two cases encountered by our algorithm: (b) The new intersection (black cross)
lies to the right of the previous one (red dot) and is therefore pushed onto the stack; (c) The
new intersection lies to the left of the previous one. In this case the latter is popped from the
stack, and a third intersection (blue square) is computed and pushed onto it.

line 7Tq+i dominates line £q> over the interval (?/, oo) and hence over (jjqi,U] C (77', 0 0),
so we pop (rjq/ ^ qi) from the stack (deactivating line £g/), decrement q\ and repeat the
comparison.

T heorem 3.4.1 The total running time of Algorithm 3.1+ is O (rlo g r).

P roof Computing intersections of lines as well as pushing and popping from the stack
require 0(1) time. Each of the r lines can be pushed onto and popped from the stack
at most once; amortized over r iterations the running time is therefore O(r). The time
complexity of Algorithm 3.4 is thus dominated by the initial sorting of y (i.e., the
computation of 7r), which takes 0 (r logr) time. ■

3.5 SubB FG S for M ulticlass and M ultilabe l H inge Losses

We now use the algorithm developed in Section 3.4 to generalize the subBFGS method
of Section 3.3 to the multiclass and multilabel settings with finite label set Z . We
assume that given a feature vector x our classifier predicts the label

z* = argm ax/(ie , x, z), (3.39)
z £ Z

where / is a linear function of w, i.e., f (w . x , z) = w'(p(x, z) for some feature map
H x ,z).

3.5.1 M ulticlass H inge Loss

A variety of multiclass hinge losses have been proposed in the literature that generalize
the binary hinge loss, and enforce a margin of separation between the true label Z{

§3.5 SubBFGS for Multiclass and Multilabel Hinge Losses 45

and every other label. We focus on the following rather general variant (Taskar et ah,
2004) :7

l (x i ,Z i , w) := max[A(z,Zi) + f (w , X i , z) - f (w,Xi ,Zi)], (3.40)
zGZ

where A (z, Zi) > 0 is the label loss specifying the margin required between labels z and
Z{. For instance, a uniform margin of separation is achieved by setting A (z,z') := t >

OMz 7 ̂ z’ (Crammer and Singer, 2003a). By requiring that Vz € Z : A (z,z) = 0 we
ensure that (3.40) always remains non-negative. Adapting (1.1) to the multiclass hinge
loss (3.40) we obtain

A 1 xn A
J(w) := — H^ll2 + - V max[A(z,2j) + f (w , X i , z) - f (w,Xi ,Zi)]. (3 .41) 2 n 1 zezi—1

For a given -m, consider the set

Z \ := argmax[A(z, Zi) + f {w, z) - f (w , Xi, Zi)\ (3.42)
zEZ

of maximum-loss labels (possibly more than one) for the 2th training instance. Since
f (w , x , z) = tx;T0(cc,z), the subdifferential of (3.41) can then be written as

dJ(w)

with ßifZ

Xw + “
i = l z E Z

([0,1] i l z e z ; 1
0 otherwise

Xz,Zi S.t • ßi , z — 0,
zEZ

(3.43)

(3.44)

where 6 is the Kronecker delta: 6a^ = 1 if a = b, and 0 otherwise.''

3.5 .2 Efficient M ulticlass D irection -F in d in g O racle

For L2-regularized risk minimization with multiclass hinge loss, we can use a similar
scheme as described in Section 3.3.1 to implement an efficient oracle that provides
argsupg<EdJ(w) Q P f°r direction-finding procedure (Algorithm 3.2). Using (3.43),

7Our algorithm can also deal with the slack-rescaled variant of Tsochantaridis et al. (2005).
8Let l* := maxz^ Zi[A(z, Z i) + f (w , X i , z) — f (w , X i , Z i) } . Definition (3.44) allows the following values

of ß i,z -

Z — Z i 2 e z * \{2i} otherwise
i* < 0 0 0 0
l* = 0 [- 1, 0] [0 , 1] 0
1 * > 0 -1 [0 , 1] 0

s.t. ^ ß i , z = 0.
zez

46 A Quasi-Newton Approach to Nonsmooth Convex Optimization

we can write

1 "

sup g p = AwTp + -Y] Y] sup (ßiiZ(p{xl,z)Tp) . (3.45)
g edJ (w) n i = l z e Z ßi,z

The supremum in (3.45) is attained when we pick, from the choices offered by (3.44),

ßi,z := <5z,z* ~ <5z,Zi, where z* := argmax0 (cc;, z f p .
zez*

3.5.3 Im plem enting th e M ulticlass Line Search

Let <£(77) := J(w gp) be the one-dimensional convex function obtained by restricting
(3.41) to a line along direction p. Letting Qi{g) l(x{ , z*, w + gp), we can write

$fa) = ^ I M | 2 + XgwTp + —̂ - ||p ||2 + ^ 5 ^ 0 * fa). (3-46)
72 * = i

Each Qi{g) is a piecewise linear convex function. To see this, observe that

f (w 4- gp , x, z) := (m + gp)T(J)(x, z) = /(ic , x, z) + gf(p, x , z) (3.47)

and hence

ftfa) := max [A(z, z») + /(«>, *», z) - /fau, *», z*) + g (/(p . «*, z) - /(p , a*, z»))],
zez '----------------------- ------------------------ ' '----------------- -̂----------------'

(i)

(3.48)

which has the functional form of (3.36) with r = \Z\. Algorithm 3.4 can therefore
be used to compute a sorted vector rpl> of all subdifferentiable points of Qi (g) and
corresponding active lines in the interval [0, 0 0) in 0(\Z \ log \Z\) time. With some
abuse of notation, we now have

g e [ri j \gjh] = > Qi{g) = ^ (0 + ga^)- (3.49)

The first three terms of (3.46) are constant, linear, and quadratic (with non-negative
coefficient) in 77, respectively. The remaining sum of piecewise linear convex functions
Qi { g) is also piecewise linear and convex, and so $ (77) is a piecewise quadratic convex
function.

§3.5 SubBFGS for Multiclass and Multilabel Hinge Losses 47

A lgorithm 3.5 Exact Line Search for Z/2-Regularized Multiclass Hinge Loss
1: input base point m, descent direction p, regularization parameter A, vector a of

all slopes as defined in (3.48), for each training instance i: sorted stack S i of
subdifferentiable points and active lines, as produced by Algorithm 3.4

2: output optimal step size
3: a := a /n , h := A||p||2
4: q := Aw Tp

5: for i 1 to n do
6: w hile not S i .empty do
7: R i .push S'*.pop (reverse the stacks)
8: end w hile
9: a,a*oifII

10: Q := Q + %
11: end for
12: V ■= 0 , q ' = 0
13: 9 := Q (value of supö4>(0))
14: w hile g < 0 do
15: g ' := g

16: if Vi : R i .empty then
17: 77 := 00 (no more subdifferentiable points)
18: break
19: end if
20: I := argmin1<i<n 77' : (7 / , •) = ^ .to p (find the next subdifferentiable point)
21: Q Q ~ S i e i a Zi
22: 2 := {& : (r/,&) := ft*.pop, i € 1 }
23: Q := Q +
24: g := g - \ - r] h (value of sup<9<f>(77))
25: end while
26: return min(77, — g '/h)

3.5.3.1 E xact M ulticlass Line Search

Our exact line search employs a similar two-stage strategy as discussed in Section 3.3.2.1
for locating its minimum 77* := argmin7?>0 $(77): we first find the first subdifferentiable
point 77 past the minimum, then locate 77* within the differentiable region to its left.
We precompute and cache a vector of all the slopes (offsets b ^ are not needed),
the subdifferentiable points 77^ (sorted in ascending order via Algorithm 3.4), and the
corresponding indices ^ of active lines of Q\ for all training instances 7, as well as
||m ||2 mTp, and A||p||2.

Since $(77) is convex, any point 77 < 77* cannot have a non-negative subgradient. !

9If < £ (7 7) has a flat optim al region, we define 7 7 * to be the infimum of th a t region.

4 8 A Quasi-Newton Approach to Nonsmooth Convex Optimization

The first subdifferentiable point 77 > 77* therefore obeys

77 := min 77 G {rj^\ i = 1, 2 , . . . , n} : rj > 77*

= min 77 G {77^, i — 1, 2 , . . . , n} : sup d$>(rj) > 0. (3.50)

We solve (3.50) via a simple linear search: Starting from 77 = 0, we walk from one
subdifferentiable point to the next until sup <9$(77) > 0. To perform this walk effi-
ciently, define a vector 7/7 G Nn of indices into the sorted vector 77^ resp. initially
7/7 := 0. indicating that (Vi) 77g = 0 . Given the current index vector 7/7, the next
subdifferentiable point is then

^ — where i, = argmin77((̂)i+1); (3.51)

the step is completed by incrementing 7/y , i.e., t/v := i\)p + 1 so as to remove 77̂ ' from
future consideration.i! Note that computing the argmin in (3.51) takes O(logn) time
(e.77., using a priority queue). Inserting (3.49) into (3.46) and differentiating, we find
that

1 ^
sup <9 4> (77') — At j/ p + A?7/ ||p | | 2 H— 7 a (i). (3.52)

nt{ £*

The key observation here is that after the initial calculation of supd4>(0) = \w p +
n a (̂0 f°r 77 = 0, the sum in (3.52) can be updated incrementally in constant time
through the addition of a (ip — a pp (Lines 20-23 of Algorithm 3.5).

S q/ M V y-i)
/ * / \

Suppose we find 77 = j for some %'. We then know that the minimum 77* is either
equal to 77 (Figure 3.9, left), or found within the quadratic segment immediately to its
left (Figure 3.9, right). We thus decrement 7/y (i.e., take one step back) so as to index
the segment in question, set the right-hand side of (3.52) to zero, and solve for 77' to
obtain

/ k T P + ;E S = i“f(o \
V- = min -------- ----- SL j . (3.53)

This only takes constant time: we have cached w p and A||p||2, and the sum in (3.53)
can be obtained incrementally by adding a (ip — a (ip to its last value in (3.52).

S y V v y + i)
To locate 77 we have to walk at most 0(n\Z \) steps, each requiring O(logn) com-

putation of argmin as in (3.51). Given 77, the exact minimum 77* can be obtained in

10For ease of exposition, we assume i in (3.51) is unique, and deal with multiple choices of i' in
Algorithm 3.5.

§3.5 SubBFGS for Multiclass and Multilabel Hinge Losses 49

0(1). Including the preprocessing cost of 0(n\Z\ log \Z\) (for invoking Algorithm 3.4),
our exact multiclass line search therefore takes O (n\Z\ (log n\Z\)) time in the worst
case. Algorithm 3.5 provides an implementation which instead of an index vector if;
directly uses the sorted stacks of subdifferentiable points and active lines produced by
Algorithm 3.4. (The cost of reversing those stacks in Lines 6-8 of Algorithm 3.5 can
easily be avoided through the use of double-ended queues.)

3.5 .4 M u ltilab el H inge Loss

Recently, there has been interest in extending the concept of the hinge loss to multilabel
problems. Multilabel problems generalize the multiclass setting in that each training
instance Xi is associated with a set of labels Zi C Z (Crammer and Singer, 2003b). For
a uniform margin of separation r, a hinge loss can be defined in this setting as follows:

l (x i ,Z i ,w) := max[0, r + max f (w , Xj, z') — min f (w , Xi, z)]. (3.54)
z'<£Zi z e Z i

We can generalize this to a not necessarily uniform label loss A (zf, z) > 0 as follows:

l (x i ,Z i ,w) := max [A(z', z) + f (w, x {, z) - f (w, x i: z)\, (3.55)
Cz,z '); zeZi
z ' t Z i \ { z }

where as before we require that A(z, z) = 0 Vz 6 Z so that by explicitly allowing z' = z
we can ensure that (3.55) remains non-negative. For a uniform margin A (z' ,z) =
t \/z' ^ z our multilabel hinge loss (3.55) reduces to the decoupled version (3.54),
which in turn reduces to the multiclass hinge loss (3.40) if Zi := {Zi} for all i.

For a given w , let

Z* := argmax [A(z , z) + f (w, *», z) — f (w, Xi, z)\ (3.56)
(2 , 2 ') : z E Zi
z't Z i \ { z }

be the set of worst label pairs (possibly more than one) for the 2th training instance.
The subdifferential of the multilabel analogue of Z/2-regularized multiclass objective
(3.41) can then be written just as in (3.43), with coefficients

:= Yi fz’l - Y ffz' . where (v*) Y ft' = 1 and fzf ^ °- (3-57)
z':(z',z)eZ* z ':(z ,z ')eZ* (z , z ') e Z *

Now let (Zi,z[) argmax(2 2/̂ eZ* [(f>(xi, z1) — cf)(xi,z)]Tp be a single steepest worst
label pair in direction p. We obtain arg supgeg g p for our direction-finding pro-
cedure by picking, from the choices offered by (3.57), 7 ^ , := ^z,Z i ■

Finally, the line search we described in Section 3.5.3 for the multiclass hinge loss

50 A Quasi-Newton Approach to Nonsmooth Convex Optimization

can be extended in a straightforward manner to our multilabel setting. The only caveat
is that now Qiirf) := Z(ccj, Z ^ w + r/p) must be written as

6i(v) '■= m a x [A (z ' , z) + f (w , X i , z ') - f (w , X i , z) + r] (f (p , Xi , z ') - f (p , X i , z)) \ .
(z . z z P Z , ^ s n s

In the worst case, (3.58) could be the piecewise maximum of 0(\Z \2) lines, thus increas-
ing the overall complexity of the line search. In practice, however, the set of true labels
Z{ is usually small, typically of size 2 or 3 (c/. Crammer and Singer, 2003b, Figure 3).
As long as Vz : \Z{\ — 0(1), our complexity estimates of Section 3.5.3.1 still apply.

We discuss related work in two areas: nonsmooth convex optimization and the problem
of segmenting the pointwise maximum of a set of one-dimensional linear functions.

3.6.1 N on sm ooth C onvex O ptim ization

There are three main approaches to nonsmooth convex optimization: quasi-Newton
methods, bundle methods,and smooth approximation. We discuss each of these briefly,
and compare and contrast our work with the state of the art.

3 .6 .1 .1 N o n sm o o th Q u a si-N ew to n M eth o d s

These methods try to find a descent quasi-Newton direction at every iteration, and in-
voke a line search to minimize the one-dimensional convex function along that direction.
We note that the line search routines we describe in Sections 3.3-3.5 are applicable to
all such methods. An example of this class of algorithms is the work of Luksan and
Vlcek (1999), who propose an extension of BFGS to nonsmooth convex problems. Their
algorithm samples subgradients around non-differentiable points in order to obtain a
descent direction. In many machine learning problems evaluating the objective function
and its (sub)gradient is very expensive, making such an approach inefficient. In con-
trast, given a current iterate wt, our direction-finding routine (Algorithm 3.2) samples
subgradients from the set dJ(wt) via the oracle. Since this avoids the cost of explicitly
evaluating new (sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, the Orthant-
Wise Limited-memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizing

(z, z ') : z E Z i
z ' t Z i \ { z }

(3.58)

3.6 R ela ted W ork

§3.6 Related Work 51

L\ -regularized log-linear models:

1 n
J(w):= A|| w j| i + - Yl ln(1 + e“2‘ •), (3-59)

U i=l
logistic loss

where the logistic loss is smooth, but the regularizer is only subdifferentiable at points
where w has zero elements. From the optimization viewpoint this objective is very
similar to Z/2-regularized hinge loss; the direction finding and line search methods that
we discussed in Sections 3.2.2 and 3.2.3, respectively, can be applied to this problem
with slight modifications.

OWL-QN is based on the observation that the L\ regularizer is linear within any
given orthant. Therefore, it maintains an approximation B ow to the inverse Hessian
of the logistic loss, and uses an efficient scheme to select orthants for optimization. In
fact, its success greatly depends on its direction-finding subroutine, which demands a
specially chosen subgradient gow (Andrew and Gao, 2007, Equation 4) to produce the
quasi-Newton direction, pow = n(p.govf), where p := —B owgow and the projection n
returns a search direction by setting the ith element of p to zero whenever Pigfw > 0. As
shown in Section 4.1.4, the direction-finding subroutine of OWL-QN can be replaced by
our Algorithm 3.2, which makes OWL-QN more robust to the choice of subgradients.

3.6.1.2 B undle M ethods

Bundle method solvers (Hiriart-Urruty and Lemarechal, 1993) use past (sub)gradients
to build a model of the objective function. The (sub)gradients are used to lower-bound
the objective by a piecewise linear function which is minimized to obtain the next
iterate. This fundamentally differs from the BFGS approach of using past gradients to
approximate the (inverse) Hessian, hence building a quadratic model of the objective
function.

Bundle methods have recently been adapted to the machine learning context, where
they are known as SVMStruct (Tsochantaridis et ah, 2005) resp. BMRM (Smola et ah,
2007). One notable feature of these variants is that they do not employ a line search.
This is justified by noting that a line search involves computing the value of the ob-
jective function multiple times, a potentially expensive operation in machine learning
applications.

Franc and Sonnenburg (2008) speed up the convergence of SVMStruct for L2-
regularized binary hinge loss. The main idea of their optimized cutting plane algo-
rithm, OCAS, is to perform a line search along the line connecting two successive
iterates of a bundle method solver. Recently they have extended OCAS to multiclass
classification (Franc and Sonnenburg, 2009). Although developed independently, their

52 A Quasi-Newton Approach to Nonsmooth Convex Optimization

line search methods for both settings are very similar to the methods we describe in
Sections 3.3.2.1 and 3.5.3.1, respectively. In particular, their line search for multiclass
classification also involves segmenting the pointwise maximum of r 1-D linear functions
(c/. Section 3.4), though the 0 (r 2) time complexity of their method is worse than our
0(r logr).

3.6.1.3 Smooth Approximation

Another possible way to bypass the complications caused by the nonsmoothness of an
objective function is to work on a smooth approximation instead — see for instance
the recent work of Nesterov (2005) and Nemirovski (2005). Some machine learning
applications have also been pursued along these lines (Lee and Mangasarian, 2001;
Zhang and Oles, 2001). Although this approach can be effective, it is unclear how to
build a smooth approximation in general. Furthermore, smooth approximations often
sacrifice dual sparsity, which often leads to better generalization performance on the
test data, and also may be needed to prove generalization bounds.

3.6 .2 Segm enting th e P ointw ise M axim um o f 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximum of a
given set of line segments has received attention in the area of computational geometry;
see Agarwal and Sharir (2000) for a survey. Hershberger (1989) for instance proposed
a divide-and-conquer algorithm for this problem with the same time complexity as our
Algorithm 3.4. The Hershberger (1989) algorithm solves a slightly harder problem
his function is the pointwise maximum of line segments, as opposed to our lines — but
our algorithm is conceptually simpler and easier to implement.

A similar problem has also been studied under the banner of kinetic data structures
by Basch (1999), who proposed a heap-based algorithm for this problem and proved
a worst-case 0(r log2 r) bound, where r is the number of line segments. Basch (1999)
also claims that the lower bound is O (rlogr); our Algorithm 3.4 achieves this bound.

3.7 D iscu ss io n

We proposed subBFGS (resp. subLBFGS), an extension of the BFGS quasi-Newton
method (resp. its limited-memory variant) for handling nonsmooth convex optimization
problems, and proved its global convergence in objective function value. We demon-
strated the use of our algorithm on a variety of machine learning problems employing
Z/2-regularized binary hinge loss and its multiclass and multilabel generalizations.

Our solver is easy to parallelize: The master node computes the search direction
and transmits it to the slaves. The slaves compute the (sub)gradient and loss value on

§3.7 Discussion 53

subsets of data. This information is then aggregated at the master node, and used to
compute the next search direction before the process repeats. Similarly, the line search,
which is the expensive part of the computation on multiclass and multilabel problems,
is easy to parallelize: the slaves run Algorithm 3.4 on subsets of the data; the results
are fed back to the master who can then run Algorithm 3.5 to compute the step size.

Our algorithms rely on an efficient exact line search. We proposed such line searches
for the binary hinge loss and its generalizations to the multiclass and multilabel settings.
The exact line searches for the multiclass and multilabel hinge losses are based on a
conceptually simple yet optimal algorithm to segment the pointwise maximum of lines.
A crucial assumption we had to make is that the number \Z\ of labels is manageable
since it takes 0(\Z\log\Z\) time to identify the hinges associated with each training
instance. In certain structured prediction problems (Tsochantaridis et al., 2005) which
have recently gained prominence in machine learning, the set Z could be exponentially
large — for instance, predicting binary labels on a chain of length n produces 2n possible
labels. Clearly, our line searches are not efficient in such cases.

Finally, to put our contributions in perspective, recall that we modified three as-
pects of the standard BFGS algorithm, namely the quadratic model (Section 3.2.1),
the descent direction finding (Section 3.2.2), and the Wolfe conditions (Section 3.2.3).
Each of these modifications is versatile enough to be used as a component in other
nonsmooth optimization algorithms. This not only offers the promise of improving ex-
isting algorithms, but may also help clarify connections between them. We hope that
our research will focus attention on the core subroutines that need to be made more
efficient in order to handle larger and larger datasets.

54 A Quasi-Newton Approach to Nonsmooth Convex Optimization

SubL B FG S for N onsm oo th
C onvex O p tim iza tion

C hapter 4

In this chapter we compare the performance of our limited-memory subBFGS (sub-
LBFGS, Section 3.2.5) algorithm with other state-of-the-art nonsmooth optimiza-
tion methods on /^-regularized binary, multiclass, and multilabel hinge loss minimiza-
tion problems. We also compare the specialized Li-regularized logistic loss optimizer
OWL-QN (Section 3.6.1) with a variant that uses our direction-finding routine (Algo-
rithm 3.2). In all these contexts our methods perform comparable to or better than
specialized state-of-the-art solvers on a number of publicly available datasets. Open
source software implementing our algorithms is available for download.

4.1 E xp erim en ts

In all experiments the regularization parameter was chosen from the set 1 0 -̂6>-5’"
so as to achieve the highest prediction accuracy on the test dataset, while convergence
behavior (objective function value vs. CPU seconds) is reported on the training dataset.
To see the influence of the regularization parameter A, we also compared the time
required by each algorithm to reduce the objective function value to within 2% of the
optimal value.1 For all algorithms the initial iterate wo was set to 0. Open source
C ++ code implementing our algorithms and experiments is available for download
from http: //www. cs. adelaide. edu. au/~ j inyu/Code/nonsmoothOpt. tar. gz

The subgradient for the construction of the subLBFGS search direction (c/. Line
12 of Algorithm 3.1) was chosen arbitrarily from the subdifferential. For the binary
hinge loss minimization (Section 4.1.3), for instance, we picked an arbitrary subgradient
by randomly setting the coefficient ßiVi €E M. in (3.27) to either 0 or 1.

xFor L \-regularized logistic loss minimization, the “optimal” value was the final objective value
achieved by the OWL-QN* algorithm (c/. Section 4.1.4). In all other experiments, it was found by
running subLBFGS for 104 seconds, or until its relative improvement over 5 iterations was less than
10- 8 .

55

56 SubLBFGS for Nonsmooth Convex Optimization

i CCAT (A = 1 0 -6) INEX (A = 1(T6)

- - e =10 - - e = 10

TMC2007 (A = 10—5)

- - e =10

Iterations Iterations Iterations

xl0-i CCAT (A=10 6) INEX (A =1(T6) TMC2007 (A = 1(T5)

- - e = 10 - - e = 1 0

CPU Seconds CPU Seconds CPU Seconds

F igu re 4.1: Performance of subLBFGS with varying direction-finding tolerance e in terms of
objective function value vs. the number of iterations (top row) resp. CPU seconds (bottom
row) on sample Z^-regularized risk minimization problems with the binary (left), multiclass
(center), and multilabel (right) hinge losses.

On strictly convex problems such as what we consider in this chapter, every con-
vergent optimizer will reach the same solution; comparing generalisation performance
is therefore pointless. Hence we concentrate on empirically evaluating the convergence
behavior (objective function value vs. CPU seconds). All experiments were carried out
on a Linux machine with dual 2.4 GHz Intel Core 2 processors and 4 GB of RAM.

4.1.1 C onvergence Tolerance o f th e D irection -F in d in g P roced ure

The convergence tolerance e of Algorithm 3.2 controls the precision of the solution to
the direction-finding problem (3.5): lower tolerance may yield a better search direction.
Figure 4.1 (left) shows that on binary classification problems, subLBFGS is not sensitive
to the choice of e (fie., the quality of the search direction). This is due to the fact that
dJ{w) as defined in (3.27) is usually dominated by its constant component w ; search
directions that correspond to different choices of e therefore can not differ too much from
each other. In the case of multiclass and multilabel classification, where the structure
of d J (w) is more complicated, we can see from Figure 4.1 (top center and right) that
a better search direction can lead to faster convergence in terms of iteration numbers.
However, this is achieved at the cost of more CPU time spent in the direction-finding
routine. As shown in Figure 4.1 (bottom center and right), extensively optimizing

V
al

u
§4.1 Experiments 57

1 CCAT (A =1CT6) INEX (A =1CT6) TMC2007 (A = 1(T5)

----- m=15 ----- m=15 -----m=15
- - m=25 - - m=25 - - m=25

m=5

O1 102
CPU Seconds

102
CPU Seconds

102 10:
CPU Seconds

Figure 4.2: Performance of subLBFGS with varying buffer size on sample L2-regularized risk
minimization problems with the binary (left), multiclass (center), and multilabel hinge losses
(right).

Table 4.1: The binary datasets used in our experiments of Sections 3.1, 4.1.3, and 4.1.4.

Dataset Train/Test Set Size Dimensionality Sparsity
Covertype 522911/58101 54 77.8%
CCAT 781265/23149 47236 99.8%
Astro-physics 29882/32487 99757 99.9%
MNIST-binary 60000/10000 780 80.8%
Adult9 32561/16281 123 88.7%
Real-sim 57763/14438 20958 99.8%
Leukemia 38/34 7129 00.0%

the search direction actually slows down convergence in terms of CPU seconds. We
therefore used an intermediate value of e = 10-5 for all our experiments, except that
for multiclass and multilabel classification problems we relaxed the tolerance to 1.0
at the initial iterate w = 0, where the direction-finding oracle arg supg^dJ(0) g TP *s
expensive to compute, due to the large number of extreme points in dJ{0).

4.1.2 Size of SubLBFGS Buffer

The size m of the subLBFGS buffer determines the number of parameter and gradient
displacement vectors St and yt used in the construction of the quasi-Newton direction.
Figure 4.2 shows that the performance of subLBFGS is not sensitive to the particular
value of m within the range 5 < m < 25. We therefore simply set m = 15 a priori for
all subsequent experiments; this is a typical value for LBFGS (Nocedal and Wright,
1999).

58 SubLBFGS for Nonsmooth Convex Optimization

Table 4.2: Regularization parameter A and overall number k of direction-finding iterations in
our experiments of Sections 4.1.3 and 4.1.4, respectively.

Li-reg. logistic loss L2-reg. binary loss
D ataset Al i f^Li k L \ r Al 2
Covertype 1CT5 1 2 10“ 6 0
CCAT 1CT6 284 406 10“ 6 0
Astro-physics 1CT5 1702 1902 10"4 0
M NIST-binary 1(T4 55 77 10~6 0
Adult9 1(T4 2 6 10~5 1
Real-sim 1(T6 1017 1274 10~5 1

Table 4.3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) datasets used, values
of the regularization parameter, and overall number k of direction-finding iterations in our
multiclass and multilabel hinge loss experiments of Section 4.1.5.

D ataset T rain /T est Set Size Dimensionality \Z\ Sparsity A k
Letter 16000/4000 16 26 0.0% 10“ 6 65
USPS 7291/2007 256 10 3.3% 10“ 3 14
Protein 14895/6621 357 3 70.7% 10~2 1
MNIST 60000/10000 780 10 80.8% 10“ 3 1
INEX 6053/6054 167295 18 99.5% 10~6 5
News20 15935/3993 62061 20 99.9% 10“ 2 12
Scene 1211/1196 294 6 0.0% 10"1 14
TMC2007 21519/7077 30438 22 99.7% 10“ 5 19
RCV1 21149/2000 47236 103 99.8% i o - 5 4

4.1 .3 L2-R egularized B inary H inge Loss

For our first set of experiments, we applied subLBFGS with exact line search (Algo-
rithm 3.3) to the task of L 2-regularized binary hinge loss minimization. Our control
m ethods are the bundle m ethod solver BMRM (Teo et al., 2010) and the optimized cut-
ting plane algorithm OCAS (Franc and Sonnenburg, 2008), both of which were shown
to perform competitively on this task. SVM Struct (Tsochantaridis et al., 2005) is an-
other well-known bundle m ethod solver th a t is widely used in the machine learning
community. For L2-regularized optim ization problems BMRM is identical to SVM-
Struct, hence we omit comparisons with SVM Struct.

Table 4.1 lists the six datasets we used: The Covertype dataset of Blackard, Jock

2The source code of OCAS (version 0.6.0) was obtained from http://www.shogun-toolbox.org.

§4.1 Experiments 59

10-i Covertype (A = 10‘ 6) 10 i CCAT(A=10 6)

-----BMRM
OCAS

-----subLBFGS

---- BMRM
OCAS

-----subLBFGS

1 0 1

CPU Seconds
10 °

CPU Seconds

MNIST—Binary (A = 10~6) Adult9 (A = 10-5)

---- BMRM
OCAS

-----subLBFGS

-----BMRM
OCAS

-----subLBFGS

S 3.3

1 0 ' 1 1 0 (

CPU SecondsCPU Seconds

x1q i Astro—physics (A = 10 4)

---- BMRM
OCAS

-----subLBFGS

CPU Seconds

x 1q- i Real-sim (A = 10~5)

---- BMRM
OCAS

-----subLBFGS

CPU Seconds

Figure 4.3: Objective function value vs. CPU seconds on Z/2-regularized binary hinge loss
minimization tasks.

& Dean,3 4 5 6 CCAT from the Reuters RCV1 collection, the Astro-physics dataset of
abstracts of scientific papers from the Physics ArXiv (Joachims, 2006), the MNIST
dataset of handwritten digits ' with two classes: even and odd digits, the Adult9 dataset
of census income data,*’ and the Real-sim dataset of real vs. simulated data.h Table 4.2
lists our parameter settings, and reports the overall number ki,2 of iterations through
the direction-finding loop (Lines 6-13 of Algorithm 3.2) for each dataset. The very
small values of kL2 indicate that on these problems subLBFGS only rarely needs to
correct its initial guess of a descent direction.

It can be seen from Figure 4.3 that subLBFGS (solid) reduces the objective value
considerably faster than BMRM (dashed). On the binary MNIST dataset, for instance,
the objective function value of subLBFGS after 10 CPU seconds is 25% lower than that
of BMRM. In this set of experiments the performance of subLBFGS and OCAS (dotted)
is very similar.

Figure 4.4 shows that all algorithms generally converge faster for larger values of
the regularization constant A. However, in most cases subLBFGS converges faster than
BMRM across a wide range of A values, exhibiting a speedup of up to more than two
orders of magnitude. SubLBFGS and OCAS show similar performance here: for small
values of A, OCAS converges slightly faster than subLBFGS on the Astro-physics and

3h t t p : / /k d d . i c s . u c i . e d u /d a ta b a se s /c o v e r ty p e /c o v e r ty p e .h tm l
4h t t p :/ / w o t . d a v id d le w is . c o m / r e s o u r c e s / t e s t c o l l e c t i o n s / r c v l
5h t tp : / /y a n n . le c u n .c o m /e x d b /m n is t
6h t t p :/ / w w w .c s i e . n t u .e d u . t w / ~ c j l i n / l i b s v m t o o l s / d a t a s e t s / b i n a r y . html

60 SubLBFGS for Nonsmooth Convex Optimization

Astro-physics

*- - *BMRM
• »OCAS
■— «subLBFGS

106 10'5 104 103 10'2 101

Covertype

- »BMRM
• OCAS

—»subLBFGS

1 0 ' 6 1 0 ' 5 10" 4 1 0 ' 3 1 0 ' 2 1 0 1

CCAT

- *BMRM
• OCAS

—»subLBFGS

10'6 10‘5 10 4 10‘3 10‘2 1 0 1

MNIST-Binary

*- - »BMRM
• «OCAS
■— »subLBFGS

1 0 6 1 0 '5 1 0 4 1 0 '3 1 0 2 1 0 '1

Real-sim

- *BMRM
• OCAS

—■ subLBFGS

1 0 6 10‘5 104 10'3 10'2 1 0 1

Adult9

+■ - »BMRM
• «OCAS
■— »subLBFGS

1 0 6 1 0 s 1 0 ‘4 1 0 ' 3 1 0 ' 2 1 0 ' 1

Figure 4.4: Regularization parameter A € {10 6, • • • , 10 x} vs. CPU seconds taken to reduce
the objective function to within 2% of the optimal value.

Real-sim datasets but is outperformed by subLBFGS on the Covertype, CCAT, and
binary MNIST datasets.

4 .1 .4 L i-R eg u la riz e d L ogistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 3.2) in its own
right, we plugged it into the OWL-QN algorithm (Andrew and Gao, 2007) as an
alternative direction-finding method such that pow = descentD irection(gow, e, fcmax),
and compared this variant (denoted OWL-QN*) with the original (c/. Section 3.6.1)
on Li-regularized minimization of the logistic loss (3.59), on the same datasets as in
Section 4.1.3.

An oracle that supplies arg s u p ^ ^ j ^ g p for this objective is easily constructed
by noting that (3.59) is nonsmooth whenever at least one component of the parameter
vector w is zero. Let W{ — 0 be such a component; the corresponding component of the
subdifferential <9A||in||i of the L\ regularizer is the interval [—A, A]. The supremum of
g p is attained at the interval boundary whose sign matches that of the corresponding
component of the direction vector p, i.e., at A sign (pi).

Using the stopping criterion suggested by Andrew and Gao (2007), we ran experi-
ments until the averaged relative change in the objective value over the previous 5 iter-
ations fell below 10-5 . As shown in Figure 4.5, the only clear difference in convergence

'The source code of OWL-QN (original release) was obtained from Microsoft Research through
h t tp : / / t i n y u r l .com/p774cx.

iv
e

V
al

u
§4.1 Experiments 61

Covertype (A = 10 5)

- - OWL-QN
----- OWL-QN*
...... OWL-QNr
-----OWL-QN*r

1 0 1 1 0 2 1 0 3

CCAT(A = 10'6)

----- OWL-QN
------OWL-QN*

OWL-QN*r

Astro—physics (A =10 5)

- - • OWL-QN
------OWL-QN*
■■■• OWL-QN*r

CPU Seconds CPU Seconds CPU Seconds

xl0-iMNIST-Binary (A = 10 4) xl0-i Adult9 (A = 10 4) xl0-i Real-sim (A = 10'6)

----- OWL-QN
------OWL-QN*

OWL-QN*r

----- OWL-QN
------OWL-QN*

OWL-QN*r

----- OWL-QN
------OWL-QN*

OWL-QN*r

102
CPU Seconds CPU Seconds

Figure 4.5: Objective function value vs. CPU seconds on Li-regularized logistic loss mini-
mization tasks.

between the two algorithms is found on the Astro-physics dataset where OWL-QN*
is outperformed by the original OWL-QN method. This is because finding a descent
direction via Algorithm 3.2 is particularly difficult on the Astro-physics dataset (as
indicated by the large inner loop iteration number in Table 4.2); the slowdown on
this dataset can also be found in Figure 4.6 for other values of A. Although finding a
descent direction can be challenging for the generic direction-finding routine of OWL-
QN*, in the following experiment we show that this routine is very robust to the choice
of initial subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we also ran
them with subgradients randomly chosen from the set dJ{w) (as opposed to the spe-
cially chosen subgradient g°w used in the previous set of experiments) fed to their
corresponding direction-finding routines. OWL-QN relies heavily on its particular
choice of subgradients, hence breaks down completely under these conditions: the
only dataset where we could even plot its (poor) performance was Covertype (dot-
ted “OWL-QNr” line in Figure 4.5). Our direction-finding routine, by contrast, is
self-correcting and thus not affected by this manipulation: the curves for OWL-QN*r
lie on top of those for OWL-QN*. Table 4.2 shows that in this case more direction-
finding iterations are needed though: k i ir > k i 1. This empirically confirms that as
long as argsupg€ay(u;) 9 P given, Algorithm 3.2 can indeed be used as a generic
quasi-Newton direction-finding routine that is able to recover from a poor initial choice

62 SubLBFGS for Nonsmooth Convex Optimization

Covertype

10'6 10'5 nr4 10'3 10'2 1 01

MNIST-Binary

10'6 10 s nr* 10'3 10'2 1 01

CCAT

10'6 10'5 10 "* 10'3 10'2 10_I
A

Adult9

1 0 ' 6 1 0 '5 l O -4 1 0 '3 1 0 ' 2 1 0 ' 1

Astro-physics

OWL-QN
OWL-QN*

1 (T 6 1 0 ' 5 1 0 "* 1 0 ' 3 1 0 ' 2 1 0 ' 1

Real-sim

1 0 ‘6 1 0 ' 5 1 0 -4 1 0 ‘3 1 0 ' 2 1 0 ' 1

F igu re 4.6: Regularization parameter A € {10—6, • • • , 10-1} vs. CPU seconds taken to reduce
the objective function to within 2% of the optimal value. (No point is plotted if the initial
parameter mo = 0 is already optimal.)

of subgradients.

4.1.5 Z/2-R egularized M ulticlass and M u ltilab el H inge Loss

We incorporated our exact line search of Section 3.5.3.1 into both subLBFGS and
OCAS (Franc and Sonnenburg, 2008), thus enabling them to deal with multiclass and
multilabel losses. We refer to our generalized version of OCAS as line search BMRM
(ls-BMRM). Using the variant of the multiclass and multilabel hinge loss which en-
forces a uniform margin of separation (A (z,z') = 1 Vz ^ z'), we experimentally eval-
uated both algorithms on a number of publicly available datasets (Table 4.3). All
multiclass datasets except INEX were downloaded from h ttp ://w w w .cs ie .n tu .ed u .
tw/~c j l in /l ib sv m to o ls /d a ta se ts /m u ltic la ss . html, while the multilabel datasets
were obtained from h ttp ://w w w .c s ie .n tu .e d u .tw /~ c jlin /lib sv m to o ls /d a ta se ts /
m u ltilab e l.h tm l. INEX is available for download from h t tp : / /w e b ia . l ip 6 .f r /
~bordes/m ywiki/doku.php?id=m ulticlass_data (details can be found in Maes et al.
(2007)). The original RCV1 dataset consists of 23149 training instances, of which we
used 21149 instances for training and the remaining 2000 for testing.

§4.1 Experiments 63

Letter (A=1(T6) USPS (A = 10-3) Protein (A = 10 2)

0.1

10 ° 101
CPU Seconds

INEX (A = 10~6)

CPU Seconds

News20 (A = 10-2)

Figure 4.7: Objective function value vs. CPU seconds on L2-regularized multiclass hinge loss
minimization tasks.

4.1.5.1 Perform ance on M ulticlass P rob lem s

This set of experiments is designed to demonstrate the convergence properties of mul-
ticlass subLBFGS, compared to the BMRM bundle method (Teo et ah, 2010) and
ls-BMRM.

Figure 4.7 shows that subLBFGS comprehensively outperforms BMRM in all cases.
On the Letter dataset, the objective function value of subLBFGS after 20 CPU seconds
is 24% lower than that of BMRM. On 4 out of 6 datasets, subLBFGS outperforms
ls-BMRM early on but slows down later, for an overall performance comparable to
ls-BMRM. On the MNIST dataset, for instance, subLBFGS takes only about half as
much CPU time as ls-BMRM to reduce the objective function value to 0.3 (about 50%
above the optimal value), yet both algorithms reach within 2% of the optimal value at
about the same time (cf. Figure 4.8, bottom left). We hypothesize that subLBFGS’
local model (3.4) of the objective function facilitates rapid early improvement but is less
appropriate for final convergence to the optimu. Bundle methods, on the other hand,
are slower initially because they need to accumulate a sufficient number of gradients to
build a faithful piecewise linear model of the objective function. These results suggest
that a hybrid approach that first runs subLBFGS then switches to ls-BMRM may be
promising.

Similar to what we saw in the binary setting (Figure 4.4), Figure 4.8 shows that all

64 SubLBFGS for Nonsmooth Convex Optimization

L etter

- »BMRM
• ls-BMRM

—■subLBFGS

1 0 '6 1 0 ' 5 1 0 4 1 0 ' 3 1 0 ' 2 1 0 1

U SP S

*• - » BMRM
•»ls-BM RM
■— »subLBFG S

10'6 10‘5 104 10'3 10'2 10'1

M NIST

»- - »BMRM
•»ls-BM RM
■— »subLBFG S

1 0 ‘6 1 0 ‘5 1 0 4 1 0 ‘3 1 0 ‘2 1 0 1

INEX

*- - »BMRM
•»ls-BM RM
» - ■■■» subLBFGS

10'6 10‘5 104 10'3 102 101

Protein

- »BMRM
• ls-BMRM

—»subLBFG S

1 0 '6 1 0 5 1 0 4 1 0 '3 1 0 ‘2 1 0 ' 1

N e w s2 0

- » BMRM
•»ls-BMRM
■— »subLBFGS

1 0 ‘6 1 0 ‘5 1 0 4 1 0 '3 1 0 ' 2 1 0 1

F igu re 4.8: Regularization parameter A G {10~6, • • • , 10“ vs. CPU seconds taken to reduce
the objective function to within 2% of the optimal value. (No point is plotted if an algorithm
fails to reach the threshold value within 104 seconds.)

algorithms tend to converge faster for large values of A. Generally, subLBFGS converges
faster than BMRM across a wide range of A values; for small values of A it can greatly
outperform BMRM (as seen on Letter, Protein, and News20). The performance of
subLBFGS is worse than that of BMRM in two instances: on USPS for small values of
A, and on INEX for large values of A. The poor performance on USPS may be caused
by a limitation of subLBFGS’ local model (3.4) that causes it to slow down on final
convergence. On the INEX dataset, the initial point w q = 0 is nearly optimal for large
values of A; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 3.5), ls-BMRM is competitive on all
datasets and across all A values, exhibiting performance comparable to subLBFGS in
many cases. From Figure 4.8 we find that BMRM never outperforms both subLBFGS
or ls-BMRM.

4.1.5.2 Performance on M ultilabel Problems

In our final set of experiments we switch to the multilabel setting. Figure 4.9 shows
that on the Scene dataset the performance of subLBFGS is similar to that of BMRM,
while on the larger TMC2007 and RCV1 sets, subLBFGS outperforms both of its
competitors initially but slows down later on, resulting in performance no better than

§4.2 Discussion 65

Scene (A = 10_1) TMC2007 (A = 1(T5) RCV1 (A = 10“5)

----- BMRM
ls-BMRM

------subLBFGS

102
CPU Seconds

----- BMRM
ls-BMRM

------subLBFGS

----- BMRM
.......ls-BMRM
----- subLBFGS

02 103
CPU Seconds

1.0
CPU Seconds

Figure 4.9: Objective function value vs. CPU seconds in Z/2-regularized multilabel hinge loss
minimization tasks.

TM C2007

*- - * BMRM
• »ls-BMRM
■— ■ subLBFGS

1 0 ' 6 1 0 ‘5 1 0 "* 1 0 '3 1 0 ' 2 1 0 ' 1

RCV1

*- - »BMRM
• »ls-BMRM
■— «subLBFGS

1 0 ' 6 1 0 5 1 0 -4 1 0 ' 3 1 0 ' 2 1 0 1

Scene

»• - »BMRM
•.... »ls-BMRM
■— ■ subLBFGS

10‘6 10'5 1 0 4 10'3 1 0 2 1 0 1

Figure 4.10: Regularization parameter A € {10—6, • • • , 10—1} vs. CPU seconds taken to reduce
the objective function to within 2% of the optimal value. (No point is plotted if an algorithm
fails to reach the threshold value within 104 seconds.)

BMRM. Comparing performance across different values of A (Figure 4.10), we find that
in many cases subLBFGS requires more time than its competitors to reach within 2%
of the optimal value, and in contrast to the multiclass setting, here ls-BMRM only
performs marginally better than BMRM. The primary reason for this is that the exact
line search used by ls-BMRM and subLBFGS requires substantially more computational
effort in the multilabel than in the multiclass setting. There is an inherent trade-off
here: subLBFGS and ls-BMRM expend computation in an exact line search, while
BMRM focuses on improving its local model of the objective function instead. In
situations where the line search is very expensive, the latter strategy seems to work
similarly well.

4.2 D iscu ss io n

We applied subLBFGS to a variety of machine learning problems employing /^-regularized
binary hinge loss and its multiclass and multilabel generalizations as well as Li-regularized
risk minimization with the logistic loss. Our experiments show that our algorithm is
versatile, applicable to many problems, and often outperforms specialized solvers.

66 SubLBFGS for Nonsmooth Convex Optimization

In many of our experiments we observe that subLBFGS decreases the objective
function rapidly at the beginning but slows down closer to the optimum. We hypoth-
esize that this is due to an averaging effect: Initially (he., when sampled sparsely at
a coarse scale) a superposition of many hinges looks sufficiently similar to a smooth
function for optimization of a quadratic local model to work well (c/. Figure 3.4). Later
on, when the objective is sampled at finer resolution near the optimum, the few nearest
hinges begin to dominate the picture, making a smooth local model less appropriate.

Even though the local model (3.4) of sub(L)BFGS is nonsmooth, it only explicitly
models the hinges at its present location — all others are subject to smooth quadratic
approximation. Apparently this strategy works sufficiently well during early iterations
to provide rapid improvement on multiclass problems, which typically comprise a large
number of hinges. The exact location of the optimum, however, may depend on in-
dividual nearby hinges which are not represented in (3.4), resulting in the observed
slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but tend to be
competitive asymptotically. This is because they build a piecewise linear lower bound of
the objective function, which initially is not very good but through successive tightening
eventually becomes a faithful model. To take advantage of this we are contemplating
hybrid solvers that switch over from sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping crite-
rion based on the duality gap, no such stopping criterion exists for BFGS and other
quasi-Newton algorithms. Therefore, it is customary to use the relative change in func-
tion value as an implementable stopping criterion. Developing a stopping criterion for
sub(L)BFGS based on duality arguments remains an important open question.

A S tochastic Q uasi-N ew ton
M eth o d for O nline Convex
O p tim iza tion

C hapter 5

In this chapter we develop variants of the BFGS quasi-Newton method, in both its full
and memory-limited forms, for stochastic (online) optimization of convex functions. We
begin by providing background material on stochastic gradient-based learning. A brief
review of past stochastic gradient methods is given in Section 5.2. We modify BFGS
so as to make it amenable to stochastic approximation (Section 5.3), before applying
analogous modifications to LBFGS in Section 5.4. We then set up two stochastic
quadratic problems (Section 5.5), on which we illustrate the merits of our algorithms in
Section 5.6. Further experimental studies are carried out in Chapter 6, where we apply
oLBFGS to the training of Condition Random Fields in natural language processing.

For ease of exposition, in this chapter we assume the objective function J : —> R
to be convex and differentiable everywhere, though it has been noted (Bottou, 1998;
LeCun et ah, 1998) that stochastic methods are inherently robust to non-convexity and
non-differentiability of an objective function.

5.1 S to ch a stic G rad ien t-B ased L earning

In machine learning the objective function usually involves summation of loss terms
over a set of training data. Classical optimization methods must compute this sum
in its entirety for every parameter update. Such “batch” methods are therefore very
inefficient for real-world applications involving large datasets.

Stochastic gradient methods address this problem by using gradient estimates ob-
tained from small subsamples of the data. For instance, under the regularized risk min-
imization framework (1.1), the stochastic approximation of the regularized risk J(w)

67

68 A Stochastic Quasi-Newton Method for Online Convex Optimization

only involves summation of loss terms over a mini-batch A of the training data:

J(w , X) := \Q (w) + - ^ 2 (5.1)

where X contains a batch of b pairs (xt, zQ of feature vectors and the corresponding
labels. Usually b is much smaller than the size n of the training dataset. The cost
of evaluating the stochastic function (and hence gradient) is therefore often far less
than in the batch setting. To distinguish J(w) from its data-dependent counterpart
J (w, X) , we refer to J(w) as the deterministic objective function.

For purposes of convergence analysis, training instances in the mini-batch X are
commonly assumed to be drawn independently according to some underlying distribu-
tion (Bottou, 1998). In practice, however, they are better chosen by repeated exhaus-
tive sampling without replacement, implemented by repeating the following two-step
procedure:

1. randomly permute the training data;

2. sequentially take batches of data until the training set is exhausted.

The simplest stochastic gradient method is stochastic gradient descent (SGD),
which adjusts the parameter vector w in the direction of the negative stochastic gradient
—V wJ(w, X). Stochastic gradient methods can be slow in converging to the optimum
of the deterministic objective function (Bottou and Murata, 2002), due to the noise
in the stochastic approximation of gradients. Nevertheless, it has been shown (LeCun
et ah, 1998) that they often can quickly obtain an approximate solution in the vicinity
of the optimum, which is sufficiently accurate to ensure good generalization perfor-
mance on the test dataset. Therefore, in terms of generalization performance, SGD
is found to routinely outperform sophisticated batch optimization methods often by
orders of magnitude on large datasets (Bottou and LeCun, 2004; Vishwanathan et ah,
2006). However, it suffers from slow convergence on problems that are ill-conditioned,
he., have eigenvalues of widely differing magnitude (see e.g., Bray et ah, 2004, Figure
5). It is known from batch optimization that incorporating second-order information
into the parameter update can greatly accelerate convergence on ill-conditioned prob-
lems, as evidenced by conjugate gradient (CG) (Shewchuk, 1994) and BFGS. A natural
question to ask is whether the good asymptotic convergence of such second-order batch
methods could be carried over to the stochastic setting. Schraudolph and Graepel
(2003), however, show that online implementations of CG methods are ineffective; in
our experiments BFGS is found to fail catastrophically on stochastic problems. The
failure of these online implementations of batch methods is mainly due to the fact
that core tools of conventional gradient-based optimization such as line searches and

§5.2 Existing Stochastic Gradient Methods 69

Krylov subspaces collapse in the presence of sampling noise in stochastic approximation
(Schraudolph and Graepel, 2003).

Here we overcome these limitations by modifying BFGS and LBFGS so as to obtain
fast stochastic quasi-Newton methods for online convex optimization. Moreover, our
modifications to (L)BFGS offer the promise of devising new stochastic methods that are
able to incorporate curvature information of an objective function into the parameter
update; for instance, the recently developed SGD-QN (Bordes et ah, 2009) algorithm
is of this kind.

5.2 Existing Stochastic Gradient M ethods

We review three stochastic gradient optimization algorithms that are representative of
the spectrum of such methods developed to date.

5.2.1 S toch astic G radient D escen t

Simple stochastic gradient descent (SGD) takes the form

w t+i = w t - r j tV wJ(w t , X t)1 (5.2)

where w t G M.d is the current parameter vector, r/t > 0 a step size, and X t the current
mini-batch of training data. Robbins and Monro (1951) have shown that (5.2) converges
to w * = argm in^ J(w) as t —> oo, provided that the step size satisfies

^ ^ 7/f = oo and < °° • (5-3)
t t

A commonly used decay schedule for r]t that fulfills these conditions is given by

Vt = —77 ho , (5.4)T + t

where 770, r > 0 are tuning parameters.
The SGD parameter update (5.2) takes only O(d) space and time per iteration.

Although it can greatly outperform sophisticated batch methods on large datasets, it
suffers from slow convergence on ill-conditioned problems.

5.2 .2 S toch astic M eta-D escen t

Stochastic Meta-Descent (SMD) (Schraudolph, 1999, 2002) accelerates SGD by provid-
ing each element of the parameter vector w with its own step size:

W t + 1 = W t - Tft ■ V J w(wt, X t), (5.5)

70 A Stochastic Quasi-Newton Method for Online Convex Optimization

where • denotes Hadamard (component-wise) multiplication. The step size vector r]t E

Rd is adapted via a simultaneous stochastic gradient descent in log-space:

t
InTft+i = ln7ft -

* = o
t

= 111 T]i [l V w t + i J (' M t + 1 5 ^ t + l) ^ ̂ ^ I n 774-, ^ i + 1

t=0

= InTjt - p V Wt+1J(w t+i ,X t+i) • v t+1 , (5.6)

where // > 0 is a scalar tuning parameter, and := A1 Vinrft_i,u^+i models
the dependence of the current parameter on past step sizes over a time scale governed
by the decay factor A E [0,1]. Elementwise exponentiation of (5.6) followed by the
linearization exp(w) « max(^, 1 + u) gives the desired multiplicative update

m+i = Vt • exp(-/iV lt,t+1 J(w t+\, X t+i) • v t+i)

~ T)t ■ max (±, 1 - [1 V^ +1 J(w t+ i,X t+i) • Vt+i) . (5.7)

The auxiliary vector Vt+i is maintained incrementally via

v t+i = Avt - rjt ■ (S7wJ(w t, A!t) + AH tv t) , (5.8)

with H t := N ll}J(wt, A!t), he., the instantaneous Hessian at time t , and uo = 0; a
detailed derivation is given by Schraudolph et al. (2006). Since H tvt can be computed
very efficiently (Schraudolph, 2002), SMD still takes only O(d) space and time per
iteration. It improves upon SGD by providing an adaptive step size decay, and handling
some (but not all) forms of ill-conditioning. In the experiments of Section 5.6, however,
its performance essentially equals that of SGD.

5.2 .3 N atural G radient D escent

The natural gradient (NG) algorithm (Amari et al., 1998) incorporates the Riemannian
metric tensor G t := Ex[NwJ(w t, A) N wJ(wt : T) t] into the stochastic gradient update:

w t+i = w t - r\t G ^ N wJ{wu X t), (5.9)

with step sizes 771 typically set by (5.4), and G t an estimate of Gt updated via

G t+1 = (1 - 1) G t + N wJ(w(5.10)

§5.2 Existing Stochastic Gradient Methods 71

Algorithm 5.1 On l in e BFGS Method
1: in p u t

• stochastic approximation of convex objective J and its gradient V J
over data sequence Xt for t = 0,1, 2, • • •

• initial parameter vector wo
• sequence of step sizes rjt > 0, e.g., obtained from (5.4)
• parameters 0 < c < 1, A > 0, e > 0

2: Output W t

3: t := 0
4: B q = t l
5: w h ile not converged do

Pt = B tV wJ(w t, Xt)
7: (no line search)
8 : S t = p t

9: W t+1 = W t + St

10; y t — ^ i X t) X t) ASj

11: if t = 0 th en

12: B t : = ^ I
y j y t

13: end if
14: pt = (s j y t)~ 1
15: B t+1 = (I - pts ty j)B t(I ~ Pty ts j) + CptStsJ
16: t := t + 1
17: end w h ile
18: retu rn Wt

The Sherman-Morrison formula can be employed to directly update G t 1:

t
t - 1

t
t - 1

1 \ 1
Xt) j V wJ{wt, X t)

(t - 1) + V wJ(w t, X t)J G p V wJ(w u X t)\ ’
(5.11)

reducing the computational cost of NG from O(//’') (for inverting Gt) to 0(d 2) space
and time per iteration — still prohibitively expensive for large d. Where it is affordable,
NG greatly benefits from the incorporation of second-order information. Note that if
the denominator of the fraction in the square brackets in (5.11) is zero, then NG’s
Hessian approximation G t+\ is not invertible, he., it is singular in such a case.

72 A Stochastic Quasi-Newton Method for Online Convex Optimization

5.3 O nline BFG S M ethod

Algorithm 5.1 shows our online BFGS (oBFGS) method, with all modifications relative
to standard BFGS (Algorithm 2.1) underlined. The changes required to get BFGS to
work well with stochastic approximation fall into three aspects which we shall elaborate
on in turn: making do without line search, modifying the update of BFGS’ inverse
Hessian approximation, and taking consistent gradient measurements.

5.3.1 C onvergence w ith ou t Line Search

Line searches (Section 2.1.2) are highly problematic in the stochastic setting since the
global validity of the criteria they employ such as the Wolfe conditions (2.7, 2.8) cannot
be established from local subsamples of the problem.

Unlike conjugate gradient (Shewchuk, 1994), however, BFGS does not require an
exact line search to correctly update its inverse Hessian estimate B t: we can actually
replace the line search with a step size decay schedule such as (5.4) that satisfies (5.3)
with no undue effect, provided that we can ensure (V£) B t >- 0 by other means. For now
we do this by restricting our attention to convex optimization problems (no negative
eigenvalues of the Hessian V2 J(w)), for which

(Vi) s j y t > 0 (5.12)

holds, where s t and y t defined in (2.15) are the parameter resp. gradient displacement
vectors. Zero and small eigenvalues (s j y t = 0 and s j y t ~ 0) are dealt with by
modifying the BFGS update to estimate the inverse of X/2J(w) + XI, where A > 0 is
a model-trust region parameter. This can be achieved by simply adding As t to yt at
Line 10 of Algorithm 2.1. To see this, recall from Section 2.1.3 that the secant equation
Bt+iVt — St essentially models the following property of V 2J(w t):

V 2J(wt) st « y t. (5.13)

Adding AI to V 2J{wt) in (5.13), we obtain

{ y 2J(wt) + XI) s t « y t -\-Xst, (5-14)

leading to the adjustment of yt at Line 10. Another possible way to ensure the positivity
of (s jyt) is to adopt a strategy similar to the dampened BFGS update (Nocedal and
Wright, 1999, Procedure 18.2) by setting

y t - O L [VwJ(wt+i , x t) - V wJ(wt, X t)\ 4- (1 - a) Bt 1s t , (5.15)

§5.3 Online BFGS Method 73

where the convex combination coefficient a G [0,1] is chosen heuristically. Compared to
this update, our modification to the calculation of y t is computationally more efficient
since it does not need to maintain the approximation B t_1 to the Hessian.

A recent study by Sunehag et al. (2009, Theorem 3.2) shows that under some
technical conditions on V 2J(w) and V wJ { w1X) ̂ a second-order stochastic method
converges to the optimum of a twice-differentiable convex objective function almost
surely, provided that (1) the step size yt obeys the Robbins-Monro conditions (5.3) and
(2) the spectrum of the scaling matrix is bounded from below and above by positive
scalars. Our choice of step size decay schedule for oBFGS satisfies the condition on
rft. The model-trust region parameter A effectively provides an upper bound on the
spectrum of B t\ to establish a lower bound, we can simply add a fraction of I to Bt,
i.e., add a fraction of —'VwJ(wt:Xt) to p t at Line 6 of Algorithm 5.1, though in the
experiments of Section 5.6 we do not find it necessary to invoke this modification.

Finally, without line search we need to explicitly ensure that the first parameter
update (before Bo has been appropriately scaled at Line 12) does not cause any prob-
lems. This is done by multiplying Bo at Line 4 with a very small e > 0 so that the
first parameter update is likewise small. The value of e is application-dependent but
non-critical; we typically use e = 10~10.

5.3.2 M odified B FG S C urvature U p d a te

We have found empirically that scaling down the last term s ts j of the curvature update
by a factor c G (0,1] (Line 15 of Algorithm 5.1) substantially improves the performance
of oBFGS for small batch sizes. In a sense the curvature matrix B t+\ obtained from
the modified update approximates a dampened inverse Hessian c [\72J(wt)] using
(5.13), we can write

c [V 2J(wt)] 1 y t « cst\ (5.16)

replacing s t in the original BFGS curvature update (Lines 12-13 of Algorithm 2.1)
with cst gives the modified curvature update. This scaling strategy for B t is known
from standard BFGS (Brodlie, 1977).1 We compensate for the resulting scaling of B t
by dividing the step size yt by c at Line 8 of Algorithm 5.1. It may be possible to
determine the optimal value for c analytically; in the experiments reported here we
simply used c = 0.1 throughout.

brodlie (1977, Equation 3.2) scales BFGS’ Hessian estimate, instead of the inverse Hessian estimate
as shown in Line 15 of Algorithm 5.1.

74 A Stochastic Quasi-Newton Method for Online Convex Optimization

5 .3 .3 C on sisten t G radient M easurem ents

We also need to account for the fact that in the stochastic setting our gradient mea-
surements are noisy. This means that a simple convergence test like \\NJ(wt)\\ > e in
Algorithm 2.1 must be replaced by a more robust one, for instance, checking whether
the norm of a running average of recent stochastic gradients has remained below a given
threshold for the last k iterations.

Finally, and most importantly, care must be taken in the computation of yt at Line
10 of Algorithm 5.1. A naive translation of the “difference of last two gradients” into
the stochastic setting would compute

VWJ % t + 1) — N WJiv^ti A’f). (5.17)

This would allow sampling noise to enter the BFGS’ curvature update since the two
terms in (5.17) are computed on different data samples.

Instead we must compute the difference of gradients on the same data sample Xt
used to compute the quasi-Newton direction p t , and hence the step s t: at Lines 6 and
8, respectively.

5.4 L im ite d -M e m o ry O n lin e B F G S

It is straightforward to implement a limited-memory variant of our oBFGS algorithm:
we simply modify the standard LBFGS (Algorithm 2.2) as follows:

• use stochastic gradients in place of deterministic gradients throughout, while al-
ways taking consistent gradient measurements as in Line 10 of Algorithm 5.1;

• modify the convergence test ||V./(iut)ll > e as discussed in Section 5.3.3;

• replace Line 5 of Algorithm 2.2 with a step size decay schedule such as (5.4) which
obeys the Robbins-Monro conditions (5.3).

We also replace Line 9 of the LBFGS direction update (Algorithm 2.3) with

P t :=

t P t
min(i,m) -r

P t y - S i - j U t - i

min(L m) yj_ty t-i

if t = 0;

otherwise.
(5.18)

This ensures that the first parameter update is small (c/. Line 4 of Algorithm 5.1), and
improves online performance by averaging away some of the sampling noise. Note that
the oBFGS’ curvature scaling factor c 6 (0,1] (c/. Section 5.3.2) is not required here,
meaning one less tuning parameter for oLBFGS.

§5.5 Stochastic Quadratic Problems 75

■ J{w , X)
• J(w , X)

• J(w , X)
■ J(w , X)

Figure 5.1: One-dimensional deterministic quadratic J(w) (solid) and two stochastic approx-
imations J(w,X) (dash-dotted and dashed) obtained from different data samples X. Left:
realizable; right: non-realizable.

5.5 S tochastic Q uadra tic P rob lem s

We follow Schraudolph and Graepel (2003) in their choices of two stochastic quadratic
(albeit ill-conditioned and semi-sparse) problems, which will be used in the experiments
of Section 5.6 to illustrate the performance of various stochastic methods.

5.5.1 D eterm in istic Q uadratic

The d-dimensional quadratic provides the simplest possible test setting that differenti-
ates between various gradient methods. In its deterministic form, the objective function
J : Rd —> M is given by

J(w) = \ (w — w *) ' J J ' (w — w*) , (5.19)

where w* G Rd and J G Rdxd are the optimal parameter vector and the Jacobian
matrix, respectively, both of our choosing. Assuming that J has full rank, then by
definition, the Hessian X 2J(w) = J J T is constant and positive definite here; the
gradient is VJ(w) = S/2J(w)(w — w*). Obviously, the minimal value of J{w) is zero,
z.e., J{w*) = 0.

76 A Stochastic Quasi-Newton Method for Online Convex Optimization

5.5.2 A Sim ple S toch astic Q uadratic

A stochastic optimization problem analogous to the above can be defined by the data-
dependent objective

J(w, X) = ~ (w ~ w*)TJ X X TJ T(w - w *), (5.20)2 b

where

X := [cci, X2 , . . . Xb] with X{ ~ N{0, /) , 1 < z < 6 (5.21)

is a d x b matrix collecting a batch of b random input vectors to the system, each drawn
i.i.d. from a normal distribution. This means that E [T X t] = 6 /, hence in expectation
the stochastic objective (5.20) is identical to the deterministic formulation (5.19):

Ex [J(w, X)} = ^ - (w - w*)TJ E [I I t 1 J t (w - w*) = J(w). (5.22)2 b

The optimization problem is harder here since the objective can only be probed by
supplying stochastic inputs to the system, giving rise to the noisy estimates

N wJ (w , X) = V 2wJ { w, X) { w - w *) and J{w, X) = i J X X J T (5.23)

of the true gradient and Hessian, respectively. The degree of stochasticity is determined
by the batch size b; the system becomes deterministic in the limit as b —■> oo.

Note that depending on the choice of X , the matrix (X T J T) can be rank deficient,
meaning that the instantaneous Hessian J(w, X) may not have full rank, and hence
the solution to min^ J (w , X) may not be unique. Here we use argminw J(w, X) to
denote the set of all possible solutions. For the stochastic quadratic problem (5.20),
the solution set is given by

argmin J (w , X) = {w : (w — w*) 6 Null(X J T)}. (5.24)
w

where Null(-) denotes the null space of a matrix.

A one-dimensional view of (5.20) is given in Figure 5.1 (left) where we can see that
J(w, X) is data-dependent but coincides with the deterministic objective function J(w)
at the optimum w*, z.e., V(X) J { w * , X) = J (w*) = 0. Furthermore, it follows from
(5.24) that every stochastic approximation is minimized at w*:

(̂ 1 argmin J(w, X) = {w*}. (5.25)

Schraudolph and Graepel (2003) call this realizable.

§5.5 Stochastic Quadratic Problems 77

5.5.3 A N on -R ealizab le Q uadratic

The stochastic quadratic (5.20) models realizable problems, z.e., those where the solu-
tion set argminw J (w , X) contains the optimum w* of the deterministic objective for
all data samples. Of greater practical relevance are non-realizable problems in which
w* is not necessarily in the solution set, and the stochastic objective can be minimized
at different points for different data samples, reflecting the conflicting demands placed
on the model by the data. Following Schraudolph and Graepel (2003), we model this
by incorporating, along with each data sample X € W1xb (5.21), an i.i.d. Gaussian
random noise v e R b with zero mean and variance E [w 1] = a21 into our objective:

where J (w , X) is the realizable stochastic quadratic defined in (5.20). The presence
of v makes it impossible to determine w* precisely from a finite set of data samples;
Figure 5.1 (right) shows that in this case argminw J (w , X 1v) does not necessarily
contain w*. On the other hand, taking expectation of the stochastic gradient

(5.26)

where e := X J (w — w *) + v .

In expectation this is still identical to the deterministic quadratic (5.19):

Ex v \ J { w. X, v) } = Ex J (w , X) + h w - w ,) ' J E x .„[Xv]
0

= J{w), (5.27)

E x , v [V wJ(w, X) \ = ^ E x ^ { j X X TJ T{ w - w *) + J X ^

b
= J J T(w - w *) + 0

- V J (w) (5.28)

reveals that it matches the true gradient. Therefore, we can use a step size decay sched-
ule such as (5.4) to effectively average the noisy gradient estimates over progressively
larger stretches of data, and hence in the limit obtain an estimate of the true gradient.

78 A Stochastic Quasi-Newton Method for Online Convex Optimization

5.5 .4 C hoice o f Jacobian

For our experiments, we choose the Jacobian J such that the Hessian has (1) eigenvalues
of widely differing magnitude (ill-conditioning) and (2) eigenvectors with an interme-
diate degree of sparsity. We achieve this by imposing some sparsity on the notoriously
ill-conditioned Hilbert matrix:

We use unconstrained online minimization of (5.20) and (5.26)," with J given by (5.29)
in d = 5 dimensions, as our model problems for stochastic gradient methods. The
condition number of the Hessian V2 J(w) is 4.9 x 103.

5.6 E xp erim en ts

We now apply the past stochastic methods reviewed in Section 5.2 and our o(L)BFGS
to the two stochastic quadratic problems just introduced. Their performance at differ-
ent batch sizes is measured by the average number of data points needed to reach a
pre-specified value of the deterministic objective (5.19). We also show the convergence
behaviour of each algorithm at its optimal batch size by plotting the average deter-
ministic objective value vs. the number of data points. As the performance of SMD
essentially equals that of SGD in our experiments, it is not shown in the figures.

In all experiments we found it sufficient to set o(L)BFGS’ free parameters e and A to
10-10 and 0, respectively, c was moderately tuned for good performance of oBFGS, and
fixed to 0.1 throughout. We ran oLBFGS with the buffer sizes m = 4 and 10 (denoted
oLBFGS resp. oLBFGS’ in the figures). All experiments were run with varying batch
size 5, taking values in the set {4* : i = 0 ,1, • • • , 8}.

5.6.1 R esu lts on th e R ealizab le Q uadratic

Our first set of experiments were carried out on the realizable quadratic (5.20). For this
simple problem, a constant step size proved sufficient. All methods used ijt = 5/(5 + 2)
(tuned for good performance of SGD) except for NG, which required (5.4) with po = 1
and r = 100.

Figure 5.2 shows that SGD suffers from slow convergence on this ill-conditioned
problem: in comparison to other stochastic methods SGD (solid diamonds) needs to

2We shift down the non-realizable stochastic quadratic of Schraudolph and Graepel (2003) by cr2/2
so as to establish (5.27).

if i mod j = 0
or j mod i — 0 ;

otherwise.

(5.29)

§5.6 Experiments 79

x- -x BFGS
■- -■ NG

*— * oLBFGS

Data Points

*• -■ NG

Batch Size

Figure 5.2: Average performance (with standard errors) of stochastic gradient methods on the
realizable quadratic (5.20) over 10 matched random replications. Left: number of data points
(up to a limit of 222) needed to reach J(w) < 10~15 vs. batch size b. Right: deterministic loss
J(w) vs. number of data points seen at the optimal batch size for each algorithm.

see many more data points to decrease the deterministic objective value to a given
threshold (10~15). NG (dashed squares) benefits from its incorporation of second-order
information, and hence greatly outperforms SGD here for b < 103. Note that the use
of a running average in NG’s estimate (5.10) of Riemannian metric tensor is optimal
for this quadratic model, where the Hessian of J(w) is constant.

We implemented a variant of oBFGS (denoted BFGS in the figures) that takes
inconsistent gradient measurements (5.17). Figure 5.2 illustrates the disastrous conse-
quences: this variant (dashed crosses) diverges for all batch sizes less than 103 (Fig-
ure 5.2, left); at the optimal batch size, it is only marginally better than SGD (Fig-
ure 5.2, right). Note that Figure 5.2 (right) essentially shows the worst-case perfor-
mance of each method because the average of deterministic objective values shown on
log scale is dominated by the maximal value of them: for instance, in the worst case
BFGS requires about 6 • 104 data points to reach J (w) < 10~15, hence the average de-
terministic objective shown in Figure 5.2 (right) is dominated by this worst run, while
we can see in Figure 5.2 (left) that on average, BFGS requires around 4-104 data points
to reach the given threshold.

While properly implemented, oBFGS (solid disks) outperforms NG for all batch
sizes. OLBFGS with m = 4 (solid triangles) performs well down to b m 100 but
degrades for smaller batch sizes. This is not surprising considering that the curvature
estimate is now based on only 4 noisy measurements of the objective. Fortunately, the
situation improves rapidly with increasing buffer size: for m = 10 the performance of
oLBFGS (dashed triangles) is close to that of full online BFGS for all batch sizes. '

3 Note that for m > d LBFGS is computationally more expensive than full BFGS. For higher-
dimensional problems, however, the beneficial effect of increasing m will be realized well before ap-
proaching this anomalous regime.

80 A Stochastic Quasi-Newton Method for Online Convex Optimization

*■ -■ NG

*— * oLBFGS

1CP 1Ö5 lö 1 ltf5 1CP 107
Data Points

* - -m NG
oBFGS

Batch Size

Figure 5.3: Average performance (with standard errors) of stochastic gradient methods on
the non-realizable quadratic (5.26) over 10 matched random replications. Left: number of data
points (up to a limit of 222) needed to converge to J{w) < 10-5 vs. batch size b. Right:
deterministic loss J(w) vs. number of data points seen at the optimal batch size for each
algorithm.

5.6.2 R esu lts on th e N on -R ealizab le Q uadratic

We now turn to the more challenging non-realizable stochastic quadratic (5.26) with
c7 — 10~2. In this set of experiments all methods used (5.4) with 770 and r moderately
tuned for fast convergence at small batch sizes. The initial step size 770 was set to
b/{b + 2) for all methods except for NG and oLBFGS with m = 4 which required
770 = 0.04 and 0.1 • b/(b + 2), respectively, r was set to 104 for SGD, 20 for NG and
oBFGS, and 2T04 resp. 10 for oLBFGS with m = 4 resp. 10.

Figure 5.3 (left) shows the average number of data points needed to reach J(w) <
10~°, while the performance of each algorithm at its optimal batch size is illustrated
in Figure 5.3 (right). Because the noise term v inflates the metric tensor (5.10), NG
overestimates the Hessian, and ends up performing no better than SGD here. OBFGS,
by contrast, bases its curvature estimate on differences of gradient measurements; as
long as these are consistent (Section 5.3.3), any data-dependent noise or bias terms will
thus be cancelled out. Consequently, oBFGS greatly outperforms both SGD and NG,
converging about 20 times faster to J(w) = 10-5 at the convenient mini-batch size
of b — 4 (Figure 5.3, right). The performance of oLBFGS with small buffer (m = 4)
degrades for batch sizes below b — 64; a more generous buffer (m = 10), however,
restores it to the level of full oBFGS.

5.7 D iscussion

We developed stochastic variants of the BFGS and LBFGS quasi-Newton methods,
suitable for online optimization of convex functions. Experiments on two stochastic

§5.7 Discussion 81

quadratic problems show that our methods can greatly outperform past stochastic
gradient algorithms, including a well-tuned natural gradient method. Unlike natural
gradient, oLBFGS scales well to very high-dimensional problems, thanks to its matrix-
free direction update.

Our online quasi-Newton methods require tuning of newly introduced free parame-
ters (r)t, c, and A for oBFGS; r]t and A for oLBFGS). Although no elaborate parameter
tuning is needed, we expect further improvements from developing ways to automat-
ically set and adapt these. One limitation of oLBFGS is that for very sparse data,
oLBFGS may require a substantial buffer size m to emulate a non-degenerate inverse
curvature estimate.

Having established the utility of o(L)BFGS on the two synthetic stochastic quadrat-
ics, in the next chapter we will turn to more challenging and realistic convex optimiza-
tion problems that stem from real-world applications.

82 A Stochastic Quasi-Newton Method for Online Convex Optimization

C hapter 6

O nline LBFG S for th e T rain ing
of C ond itional R andom Fields

In this chapter we apply our online LBFGS (oLBFGS) method (Section 5.4) to the
training of Conditional Random Fields (CRFs) in natural language processing. We
show that oLBFGS achieves state-of-the-art results on benchmark datasets in far fewer
passes through the training data than its batch counterpart LBFGS. First we briefly
review the problem formulation of CRF parameter estimation. The experimental results
on three natural language processing datasets are reported in the subsequent sections.

6.1 C on d ition a l R and om F ields

Conditional Random Fields (CRFs) as a class of probabilistic models for labelling
and parsing data have recently gained popularity in the machine learning community
(Kumar and Hebert, 2004; Lafferty et ah, 2001; Sha and Pereira, 2003). Parameter
estimation in CRFs can be viewed as minimizing the negative log-posterior of the
parameters w € Rd given the training data:

where X {xi}™= l and Z := {zi}™= l are the sets of feature vectors Xi and the
corresponding label vectors z*, respectively. Bayes’ rule suggests

If an i.i.d. conditional exponential family distribution over labels is assumed, z.e.,

- l n P H * , Z), (6 . 1)

P { w \ X , Z) oc P(w) P(Z I (6 .2)

(6.3)

83

84 Online LBFGS for the Training of Conditional Random Fields

where </>(•, •) gives a vector of sufficient statistics that encodes features of the training
data, and Z(-, •) is the log-partition function

Z(w, x) In exp(0(cc, z) Tw), (6-4)

then we can translate (6.1) into

n
- I n [P(w)P{Z \X\w) \ = - \ n P (w) - {4>{xl, z i)Tw - Z (w , x l)̂ j . (6.5)

» = l

In practice, an isotropic Gaussian prior with variance cr2I is often imposed on w , i.e.,

P{w) oc e x p (- ^ | |u ; | |2), (6.6)

turning (6.5) into the familiar Maximum a posteriori estimation formulation:

I I I I 2 n
J(w) := - ^ 2" - ^ ^(® j,Z i)T«7 - Z (m ,xz)) . (6.7)

i= 1

This objective is convex since the log-partition function (6.4) is convex in w (Wain-
wright and Jordan, 2003), and so are the other terms.

Conventional algorithms for batch CRF training, he., minimizing (6.7), include gen-
eralized iterative scaling (GIS), conjugate gradient (CG), and limited-memory BFGS
(LBFGS) (Sha and Pereira, 2003). As shown by Bottou (2009) and Vishwanathan et al.
(2006), first-order stochastic gradient methods routinely outperform the conventional
batch algorithms, e.p., LBFGS, by carrying out the parameter update on stochastic
approximation of J {w), which can be formulated as

b \ \ w \\2 k
Jt{w) := - (^(xbt+i, z bt+i)Tw - Z(w, x bt+i)̂ j , (6.8)

i= 1

where b is the size of a mini-batch of data sampled from the training set. Summing Jt(w)
- —1

over all batches of data recovers the deterministic objective: Ylt=o ^ (lü) — J{w)-

6.2 E xp erim en ta l Tasks

We replicated three experiments by Vishwanathan et al. (2006) who apply 1-D chain
CRFs to problems in natural language processing, using their software — an enhanced
version of Taku Kudo’s CRF++ code — and following them in setting Gaussian prior
(6.6) parameter o to 1. We used their CRF features for the experiment of Section 6.2.1.

Tt is available from h t t p : / / c r f p p . so u rcef orge . net.

§6.2 Experimental Tasks 85

Table 6.1: Datasets used in our experiments and the batch size b for stochastic methods.
Dataset Training Set Size Test Set Size # of Features b
CoNLL-2000 8936 2012 330731 8
BioNLP/NLPB A-2004 18546 3856 455142 6
BioCreAtlvE 7500 5000 382543 6

For the other two experiments, we used binary orthographic features introduced by
Settles (2004) as well as features based on neighbouring words; the features used by
Vishwanathan et al. (2006) to model the correlations between the current and previous
labels were not used here because CRF++ actually can not properly process this type of
features, causing it to produce misleadingly high generalization performance.

In our experiments we study the convergence behavior of various optimizers by
plotting deterministic objective value on the training data vs. the number of passes
through it. The generalization performance in terms of the F-score on the test data
is reported, and benchmarked against the best F-score found in the literature that is
achieved by using CRFs. The F-score is the harmonic mean of the precision and the
recall measurements:

F-score := 2 (precision x recall)/(precision + recall), where

precision := T P /(T P + FP) and recall := T P /(T P + FN). (6-9)

“TP”, “FP” , and “FN” stand for the number of the true positives, false positives, and
false negatives, respectively.

Table 6.1 summarizes the three datasets used in our experiments and the batch
sizes used by stochastic methods. Since these CRFs have many (over 105) parameters
(he., the number of features), neither full BFGS nor natural gradient (Section 5.2.3)
can be used. However, we can apply our online LBFGS algorithm here: since the CRF
parameter estimation problem is convex, the non-negativity condition (5.12) holds, and
thus guarantees non-negativity of the inverse Hessian estimate emulated by oLBFGS.
Our control methods are batch LBFGS (Algorithm 2.2) as supplied by CRF++ and
SMD (Section 5.2.2), which is the best performing stochastic method in (Vishwanathan
et al., 2006); their implementation of SGD (SGD as in Section 5.2.1 with fixed step sizes
T/t = 0.1) is only shown for our first experiment since in the other cases it performed
worse than SMD, while producing heavy oscillations that would have obscured our
figures.

To cope with regions of low curvature, we employed a model-trust region parameter

2 We note that the line search used by CRF++ for LBFGS does not guarantee a monotonic decrease
in the objective function value.

86 Online LBFGS for the Training o f Conditional Random Fields

CoNLL CoNLL

i .«
;.y • i'r-7sr!"i

Passes

CoNLL

- - Y ~ .

Passes

F igu re 6.1: Performance of optimization algorithms plotted against number of passes through
the CoNLL-2000 dataset. Left, center: deterministic objective on the training set; right: F-score
on the test set.

A for oLBFGS (c/. Line 10 of Algorithm 5.1); we found it sufficient to set A = 1 for
our experiments. The step size of oLBFGS was determined by the decay schedule
(5.4) with tuning parameters rjo and r . We found empirically that setting 770 = 1 and
r = 104 typically leads to satisfactory results, and hence used this setting throughout.
Free parameters of SMD were moderately tuned for good performance: 7 7 0 = 0.1 x 1 ,

/i = 0.02 throughout, A = 0.99 for the first experiment, and 0.1 for the others. The
limited-memory buffer size m = 5 was used for both LBFGS and oLBFGS. To prevent
stochastic methods from overfiting correlations across training instances, we randomly
permuted the training data before each complete pass over it (cf. the two-step sampling
procedure in Section 5.1). All methods were stopped after 100 full passes through the
training data.

6.2.1 C oN LL -2000 B ase N P C hunking

Our first experiment is the CoNLL-2000 Base NP chunking task (Sang and Buchholz,
2000). Text chunking as an intermediate step towards full parsing divides a text into
syntactically correlated chunks of words. Each word in the training sentences is an-
notated automatically with part-of-speech (POS) tags. The task is to label each word
with a label indicating whether it lies outside, starts, or continues a chunk.

Figure 6.1 (left) shows that oLBFGS (solid) initially is slower than SGD (dash
dotted) and SMD (dotted). However, as shown in the zoomed-in figure (Figure 6.1,
center), oLBFGS surpasses both SGD and SMD after 7 passes over the training data,
and asymptotically achieves the lowest objective value of all methods. Moreover, Figure
6.1 (center) shows that after about 30 passes over the data, oLBFGS already reaches
the final objective value obtained by the batch LBFGS method (dashed).

The best F-score on the test set (solid horizontal line in Figure 6.1, right) was
reported to be 93.6% (Vishwanathan et al., 2006). Figure 6.1 (right) shows tha t LBFGS

§6.2 Experimental Tasks 87

Figure 6.2: Performance of optimization algorithms plotted against number of passes through
the BioNLP/NLPBA-2004 dataset. Left, center: deterministic objective on the training set;
right: F-score on the test set.

requires 40 passes over the data to achieve a comparable generalization performance
(F-score of 93.3%, dashed horizontal line), while SMD and SGD do so in 7 passes,
oLBFGS in 6, though in several later passes SGD oscillates to a lower level.

6.2 .2 B io N L P /N L P B A -2 0 0 4 Shared Task

The BioNLP/NLPBA-2004 shared task (Kim et al., 2004) involves biomedical named-
entity recognition on the GENIA corpus, aiming to identify and classify molecular
biology terms in sentences of MEDLINE abstracts.

As can be seen in Figure 6.2 (left and center), both stochastic methods not only
decrease the objective value substantially faster than the batch LBFGS method, but
also asymptotically converge to a lower objective value: oLBFGS and SMD obtain the
deterministic objective value eventually reached by LBFGS in more than one order
of magnitude less passes over the data. In this task, oLBFGS again asymptotically
outperforms SMD (Figure 6.2, center).

The best F-score reported by Settles (2004) was 69.8%.; oLBFGS reliably surpasses
this F-score (Figure 6.2, right), while LBFGS and SMD do not: LBFGS eventually
obtains an F-score of just over 69.5; the F-score of SMD settles around 68.5%-70%.

6.2 .3 B io C reA tlv E C hallenge Task 1A

The BioCreAtlvE challenge task 1A (Hirschman et al., 2005) is also a biomedical
named-entity identification task. It focuses on gene and protein name identification
in sentences of MEDLINE abstracts.

Similar to the previous set of experiments, both stochastic methods significantly
outperform LBFGS in minimizing the objective; asymptotically, oLBFGS achieves the

3Settles (2005) later reported a better F-score of 70.5% for slightly improved features.

88 Online LBFGS for the Training of Conditional Random Fields

F igu re 6.3: Performance of optimization algorithms plotted against number of passes through
the BioCreAtlve dataset. Left, center: deterministic objective on the training set; right: F-score
on the test set.

lowest objective value of all methods (Figure 6.3, left and center). On this dataset,
oLBFGS reliable surpasses an F-score of 69.6%— 0.3% away from the F-score (69.9%)
reported by Settles (2005) — after around 40 passes through the data, still faster than
LBFGS (80 passes). Significant oscillations appear in the F-score of SMD, causing its
poor performance here.

6.3 D iscussion

We applied our online LBFGS algorithm to the training of CRFs in natural language
processing. In all tasks, oLBFGS achieves state-of-the-art generalization results in far
fewer passes through the data than LBFGS, while requiring only moderate tuning effort
for its free parameters, with 770, r , and A all fixed to their default values throughout.
The generalization performance of oLBFGS is comparable to or better than existing
stochastic methods, and the asymptotic objective value achieved by oLBFGS is consis-
tently the lowest among stochastic methods.

C hapter 7

C onclusions

This chapter concludes this thesis with a summary of key contributions and possible
directions for future research.

7.1 S um m ary o f C on trib u tion s

The key contributions of this thesis are:

1. A principled and robust BFGS quasi-Newton optimization method (subBFGS,
Algorithm 3.1) and its limited-memory variant (subLBFGS) that are specifically
designed for nonsmooth convex optimization problems in machine learning. Sub-
BFGS is proven to globally converge to the optimal objective value under some
technical conditions. SubLBFGS demonstrates competitive performance when
benchmarked against specialized state-of-the-art machine learning solvers.

2. A subgradient reformulation (3.17 and 3.18) of the standard Wolfe conditions
that can be used by an inexact line search to effectively reduce the value of a
nonsmooth objective function in a given descent search direction.

3. An iterative direction-finding procedure (Algorithm 3.2) that is guaranteed to find
a descent direction at a non-optimal position. This procedure can be plugged into
any nonsmooth optimization algorithm which requires a descent direction for its
parameter update.

4. A new efficient algorithm (Algorithm 3.4) for identifying the nonsmooth points
of a one-dimensional pointwise maximum of linear functions.

5. Exact line search methods specialized for ./^-regularized risk minimization with
the binary hinge loss (Algorithm 3.3) and its generalizations to the multiclass
and multilabel settings (Algorithm 3.5). These methods can be used as black-
box procedures to accelerate the convergence of any adaptive classifier whose
parameter update takes the form of (1.6).

89

90 Conclusions

6. Stochastic variants of standard BFGS (Algorithm 5.1), in both its full and memory-
limited forms, for online optimization of convex functions. Both algorithms are
scalable to large datasets. Online LBFGS is, in addition, also scalable to large
models with many parameters.

7.2 F u tu re R esearch D irections

In the following we suggest several possible extensions of the work presented in this
thesis:

1. In many of our experiments of Chapter 4 we observe that subLBFGS decreases the
objective function rapidly early on but slows down closer to the optimum. Bundle
methods, by contrast, exhibit slow initial progress but tend to be competitive
asymptotically. One promising research direction would be to develop hybrid
optimizers that are able to combine the strength of these two methods, e.g., by
switching from sub(L)BFGS to a bundle method as appropriate.

2. This thesis demonstrates the use of sub(L)BFGS on nonsmooth regularized risk
minimization problems where the nonsmoothness stems from piecewise linear
terms in the objective function. Extending sub(L)BFGS to problems with other
forms of nonsmoothness would be an interesting research topic. For instance, the
objective functions of computational problems in multiview geometry (Hartley
and Kahl, 2007; Kahl and Hartley, 2008) are the pointwise maximum of quartic
(4th-order) polynomials. These problems are nonsmooth at those intersections
of polynomials where the maximum is attained. Moreover, they are not convex
but quasi-convex, z.e., they have convex sublevel sets. Adapting sub(L)BFGS to
these circumstances could improve the dominant second-order cone programming
(SOCP) approach to these problems.

3. The current version of online BFGS (resp. online LBFGS) is applicable only to
convex problems, where it can maintain positivity of its curvature estimate B t .
Extending o(L)BFGS to local optimization of non-convex objectives would be an
interesting research topic to pursue.

4. Our stochastic variants of the BFGS and LBFGS methods require tuning of a
few free parameters; in our experience, such tuning becomes critical for non-
convex optimization problems. It would be very useful if principled ways could
be developed to automatically set and adapt them.

A p p e n d ix A

A p pend ix

A .l B u n d le S ea rch for a D e sc e n t D ire c t io n

Recall from Section 3.2.2 that at a subdifferential point w our goal is to find a descent
direction p * which minimizes the pseudo-quadratic model:

This is generally intractable due to the presence of a supremum over the entire subdiffer-
ential dJ(w). We therefore propose a bundle-based descent direction finding procedure
(Algorithm 3.2) which progressively approaches M(p) from below via a series of con-
vex functions M ^ (p) , • • • , M ^(p), each taking the same form as M(p) but with the
supremum defined over a countable subset of dJ(w). At iteration i our convex lower
bound M^l\ p) takes the form

M{p) := \ p TB lp + sup g p-
gedJ(w)

(A.l)

M^l\ p) := ^p^B lp + sup g ' p , where
gevw

:= {g ^ : j < i, i , j G N} C dJ(w). (A.2)

Given an iterate p^ ^ G Rd we find a violating subgradient g ^ via

gb) ._ arg sup g p^ ^
gedJ(w)

(A.3)

Violating subgradients recover the true objective M(p) at the iterates p^

= M ^ \ p ^ ~ 1̂) = 1 -f (A.4)

To produce the iterates p l̂\ we rewrite minpeRd M^l\ p) as a constrained optimiza-

For ease of exposition we are suppressing the iteration index t here.

91

92 Appendix

tion problem (3.13), which allows us to write the Lagrangian of (A.2) as

Lw (p ,£ ,a) := \ p ' B lp + £ — aT(£l - G {l)Tp), (A.5)

where := [g^\ g 2̂\ . . . , g^] G Rdxi collects past violating subgradients, and a is
a column vector of non-negative Lagrange multipliers. Setting the derivative of (A.5)
with respect to the primal variables £ and p to zero yields, respectively,

a 1 = 1 and (A.6)

p = —B G ^ ol . (A.7)

The primal variable p and the dual variable a are related via the dual connection
(A.7). To eliminate the primal variables £ and p, we plug (A.6) and (A.7) back into
the Lagrangian to obtain the dual of M^\p):

D^\cx) := - ±(Gw a) TB (G w a) (A.8)

s.t. a G [0,1]\ ||o:|| i = 1.

The dual objective D l̂\cx) (resp. primal objective M ^(p)) can be maximized (resp.
minimized) exactly via quadratic programming. However, doing so may incur substan-
tial computational expense. Instead we adopt an iterative scheme which is cheap and
easy to implement yet guarantees dual improvement.

Let G [0, l]1 be a feasible solution for D l̂\ a) . 2 The corresponding primal
solution pW can be found by using (A.7). This in turn allows us to compute the next
violating subgradient g^+l ̂ via (A.3). With the new violating subgradient the dual
becomes

Z)(i+1)(a) := - \ { G ^ l+l)oc) B { G {i+l)c l)

s.t. a G [0, l]l+1, ||a ||i = 1, (A.9)

where the subgradient matrix is now extended:

G (i+1) = [G w 9 «+l)]. (A.10)

Our iterative strategy constructs a new feasible solution ot € [0.1]I+1 for (A.9) by

2Note that a (1^= 1 is a feasible solution for D (1)(a).

§ A. 1 Bundle Search for a Descent Direction 93

constraining it to take the following form:

a =
(1 — p) a W

ß
where g 6 [0,1]. (A .ll)

In other words, we maximize a one-dimensional function : [0,1] —> R:

£>(i+1)(p) := - \ (G (i+1)a) B (A.12)

= - \ ((! - ß)g[l) + ß g {l+1)) B ((I ~ ß)9{l) + ß9{l+1)) ,

where

p (i) := G (i)a (i) € <9J(ie) (A.13)

lies in the convex hull of g ^ 6 d J (w) V j < « (and hence in the convex set d J (w))
because 6 [0, l]z and | |a ^ | | i = 1. Moreover, \i € [0,1] ensures the feasibility of
the dual solution. Noting that D^l+l\/a) is a concave quadratic function, we set

dD (i+l\ ß) = (9 <i)- 9 <i+1)) T B ((l - ! ?) g <i) + r/g(i+1)) = 0 (A.14)

(g(i) _ g(i+l))T

to obtain the optimum

: = = m i n (°--0 (0 - a (H i)) T B » (0 - g < m))

Our dual solution at step z -|- 1 then becomes

(i+D . = (i - p *) « (i)
ß*

(A.15)

(A.16)

Furthermore, from (A.10), (A .ll), and (A.13) it follows that can be maintained
via an incremental update (Line 8 of Algorithm 3.2):

g(i+i) ;= G «+i)a «+i) = (1 - Ii*)g{i) -f ß*g{i+1\ (A.17)

which combined with the dual connection (A.7) yields an incremental update for the
primal solution (Line 9 of Algorithm 3.2):

p (i+1) -B g ^ i+l) = -(1 - fj,*)Bg® - g*B g{i+V

= (1 - /U)p(i) - g*Bg(i+1l (A.18)

Using (A.17) and (A. 18), computing a primal solution (Lines 7-9 of Algorithm 3.2)

94 Appendix

costs a total of 0(d2) time (resp. 0(md) time for LBFGS with buffer size m), where
d is the dimensionality of the optimization problem. Note that maximizing L^z+1)(a)
directly via quadratic programming generally results in a larger progress than that
obtained by our approach.

In order to measure the quality of our solution at iteration z, we define the quantity

r(0 := min M ^ +1\ p ^) — = min M (p ^) — (A.19)
j < i 3 < i

where the second equality follows directly from (A.4). Let D(a) be the corresponding
aA) ^ — _D^)(a(1)), and let a* be thedual problem of M(p), with the property D ^

optimal solution to argmaxa e _4 D{ot) in some domain A of interest. As a consequence
of the weak duality theorem (Hiriart-Urruty and Lemarechal, 1993, Theorem XII.2.1.5),
minpeRd M(p) > D(ot*). Therefore (A.19) implies that

> min M(p) — > min M(p) — D(ac*) > 0. (A.20)
peRd p€Rd

The second inequality essentially says that is an upper bound on the duality gap.
In fact, Theorem A.2.3 below shows that (e^ — e^+1)̂ is bounded away from 0, he.,
gh) is monotonically decreasing. This guides us to design a practical stopping criterion
(Line 6 of Algorithm 3.2) for our direction-finding procedure. Furthermore, using the
dual connection (A.7), we can derive an implementable formula for ê l>:

(0 -e' ' — min
j < i

= min
3 < i

— min
j < i

\ p W TB - lpW + p & ! + I(G (i)a (i))TB (G (i)a (i))

p(j) 1 gfO+L _ i (püAgü) _|_p(0 g b)) (A.21)

where </-7+1) := arg sup gTp^^ and g ^ := GL')a 0) \/j < p
g e d J (w)

It is worth noting that continuous progress in the dual objective value does not nec-
essarily prevent an increase in the primal objective value, he., it is possible that
M (p^+1)) > M (p W). Therefore, we choose the best primal solution so far,

p := argm inM (p(j)̂, (A.22)
3 < i

as the search direction (Line 18 of Algorithm 3.2) for the parameter update (2.5). This
direction is a direction of descent as long as the last iterate p(1' fulfills the descent
condition (3.10). To see this, we use (A.32-A.34) below to get supgedJ{w) 9T =

§ A. 1 Bundle Search for a Descent Direction 95

M (p ^) -f Z)W (a^), and since

M (p ^) > m inM (p ^) and D ^ (a ^) > D ^ \c x ^) Vj < i , (A.23)
j < i

definition (A.22) immediately gives s u p ^ ^ j ^ g p ^ > s u p g ^ j^) g p. Hence if
p ^ is a descent direction, then so is p.

We now show tha t if the current parameter vector w is not optimal, then a direction-
finding tolerance e > 0 exists for Algorithm 3.2 such that the returned search direction
p is a descent direction, he., s u p ^ ^ j ^ g p < 0.

Lem m a A. 1.1 Let B be the current approximation to the inverse Hessian maintained
by Algorithm 3.1, and h > 0 a lower bound on the eigenvalues of B . If the current
iterate w is not optimal: 0 ^ dJ(w), and the number of direction-finding iterations is
unlimited (kmax = oo), then there exists a direction-finding tolerance e > 0 such that
the descent direction p = —B g , g € d J (w) returned by Algorithm 3.2 at w satisfies
supge d J (w) 9 T P < 0.

P roof Algorithm 3.2 returns p after i iterations when e ^ < e, where = M(p) —
D(1)(q W) by definitions (A.19) and (A.22). Using definition (A.8) of D ^ (a ^) , we
have

- D (l)(a (i)) = I (G w a (i))TB (G (i)a (i)) = \ g (i)rB g (i\ (A.24)

where g ^ = G ^ o t^ is a subgradient in dJ{w). On the other hand, using (A.l) and
(A. 18), one can write

M{p) = sup g p + \ p B lp
g£dJ (w)

= sup g p + ^ g B(fi where g € d J (w) . (A.25)
gEdJ(w)

Putting together (A.24) and (A.25), and using B >- h, one obtains

e(l) = sup g p + \ g TB g + \ g {l)TB g [l) > sup gTp + ^||<?||2 + |||<7{l)||2.
gCdJ(w) g€dJ (w) ^ ^

(A.26)

Since 0 ^ d J (w), the last two terms of (A.26) are strictly positive; and by (A.20), >
0 . The claim follows by choosing an e such that (Vi) f (||p ||2 + \\g^ ||2) > e > > 0. ■

Using the notation from Lemma A.1.1, we show in the following corollary that a
stricter upper bound on e allows us to bound s u p g ^ j^) g p in terms of g B g and

96 Appendix

j|gf||. This will be used in Appendix A.4 to establish the global convergence of the
subBFGS algorithm.

Corollary A. 1.2 Under the conditions of Lemma A. 1.1, there exists an e > 0 for
Algorithm 3.2 such that the search direction p generated by Algorithm 3.2 satisfies

sup g p < - \ g Bg < -^\\g\\2 < 0. (A.27)
gEdJ(w) ^

Proof Using (A.26), we have

(Vz) eW > sup g Tp + \ g JBg + ^ \ \g [l)\\2. (A.28)
gEdJ(w) ^

The first inequality in (A.27) results from choosing an e such that

(Vi) b |g (i)||2 > € > e(i) > 0. (A.29)

The lower bound h > 0 on the spectrum of B yields the second inequality in (A.27),
and the third follows from the fact that ||g|| > 0 at non-optimal iterates. ■

A .2 C onvergence o f th e D escen t D irection Search

Using the notation established in Appendix A.l, we now prove the convergence of
Algorithm 3.2 via several technical intermediate steps. The proof shares similarities
with the proofs found in Smola et al. (2007), Shalev-Shwartz and Singer (2008), and
Warmuth et al. (2008). The key idea is that at each iterate Algorithm 3.2 decreases
the upper bound on the distance from the optimality, and the decrease in is
characterized by the recurrence — e^+1) > c (e^)2 with c > 0 (Theorem A.2.3).
Analysing this recurrence then gives the convergence rate of the algorithm (Theorem
A.2.5).

We first provide two technical lemmas (Lemma A.2.1 and A.2.2) that are needed
to prove Theorem A.2.3.

Lemma A .2.1 Let D^l+1\p) be the one-dimensional function defined in (A.12), and
the positive measure defined in (A. 19). Then < dD^l+l\ 0).

Proof Let p ^ be our primal solution at iteration z, derived from the dual solution
using the dual connection (A.7). We then have

pb) _ where := (A.30)

§A.2 Convergence o f the Descent Direction Search 97

Definition (A .l) of M (p) implies that

M (p°°) - + p {i)Tg (i+1), (A.31)

where

p (l+1) := argsup g Tp {i). (A.32)
ged J{ w)

Using (A.30), we have B ~ lp ^ = —B ~ l B g ^ = —g^l\ and hence (A.31) becomes

= p(‘)Tg « + i) _ i p (‘)TgW. (A.33)

Similarly, we have

Z)W (aw) = - i (G (l)a (i))TJB (G (l)a (i)) = ± p (i)Tp (i)- (A.34)

From (A. 14) and (A.30) it follows that

&D(m) (0) = (p(i)- p (f+1))Tß p (i) = (p(i+1)- p (i))Tp (i), (A.35)

where ph+i) js a violating subgradient chosen via (A.3), and hence coincides with
(A.32). Using (A .33)- (A.35), we obtain

M (p (i)) - D (i)(a (i)) = (V m) - p (i)) T p (i) - d D (i+1)(0). (A.36)

Together with definition (A.19) of e ^ , (A.36) implies that

= m inM (p ^) — D ^
j < i \)

< M (p (i)) - D (i)(a (i)) = &D(m) (0).

Lem m a A .2.2 Let / : [0,1] —> R be a concave quadratic function with /(0) = 0,
<9/(0) € [0, a], and d f 2(x) > —a for some a > 0. Then maxxG[0)i] /(x) > •

P roof Using a second-order Taylor expansion around 0, we have /(x) > df (0) x — | x 2.
x* = df{f))/a is the unconstrained maximum of the lower bound. Since d f (0) G [0, a],
we have x* € [0,1]. Plugging x* into the lower bound yields (<9/(0))2/(2a). ■

98 Appendix

Theorem A .2.3 Assume that at w the convex objective function J : Rd —> R has
bounded subgradient: ||dJ(tu)|| < G, and that the approximation B to the inverse
Hessian has bounded eigenvalues: B A H . Then

£« - £<i+1> >
(6(i))2
8 G2H '

P ro o f Recall that we constrain the form of feasible dual solutions for D ^+1^(a) as in
(A.11). Instead of D ^+b (a), we thus work with the one-diinensional concave quadratic

_ r (i)"
function D^1+1\p) (A. 12). It is obvious that ^ is a feasible solution for D^l+l\o t).

In this case, ZMZ+1)(0) = (A.16) implies that D^l+l\p*) = D^l+1\cx^+1̂).
Using the definition (A. 19) of we thus have

r(0 - e (i+1) > L>(i+1)(a (i+1)) - L >^(aw) = D^i+1\p *) - £>(i+1)(0). (A.37)

It is easy to see from (A.37) that — e^+1 ̂ are upper bounds on the maximal value
of the concave quadratic function f (p) := D^l+1\p) — D^l+l\ 0) with \i G [0,1] and
/(0) = 0. Furthermore, the definitions of D^l+1\p) and f (p) imply that

d f (0) = &D(m)(0) - {gW - g (l+l)Y B g ^ and (A.38)

d2f{p) = d2D(i+1\p) = - {g(i) - g(i+1))T B{g(i) - g{l+D).

Since ||<9J(m)|| < G and g ^ G dJ(w) (A.13), we have — gO+i)|| < 2G. Our
upper bound on the spectrum of B then gives |d/(0)| < 2G2H and \d2f(p)\ < AG2H.
Additionally, Lemma A.2.1 and the fact that B >z 0 imply that

d f{0) = dD^i+1\0) > 0 and d2f(p) = d2D {i+l\p) < 0, (A.39)

which means that

d f (0) G [0, 2G2H] c [0, AG2H] and d2f(/i) > - 4 G2H. (A.40)

Invoking Lemma A.2.2, we immediately get

(<9/(0))2:(0 _ €(i+1) >
8 G2H

(dD^i+1\ 0))2
8 G2H

(A.41)

Since < 0Z)^+1 (̂0) by Lemma A.2.1, the inequality (A.41) still holds when dD^l+l\0)
is replaced with e ^ . ■

(A.38) and (A.39) imply that the optimal combination coefficient p* (A. 15) has the

§A.2 Convergence of the Descent Direction Search 99

property

p* = min
dD(l+1\ 0)

(A.42)

Moreover, we can use (A.7) to reduce the cost of computing p* by setting B g ^ in
(A. 15) to be —p ^ (Line 7 of Algorithm 3.2), and calculate

p* = min
g (i + l) T p { i) _ g (i) T p { i)

g(‘+l)Tß^(i+l) _)_ 2 g(®+l)Tp(i) _ p(i) ’ (A.43)

where JBtg^+l ̂ can be cached for the update of the primal solution at Line 9 of Algo-
rithm 3.2.

To prove Theorem A.2.5, we use the following lemma proven by induction by Abe
et al. (2001, Sublemma 5.4):

Lemma A .2.4 Let {e^\ ê 2\ •••} be a sequence of non-negative numbers satisfying
Vi 6 N the recurrence

€(*) _ e(i+l> > c (e(i))2,

where c € R+ is a positive constant. Then Vi € N we have

6«

We now show that Algorithm 3.2 decreases to a pre-defined tolerance e in 0(1 /e)
steps:

Theorem A .2.5 Under the assumptions of Theorem A .2.3, Algorithm 3.2 converges
to the desired precision e after

1 < t <
8 G2H

steps for any e < 2G2H .

Proof Theorem A.2.3 states that

e(0 _ e(i+i) >
(CW) 2

8 G2H'
(A.44)

100 Appendix

where is non-negative Vi G N by (A.20). Applying Lemma A.2.4 we thus obtain

:(i) < where c
. (< * *) ^

Our assumptions on \\dJ(w)\\ and the spectrum of B imply that

Z)(*+1)(0) = {g{i) - g {i+1))TB g {i) < 2G2H.

(A.45)

(A.46)

Hence < 2G2H by Lemma A.2.1. This means that (A.45) holds with = 2G2H .
Therefore we can solve

e <
1

c (t -\-
with c

1
8 G2H

and e(1) := 2G2H (A.47)

to obtain an upper bound on t such that (Vi > t) e^' < e < 2G2H . The solution to
(A.47) is t < - 4. ■

A .3 S a tis f ia b ili ty o f th e S u b g ra d ie n t W olfe C o n d itio n s

To formally show that there always is a positive step size that satisfies the subgradient
Wolfe conditions (3.17,3.18), we restate a result of Hiriart-Urruty and Lemarechal
(1993, Theorem VI.2.3.3) in slightly modified form:

Lem m a A .3.1 Given two points w ^ w' in Rd, define w v — rjw' + (1 — rf)w. Let
J : Rd —> R be convex. There exists p G (0,1) and g G dJ{wrj) such that

J{w') - J (w) = gT(w' — w) < gT(w' — w),

where g := argsupgeöj (tx;77) gT(w' - w).

T heorem A .3.2 Let p be a descent direction at an iterate w. //4>(77) := J{w + gp) is
bounded below, then there exists a step size 77 > 0 which satisfies the subgradient Wolfe
conditions (3.17, 3.18).

P ro o f Since p is a descent direction, the line J(w)-{-cirj supgedJ^ g p with c\ G (0,1)
must intersect $ (77) at least once at some 77 > 0 (see Figure 2.1 for geometric intuition).
Let rf be the smallest such intersection point; then

J(w + g'p) = J{w) + ci77/ sup g p. (A.48)
gGdJ(w)

§A.4 Global Convergence of SubBFGS 101

Since $(77) is lower bounded, the sufficient decrease condition (3.17) holds for all 77" £
[0,77']. Setting w' = w + 7f p in Lemma A.3.1 implies that there exists an 77" £ (0,77')
such that

J(w + r]'p) — J(w) < r) sup g p. (A.49)
gedJ(w+T)"p)

Plugging (A.48) into (A.49) and simplifying it yields

ci sup g p < sup g p. (A.50)
g £ d J (w) gedJ(w+r]"p)

Since p is a descent direction, swpg£dj(w) g p < 0, and thus (A.50) also holds when ci
is replaced by C2 £ (ci, 1). ■

A .4 G lo b a l C o n v e rg e n ce o f S u b B F G S

There are technical difficulties in extending the classical BFGS convergence proof to the
nonsmooth case. This route was taken by Andrew and Gao (2007), which unfortunately
left their proof critically flawed: In a key step (Andrew and Gao, 2007, Equation 7)
they seek to establish the non-negativity of the directional derivative f'{x) q) of a convex
function / at a point x in the direction q, where x and q are the limit points of convergent
sequences {rrfc} and {qk}K, respectively. They do so by taking the limit for k £ k of

f ' (x k + ötkqk\ qk) > 7 f ' (x k]qk), where {cek} —> 0 and 7 £ (0,1), (A.51)

which leads them to claim that

f'{x-,q) > 7 f ' (x;q) , (A.52)

which would imply f { x \q) > 0 because 7 £ (0,1). However, f ' (x k,qk) does not
necessarily converge to f (x \ q) because the directional derivative of a nonsmooth convex
function is not continuous, only upper semi-continuous (Bertsekas, 1999, Proposition
B.23). Instead of (A.52) we thus only have

f'(x-q) > 7 limsup f \ x k-qk) , (A.53)
k—*oo,kEhi

which does not suffice to establish the desired result: f (x ; q) > 0. A similar mistake is
also found in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced by Birge et al.
(1998) to prove the global convergence of subBFGS (Algorithm 3.1) in objective func-

102 Appendix

Algorithm A .l Algorithm 1 of Birge et al. (1998)
1: Initialize: t := 0 and wo
2: while not converged do
3: Find wt+1 that obeys

j (w t + 1) < J (w t) - a t\\9e't \\2 + et (A.54)
where g€>t e d ^J (w t+i), at > 0, et ,ej > 0.

4: t :— f T 1
5: end while

tion value, i.e . , J(wt) — > inf^ J(w), provided that the spectrum of BFGS’ inverse
Hessian approximation B t is bounded from above and below for all £, and the step size
r)t (obtained at Line 9) is not summable: YleLo dt — oo.

Birge et al. (1998) provide a unified framework for convergence analysis of opti-
mization algorithms for nonsmooth convex optimization, based on the notion of e-
subgradients. Formally, g is called an e-subgradient of J at w iff (Hiriart-Urruty and
Lemarechal, 1993, Definition XI.1.1.1)

(Vu/) J{w') > J{w) + (wr — w)Tg — e, where e > 0. (A.55)

The set of all e-subgradients at a point w is called the e-subdifferential, and denoted
deJ(w). From the definition of subgradient (1.10), it is easy to see that dJ(w) =
doJ(w) C deJ(w). Birge et al. (1998) propose an e-subgradient-based algorithm (Al-
gorithm A.l) and provide sufficient conditions for its global convergence:

Theorem A .4.1 (Birge et al., 1998, Theorem 2.1(iv), first sentence)
Let J : Rd —> Ru{oc} be a proper lower semi-continuous3 extended-valued convex
function, and let {(et,e't ,at,Wt-\-i:ge't)} be any sequence generated by Algorithm A .l
satisfying

oo oo
et < oo and at = oo

t=o t=o

If e't —> 0, and there exists a positive number ß > 0 such that, for all large t,

ß \ \ w t + i - w t \\ < at ||0 £/||, (A.57)

(A.56)

then J(wt) —>• inf^ J(w).

3This means that there exists at least one w G Rd such that J(w) < oo, and that for all w G Md,
J(w) > — oo and J(w) < lim infi-xx, J(wt) for any sequence {mt} converging to w. All objective
functions considered in this paper fulfill these conditions.

§A.4 Global Convergence of SubBFGS 103

We will use this result to establish the global convergence of subBFGS in Theo-
rem A.4.3. Towards this end, we first show that subBFGS is a special case of Al-
gorithm A.l:

Lem m a A .4.2 L e tp t = —B tgt be the descent direction produced by Algorithm 3.2 at a
non-optimal iterate Wt, where Bt f h > 0 and gt E dJ(w t), and let Wt+\ — Wt -F PtPti
where ry > 0 satisfies sufficient decrease (3.17) with free parameter c\ E (0,1). Then
Wt+ 1 obeys (A.54) of Algorithm A .l for at := , et = 0, and e't := gfil — ^) djBtfjt-

P roof Our sufficient decrease condition (3.17) and Corollary A.1.2 imply that

J (w t+1) < J (w t) - ^ g jB tgt (A.58)

< J (w t) - a*||£h||2, where at := (A.59)

What is left to prove is that gt E de/ J(w t+ 1) for an e't > 0. Using gt E d J (w t) and the
definition (1.10) of subgradient, we have

ifi/w) J(w) > J (w t) + (w - w t f g t

= J (w t+1) + (w - w t+i) gt + J (w t) - J (w t+1) + (wt+i - w t) 'g t .
(A.60)

Using w t+i - w t = -T)tB tgt and (A.58) gives

{\/w) J(w) > J (w t+1) + (w - w t+i)Tgt + C- ~ g j B tg t - r]t g lB tgt

= J (w t+i) + (w - w t+i)Tgt - e't ,

where e't := 7 (̂1 — ^) g \B tg t■ Since r/t > 0, c\ < 1, and B t >z h > 0, e[is non-negative.
By the definition (A.55) of e-subgradient, gt E <9€/ J(wt+i). ■

T heorem A .4.3 Let J : Rd —* R u{oo} be a proper lower semi-continuous!3 extended-
valued convex function. Algorithm 3.1 with a line search that satisfies the sufficient
decrease condition (3.17) with c\ E (0,1) converges globally to the minimal value of J ,
provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded above and
below: 3(h, H : 0 < h < H < oo) : (Wt) h ■< Bt r< H

2. the step size r]t > 0 satisfies ht = 00 > anc^

3. the direction-finding tolerance e for Algorithm 3.2 satisfies (A.29).

104 Appendix

P ro o f We have already shown in Lemma A.4.2 that subBFGS is a special case of
Algorithm A.l. Thus if we can show that the technical conditions of Theorem A.4.1
are met, it directly establishes the global convergence of subBFGS.

Recall that for subBFGS at := Cl%h, et — 0, e't 7 (̂1 — gjBtgt, and gt = ge>t .
Our assumption on r]t implies that Ylt =̂ o at = dt — oc, thus establishing
(A.56). We now show that e't —► 0. Under the third condition of Theorem A.4.3, it
follows from the first inequality in (A.27) in Corollary A. 1.2 that

sup gTp t < - \ g [B tgt , (A.61)
g e d J (w t)

where pt = —B tgt , gt 6 dJ(wt) is the search direction returned by Algorithm 3.2.
Together with the sufficient decrease condition (3.17), (A.61) implies (A.58). Now use
(A.58) recursively to obtain

t
J (wt+i) < J(w0) - ^ - ^ V i g j B i g i . (A.62)

1 i=o

Since J is proper (hence bounded from below), we have

OO ^ OG

^ Tji g jB lgl = l _ c ± '52ei < 00 • (A.63)
t—0 2 t=0

Recall that e[> 0. The bounded sum of non-negative terms in (A.63) implies that the
terms in the sum must converge to zero.

Finally, to show (A.57) we use wt+i — Wt = —r]tB tgt , the definition of the matrix
norm: ||ß || := m ax^o , and the upper bound on the spectrum of Bt to write:

\\wt+i - w t \\ = Vt\\Btgt \\ < ^II^IHI^II < VtH\\gt \\. (A.64)

Recall that gt = ge't and at = Cir£ h , and multiply both sides of (A.64) by to obtain
(A.57) with ß : = ■

A .5 SubB F G S C onverges on V arious C oun terexam p les

We demonstrate the global convergence of subBFGS with an exact line search on
various counterexamples from the literature, designed to show the failure to converge
of other gradient-based algorithms.

4We run Algorithm 3.1 with h = 10 8 and e = 10 5.

§A.5 SubBFGS Converges on Various Counterexamples 105

subBFGS

Figure A .l: Optimization trajectory of steepest descent (left) and subBFGS (right) on coun-
terexample (A.65).

A .5.1 C oun terexam ple for S teep est D escen t

The first counterexample (A.65) is given by Wolfe (1975) to show the non-convergent
behaviour of the steepest descent method with an exact line search (denoted GD):

f (x , y) ■■=
by/(9x2 -F 1 by2)

9x + 16)2/1

if x > 12/|,
otherwise.

(A.65)

This function is subdifferentiable along x < 0, y = 0 (dashed line in Figure A.l);
its minimal value (—oo) is attained for x = —oo. As can be seen in Figure A.l (left),
starting from a differentiable point (2,1), GD follows successively orthogonal directions,
he., —V /(x , y), and converges to the non-optimal point (0, 0). As pointed out by Wolfe
(1975), the failure of GD here is due to the fact that GD does not have a global view
of / , specifically, it is because the gradient evaluated at each iterate (solid disk) is not
informative about 9/(0, 0), which contains subgradients (e.g., (9,0)), whose negative
directions point toward the minimum. SubBFGS overcomes this “short-sightedness”
by incorporating into the parameter update (2.5) an estimate B t of the inverse Hessian,
whose information about the shape of / prevents subBFGS from zigzagging to a non-
optimal point. Figure A.l (right) shows that subBFGS moves to the correct region
(x < 0) at the second step. In fact, the second step of subBFGS lands exactly on the
hinge x < 0, y = 0, where a subgradient pointing to the optimum is available.

A .5.2 C oun terexam ple for S teep est Subgradient D escen t

The second counterexample (A.66), due to Hiriart-Urruty and Lemarechal (1993, Sec-
tion VIII.2.2), is a piecewise linear function which is subdifferentiable along 0 < y =

106 Appendix

subGD

x

subBFGS

X

Figure A .2: Optimization trajectory of steepest subgradient descent (left) and subBFGS
(right) on counterexample (A.66).

±3x and x — 0 (dashed lines in Figure A.2):

f (x, y) := max{ —100, ± 2x + 3y, ± 5x + 2y}. (A.66)

This example shows that steepest subgradient descent with an exact line search (de-
noted subGD) may not converge to the optimum of a nonsmooth function. Steepest
subgradient descent updates parameters along the steepest descent subgradient direc-
tion, which is obtained by solving the min-sup problem (3.7) with respect to the Eu-
clidean norm. Clearly, the minimal value of / (—100) is attained for sufficiently negative
values of y. However, subGD oscillates between two hinges 0 < y = ±3x, converging
to the non-optimal point (0,0), as shown in Figure A.2 (left). The zigzagging opti-
mization trajectory of subGD does not allow it to land on any informative position
such as the hinge y — 0, where the steepest subgradient descent direction points to the
desired region (y < 0); Hiriart-Urruty and Lemarechal (1993, Section VIII.2.2) provide
a detailed discussion. By contrast, subBFGS moves to the y < 0 region at the second
step (Figure A.2, right), which ends at the point (100, —300) (not shown in the figure)
where the minimal value of / is attained .

A .5.3 C oun terexam ple for B FG S

The final counterexample (A.67) is given by Lewis and Overton (2008b) to show that the
standard BFGS algorithm with an exact line search can break down when encountering
a nonsmooth point:

f { x , y) max{2|x| + y, 3y}. (A.67)

§A.5 SubBFGS Converges on Various Counterexamples 107

Figure A .3: Optimization trajectory of standard BFGS (left) and subBFGS (right) on coun-
terexample (A.67).

This function is subdifferentiable along x = 0, y < 0 and y — \x\ (dashed lines in Figure
A.3). Figure A.3 (left) shows that after the first step, BFGS lands on a nonsmooth
point, where it fails to find a descent direction. This is not surprising because at a
nonsmooth point w the quasi-Newton direction p := —B g for a given subgradient
g G dJ(w) is not necessarily a direction of descent. SubBFGS fixes this problem by
using a direction-finding procedure (Algorithm 3.2), which is guaranteed to generate
a descent quasi-Newton direction. Here subBFGS converges to / = — oo in three
iterations (Figure A.3, right).

108 Appendix

B ib liography

N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial Learnability of Stochastic Rules
with Respect to the KL-Divergence and Quadratic Distance. IEICE Transactions on
Information and Systems, 84(3):299-316, 2001.

P. K. Agarwal and M. Sharir. Davenport-schinzel sequences and their geometric appli-
cations. In J. Sack and J. Urrutia, editors, Handbook of Computational Geometry,
pages 1-47. North-Holland, New York, 2000.

S.-i. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient
learning for multilayer perceptrons. Neural Computation, 12(6): 1399—1409, 1998.

G. Andrew and J. Gao. Scalable training of A-regularized log-linear models. In Proc.
Inti. Conf. Machine Learning, pages 33-40, New York, NY, USA, 2007. ACM.

J. Basch. Kinetic Data Structures. PhD thesis, Stanford University, June 1999.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

J. R. Birge, L. Qi, and Z. Wei. A general approach to convergence properties of some
methods for nonsmooth convex optimization. Applied Mathematics and Optimiza-
tion,, 38(2): 141—158, 1998.

A. Bordes, L. Bottou, and P. Gallinari. Sgd-qn: Careful quasi-newton stochastic gradi-
ent descent. Journal of Machine Learning Research, 10:1737-1754, July 2009. URL
h t t p :/ / l e o n .b o tto u .o rg /p ap e rs /b o rd es-b o tto u -g a llin a ri-2 0 0 9 .

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor, Online
Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

L. Bottou. Stochastic gradient descent examples on toy problems, 2009. URL h ttp :
/ / le o n .b o tto u . o rg /pro j ects/sgd .

L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004. URL h ttp :/ / le o n .b o t to u .o rg /p a p e rs /
bottou-lecun-2004.

109

110 BIBLIOGRAPHY

L. Bottou and N. Murata. Stochastic approximations and efficient learning. In M. A.
Arbib, editor, The Handbook of Brain Theory and Neural Networks, Second edition,.
The MIT Press, Cambridge, MA, 2002. URL h ttp :/ / le o n .b o tto u .o rg /p a p e rs /
bottou-m urata-2002.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, England, 2004.

M. Bray, E. Koller-Meier, P. Müller, L. V. Gool, and N. N. Schraudolph. 3D hand track-
ing by rapid stochastic gradient descent using a skinning model. In First European
Conference on Visual Media Production (CVMP), pages 59-68, London, 2004.

K. W. Brodlie. An assessment of two approaches to variable metric methods. Mathe-
matical Programming, 12:344-355, 1977.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951-991, January 2003a.

K. Crammer and Y. Singer. A family of additive online algorithms for category ranking.
J. Mach. Learn. Res., 3:1025-1058, February 2003b.

J. E. Dennis and J. J. More. Quasi-Newton methods, motivation and theory. SIAM
Review., 19(l):46-89, January 1977. ISSN 0036-1445 (print), 1095-7200 (electronic).

J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Classics in Applied Mathematics, 1996.

R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York, 1989.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector
machines. In A. McCallum and S. Roweis, editors, ICML, pages 320-327. Omnipress,
2008.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk
minimization. Journal of Machine Learning Research, 10:2157-2192, 2009.

M. Haarala. Large-Scale Nonsmooth Optimization. PhD thesis, University of Jyväskylä,
2004.

R. Hartley and F. Kahl. Optimal algorithms in multiview geometry. In Proc. 8th Asian
Conf. Computer Vision (ACCV), volume 1, pages 13-34, Tokyo, Japan, 2007.

J. Hershberger. Finding the upper envelope of n line segments in 0 (n log n) time.
Information Processing Letters, 33(4): 169-174, December 1989.

BIBLIOGRAPHY 111

J. B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms,
I and II, volume 305 and 306. Springer-Verlag, 1993.

L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia. Overview of biocreative: critical
assessment of information extraction for biology. BMC Bioinformatics, 6(Suppl 1):
SI, 2005.

T. Joachims. Training linear SVMs in linear time. In Proc. ACM Conf. Knowledge
Discovery and Data Mining (KDD). ACM, 2006.

F. Kahl and R. Hartley. Multiple view geometry under the ^ o o -n o rm . IEEE Transactions
on Pattern Abnalysis and Machine Intelligence, 30, in press 2008.

J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier. Introduction to the
bio-entity recognition task at JNLPBA. In Proc. Inti. Joint Workshop on Natural
Language Processing in Biomedicine and its Applications (NLPBA), pages 70-75,
Geneva, Switzerland, 2004.

S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in
natural images. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural
Information Processing Systems 16, 2004.

J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
modeling for segmenting and labeling sequence data. In Proc. Inti. Conf. Machine
Learning, volume 18, pages 282-289, San Francisco, CA, 2001. Morgan Kaufmann.

Y. LeCun, L. Bottou, G. Orr, and K. M
”uller. Efficient backprop. In Neural Networks: Tricks of the trade. Springer, 1998.

Y. J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for clas-
sification. Computational optimization and Applications, 20(l):5-22, 2001.

C. Lemarechal. Numerical experiments in nonsmooth optimization. Progress in Non-
differentiable Optimization, 82:61-84, 1982.

A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS. Technical re-
port, Optimization Online, 2008a. URL h ttp ://w w w .o p tim iza tio n -o n lin e .o rg /
DB_FILE/2008/12/2172.pd f. Submitted to SIAM J. Optimization.

A. S. Lewis and M. L. Overton. Behavior of BFGS with an exact line search on
nonsmooth examples. Technical report, Optimization Online, 2008b. URL http://
www.optimization-online.org/DB_FILE/2008/12/2173.pdf. Submitted to SIAM
J. Optimization.

112 BIBLIOGRAPHY

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503-528, 1989.

L. Luksan and J. Vlcek. Globally convergent variable metric method for convex non-
smooth unconstrained minimization. Journal of Optimization Theory and Applica-
tions., 102(3) :593—613, 1999.

F. Maes, L. Denoyer, and P. Gallinari. Xml structure mapping application to the PAS-
CAL/INEX 2006 XML document mining track. In Advances in XML Information
Retrieval and Evaluation: Fifth Workshop of the INitiative for the Evaluation of
XML Retrieval (INEX'06), Dagstuhl, Germany, 2007.

M. Mpller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6(4):525-533, 1993.

A. Nedic and D. P. Bertsekas. Convergence rate of incremental subgradient algorithms.
In S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and
Applications, pages 263-304. Kluwer Academic Publishers, 2000.

A. Nemirovski. Prox-method with rate of convergence o(l/ t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle
point problems. SIAM J. on Optimization, 15(1):229—251, 2005. ISSN 1052-6234.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):
127-152, 2005.

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
Computation, 35(151):773—782, 1980.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, 1999.

A. I. Rauf and M. Fukushima. A globally convergent BFGS method for nonsmooth
convex optimization. Journal of Optimization Theory and Applications, 104:2000,
1996.

H. E. Robbins and S. Monro. A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400-407, 1951.

E. F. T. K. Sang and S. Buchholz. Introduction to the CoNLL-2000 shared task:
Chunking. In Proc. Conf. Computational Natural Language Learning, pages 127—
132, Lisbon, Portugal, 2000.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Inti.
Conf. Artificial Neural Networks, pages 569-574, Edinburgh, Scotland, 1999. IEE,
London.

BIBLIOGRAPHY 113

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient
descent. Neural Computation, 14(7):1723-1738, 2002.

N. N. Schraudolph and T. Graepel. Combining conjugate direction methods with
stochastic approximation of gradients. In C. M. Bishop and B. J. Frey, editors,
Proc. 9th Inti. Workshop Artificial Intelligence and Statistics, pages 7-13, Key West,
Florida, 2003. ISBN 0-9727358-0-1.

N. N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient learning
with SMD gain vector adaptation. In Y. Weiss, B. Schölkopf, and J. Platt, editors,
Advances in Neural Information Processing Systems, volume 18, pages 1185-1192,
Cambridge, MA, 2006. MIT Press.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for on-
line convex optimization. In M. Meila and X. Shen, editors, Proc. 11th Inti. Conf.
Artificial Intelligence and Statistics (Alstats), volume 2 of Workshop and, Confer-
ence Proceedings, pages 436-443, San Juan, Puerto Rico, 2007. Journal of Machine
Learning Research.

B. Settles. Biomedical named intity recognition using conditional random fields and
rich feature sets. In Proceedings of COLING 200f, International Joint Workshop On
Natural Language Processing in Biomedicine and its Applications (NLPBA), Geneva,
Switzerland, 2004.

B. Settles. ABNER: An open source tool for automatically tagging genes, proteins, and
other entity names in text. Bioinformatics, 21(14):3191- 3192, 2005.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings
of HLT-NAACL, pages 213-220, Edmonton, Canada, 2003. Association for Compu-
tational Linguistics.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear
separability: New relaxations and efficient boosting algorithms. In Proceedings of
COLT, 2008.

J. R. Shewchuk. An introduction to the conjugate gradient method without the ago-
nizing pain, unpublished paper, 1994.

A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le. Bundle methods for machine learn-
ing. In D. Koller and Y. Singer, editors, Advances in Neural Information Processing
Systems 20, Cambridge MA, 2007. MIT Press.

P. Sunehag, J. Trumpf, , S. V. N. Vishwanathan, and N. N. Schraudolph. Variable
metric stochastic approximation theory. In D. van Dyk and M. Welling, editors,

114 BIBLIOGRAPHY

Proc. 12th Inti. Conf. Artificial Intelligence and Statistics (Alstats), volume 5, pages
560-566. Society for Artificial Intelligence and Statistics, 2009.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Sys-
tems 16, pages 25-32, Cambridge, MA, 2004. MIT Press.

C. -H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for
regularized risk minimization. Journal of Machine Learning Research, 11:311-365,
2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. J. Mach. Learn. Res., 6:1453-1484,
2005.

S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated
training conditional random fields with stochastic gradient methods. In Proc. Inti.
Conf. Machine Learning, pages 969-976, New York, NY, USA, 2006. ACM Press.
ISBN 1-59593-383-2.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and vari-
ational inference. Technical Report 649, UC Berkeley, Department of Statistics,
September 2003.

M. K. Warmuth, K. A. Glocer, and S. V. N. Vishwanathan. Entropy regularized
LPBoost. In Y. Freund, Y. L. Györfi, and G. Turan, editors, Proc. Inti. Conf.
Algorithmic Learning Theory, number 5254 in Lecture Notes in Artificial Intelligence,
pages 256-271, Budapest, October 2008. Springer-Verlag.

P. Wolfe. Convergence conditions for ascent methods. SIAM Review, ll(2):226-235,
1969.

P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable func-
tions. Mathematical Programming Study, 3:145-173, 1975.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-Newton
approach to nonsmooth convex optimization problems in machine learning. Technical
Report arXiv:0804.3835, April 2008a. http://arxiv.org/pdf/0804.3835.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-Newton
approach to nonsmooth convex optimization. In A. McCallum and S. Roweis, editors,
ICML, pages 1216-1223. Omnipress, 2008b.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification
methods. Information Retrieval, 4:5-31, 2001.

