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A b strac t

This thesis develops new quasi-Newton optimization methods that exploit the well- 
structured functional form of objective functions often encountered in machine learn-
ing, while still maintaining the solid foundation of the standard BFGS quasi-Newton 
method. In particular, our algorithms are tailored for two categories of machine learn-
ing problems: (1) regularized risk minimization problems with convex but nonsmooth 
objective functions and (2) stochastic convex optimization problems that involve learn-
ing from small subsamples (mini-batches) of a potentially very large set of data.

We first extend the classical BFGS quasi-Newton method and its limited-memory 
variant LBFGS to the optimization of nonsmooth convex problems. This is done in a 
rigorous fashion by generalizing three components of BFGS to subdifferentials: the lo-
cal quadratic model, the identification of a descent direction, and the Wolfe line search 
conditions. We prove that under some technical conditions, the resulting subBFGS 
algorithm is globally convergent in objective function value. We apply the limited- 
memory variant of subBFGS (subLBFGS) to /^-regularized risk minimization with 
the binary hinge loss. To extend our algorithms to the multiclass and multilabel set-
tings, we develop a new, efficient, exact line search algorithm. We prove its worst-case 
time complexity bounds, and show that it can also extend a recently developed bundle 
method to the multiclass and multilabel settings. Moreover, we apply the direction-
finding component of our algorithms to L \-regularized risk minimization with the lo-
gistic loss. In all these contexts our methods perform comparable to or better than 
specialized state-of-the-art solvers on a number of publicly available datasets.

This thesis also provides stochastic variants of the BFGS method, in both full and 
memory-limited forms, for large-scale optimization of convex problems where objective 
and gradient must be estimated from subsamples of training data. The limited-memory 
variant of the resulting online BFGS algorithm performs comparable to a well-tuned 
natural gradient descent but is scalable to very high-dimensional problems. On stan-
dard benchmarks in natural language processing it asymptotically outperforms previous 
stochastic gradient methods for parameter estimation in Conditional Random Fields.
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C hapter 1

Introduction

The goal of most machine learning tasks is to estimate the parameters of a model that 
enable it to generalize from a set of training instances so as to predict correct outputs on 
previously unseen data. For instance, in the example of Figure 1.1, given a set of train-
ing points with their coordinates and the corresponding labels (circles and squares), 
we can estimate the separating boundary (e.g., the solid line) between the two classes 
of training points, and then use this model to predict the class of an unlabeled point 
based on its relative position with respect to the boundary. This example shows that 
the process of learning essentially involves adaptation of a model to a training dataset. 
Increasingly, this process is translated into optimizing a convex objective function that 
measures the performance of the model. The resulting convex optimization problems 
are challenging because they can involve massive datasets, millions of parameters, nons-
mooth functions, and streaming inputs. They often violate common assumptions made 
by conventional optimization methods, such as differentiability (smoothness) of the 
objective function and computational tractability of function (resp. gradient) evalua-
tion. Efficient and scalable optimization methods that are specifically designed for the 
machine learning context are therefore needed.

Although conventional methods often fall short of our requirements, they still serve 
as a good starting point for devising new optimization methods for machine learning. 
Among dominant conventional optimization methods, the BFGS quasi-Newton method 
and its limited-memory variant (LBFGS) are widely regarded as the workhorses of 
smooth nonlinear optimization due to their combination of computational efficiency and 
good asymptotic convergence. We therefore decided to develop analogous quasi-Newton 
methods that are tailored for machine learning. In particular, this thesis focuses on 
two categories of machine learning problems: (1) regularized risk minimization problem 
that is convex but nonsmooth and (2) stochastic optimization problems that involve 
learning from small subsamples of the training data.

1
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Figure 1.1: A simple machine learning problem that involves learning a separating boundary 
(solid line) between two classes of points (circles and squares).

1.1 M otivation

A typical supervised machine learning problem involves a set of training instances that 
consists of n input feature vectors Xi and their corresponding labels Z{. The goal is to 
build a parametrized model with parameter vector w  that can predict correct labels 
on unseen feature vectors. During the learning process, a domain-specific loss function 
l(xiiZi,w)  is used to quantify the discrepancy between the true label and the label 
predicted by the model. The overall performance of the model is then measured by 
an empirical risk R{w)  that involves the summation of loss terms over the entire set 
of training data. In order to generalize the model to unseen data, one can employ 
a regularizer Q(w) that avoids over-fitting the training instances by penalizing com-
plex models. This leads to the following formulation of regularized risk minimization 
problem with an objective function J  : Rd —> R:

J(w)  := \Q(w)  +  R(w),  where (1.1)

1
R{w)  Z(*i, Zi, w).n —'

Z=1

The regularization constant A > 0 is a free parameter trading off the model complexity 
and the empirical performance in terms of the average loss on the training data. Typ-
ically, the regularizer Q,(w) is easy to compute but the empirical risk R(w)  is not, due 
to the presence of a summation over the entire training data. The resulting objective 
function is convex but not necessarily differentiable everywhere. Minimizing J  gives the 
desired parameter w*. The model parametrized by w * is then used to predict labels of 
unseen data. This general framework underlines many problems in machine learning. 
Here we provide two representative examples: L2-regularized risk minimization with
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Figure 1.2: Left: the objective function of a typical regularized risk minimization problem ( 
plotted along a direction) is convex, but zooming into the region around the optimum (center) 
reveals its nonsmooth points. Right: the hinge loss: 1(f) := max(0,1 — /)  (solid line) is 
nonsmooth; the slope of any line that is tangiantial to l at a point (e.g., dashed lines) is a 
subgradient.

the hinge loss and Li-regularized risk minimization with the logistic loss.

Z^-regularized risk minimization uses a quadratic regularizer Q(w) := ^ w Tw, 
where the superscript T denotes transpose. Binary classification as a typical machine 
learning task considers the problem of differentiating between two classes of objects (c/. 
Figure 1.1). A common loss function for binary classification is the (binary) hinge loss

l ( x , z ,w )  := max(0,1 — z w Tx),  (1.2)

which measures the discrepancy between the correct label z € {±1} and the prediction 
given by sign(w Tx).  Obviously, the hinge loss is convex but nonsmooth at points 
where z w Tx  = 1 (Figure 1.2, right). Figure 1.2 (left) provides a one-dimensional view 
of the resulting objective function J: the zoomed-in figure (Figure 1.2, center) shows 
that J  is nonsmooth. This means that many standard optimizers such as conjugate 
gradient (Shewchuk, 1994) and quasi-Newton methods (Nocedal and Wright, 1999) are 
not suitable here because they are not able to deal with nonsmooth functions.

Another popular approach to binary classification is to build a probabilistic clas-
sifier that models a conditional probability of a label z given a feature vector x,  and 
outputs the most likely label as its prediction on a given x. A widely used probabilistic 
model for this task is the log-linear model P(z\x \w)  := 1/(1 + e~zwTx), parametrized 
by w.  During the process of learning, the log-linear model is adapted to assign a 
higher probability to the true label. This is achieved by minimizing the logistic loss 
— In P (z \x ; w) =■ ln(l +  e-2™Ta:), i.e., the negative log-likelihood of the log-linear model. 
The L\ regularizer \\w\\i := Yli=i lwi! is commonly used to enforce sparsity in the so-
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lution w  of dimensionality d, leading to an objective function of the form

1 n
J{w)  := A||m||i + -  Y  ln(l +  e " * ^ ) ,  (1.3)n ' i=1

where the loss is smooth, but the regularizer is nonsmooth at points where w  has zero 
elements. Again, standard optimizers for smooth optimization can not be applied here.

The above examples characterize many machine learning problems which are chal-
lenging to solve in general but are often endowed with very special structure. For 
instance, the nonsmoothness of the example problems arises both due to the presence 
of piecewise linear terms in their objective functions. As will be shown in later chapters, 
leveraging this special structure of the objective function can greatly reduce the com-
plexity of solving the problem. General purpose optimizers like the widely used bundle 
methods (Hiriart-Urruty and Lemarechal, 1993), however, do not take any advantage 
of the special structure inherent to a specific problem. This constrains their potential 
to be applied to a wider range of machine learning problems. This thesis sets out to 
develop new optimization methods that exploit the well-structured functional form of 
objective functions encountered in machine learning. In particular, we are interested 
in regularized risk minimization problems that are convex but nonsmooth.

1.2 B F G S Q u a si-N ew to n  M eth od s

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method (Dennis and 
More, 1977) was invented independently by Broyden, Flecher, Goldfarb, and Shanno in 
the early seventies. It revolutionized smooth nonlinear optimization, and has dominated 
it to this date, due to its superior practical performance. Given a smooth objective 
function J : —> R and a current iterate w t G Rd, BFGS forms a local quadratic
model of J:

Qt(p) ■= J ( w t) + \ p TB t lp  + V J ( w t)Tp, (1.4)

where B t is a symmetric positive definite approximation to the inverse Hessian H of 
J , and V J denotes the gradient. Minimizing Qt(p) gives the quasi-Newton direction

p t := - B tVJ{wt), (1.5)

which is used for the parameter update:

m + 1  = w t + r/tpt, ( 1.6)
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where the step size r]t > 0  controls how far to move in the given direction p t . r]t is 
commonly determined by a line search such that a sufficient decrease in the objective 
value is achieved. In other words, the goal of a line search is to decrease the one-
dimensional function $  of the step size 77:

$ ( 77) : =  J(wt + ppt). (1.7)

There are two kinds of line search strategies: Exact line search finds the optimal step 
size by minimizing $ ( 77) but is only feasible when the functional form of $  is known 
and amenable to efficient minimization (e.g., explicit solution). Inexact line searches, 
on the other hand, only require the access to function and gradient values. They only 
seek to find an “appropriate” step size (quantified in terms of line search conditions, 
e.g., Wolfe conditions (2.7) and (2.8)).

After each parameter update, the B t matrix is modified via the incremental update 

B t + 1 =  ( I  ~ Ptsty J )B t(I  -  PtVtsJ) +  pt8ts j ,  (1.8)

where

s t := w t+i -  w t and y t := V J(w t+i) -  V J(wt) (1-9)

denote the most recent steps along the optimization trajectory in parameter and gra-
dient space, respectively, and pt := (y j s t )~l . The process repeats until the norm of 
the gradient falls below a pre-specified threshold. Note that replacing B t in (1.5) with 
the inverse Hessian H  ̂ 1 recovers the familiar Newton direction (Nocedal and Wright, 
1999). Although Newton’s method has faster rate of convergence (in terms of iteration 
numbers) than BFGS (quadratic vs. super-linear rate), its 0 (d 3) cost of inverting Ht 
can be prohibitive. Unlike Newton’s method, BFGS uses past parameter and gradient 
displacements (1.9) to build an approximation B t to the inverse Hessian, reducing the 
cost per iteration to O(cr).

Liu and Nocedal (1989) proposed a scalable variant of the BFGS method, called 
limited-memory BFGS (LBFGS), for solving high-dimensional problems where the 
0(d2) cost of storing and updating B t would be prohibitive. LBFGS does not maintain 
an approximation matrix to the inverse Hessian. Instead, it approximates the quasi- 
Newton direction (1.5) directly via a recursive procedure (Algorithm 2.3). LBFGS has 
become the algorithm of choice for high-dimensional smooth nonlinear problems, due 
to its scalability and good asymptotic convergence inherited from BFGS.
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1.3 Q u asi-N ew ton  M eth o d s for N o n sm o o th  O p tim ization

There have been some attempts to apply (L)BFGS directly to nonsmooth optimization 
problems in the hope that these dominant algorithms for smooth optimization would 
also perform well on nonsmooth functions that are convex and differentiable almost 
everywhere; otherwise a subgradient (generalized gradient for nonsmooth functions) 
exists. Indeed, it has been noted that in cases where BFGS (resp. LBFGS) does not 
encounter any nonsmooth point, it often converges to the optimum (Lemarechal, 1982; 
Lewis and Overton, 2008a). However, Lewis and Overton (2008b), Luksan and Vlcek 
(1999) and Haarala (2004) also report catastrophic failures of (L)BFGS on nonsmooth 
functions. This has motivated various modifications to BFGS and LBFGS to facilitate 
their use on nonsmooth problems. In what follows, we briefly discuss these modifica-
tions, before introducing our quasi-Newton approach to nonsmooth optimization.

1.3.1 E x istin g  A pproaches

Various modifications to BFGS (resp. LBFGS) (Haarala, 2004; Luksan and Vlcek, 1999; 
Rauf and Fukushima, 1996) have been proposed in order to ensure its convergence on 
nonsmooth problems. A common feature of these modifications is that they require 
repeated evaluation of function (and subgradient) around nonsmooth points (Haarala, 
2004; Luksan and Vlcek, 1999), or in some cases also around smooth points (Rauf 
and Fukushima, 1996) so as to build a faithful local model of the objective function. 
In most machine learning problems, e.g., our targeted regularized risk minimization 
problems, the objective function (and hence its subgradient) sums contributions from 
every instance in a set of training data. When learning on massive datasets with millions 
of training instances, function (resp. subgradient) evaluation is computationally very 
expensive. Therefore, existing extensions of (L)BFGS to nonsmooth problems are not 
suitable for our problems. In contrast to these approaches, we build a local model of 
the objective function from subgradients evaluated only at a single nonsmooth point. 
This can be done very efficiently because the special structure present in our problems 
allows for the exact evaluation of all subgradients at a nonsmooth point.

Another possible way to bypass the complications caused by lack of smoothness of 
an objective function is to work on a smooth approximation instead (Nemirovski, 2005; 
Nesterov, 2005). Although this approach has met with some success in recent years, it 
is unclear how to build a smooth approximation in general. Furthermore, smooth loss 
functions do not preserve sparsity in the solution of a machine learning problem, which 
often leads to good generalization performance on unseen data. This thesis therefore 
focuses on the underlying optimization problems, and not on the modeling issues such 
as the choice of loss function. In what follows we provide a high-level discussion of our 
approach to extend (L)BFGS to nonsmooth objective functions.
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F ig u re  1.3: The gradients of the dashed lines give two subgradients of the function (solid line) 
at its nonsmooth point (the optimum). Adjusting the parameter in the negative direction of 
any of the two subgradients takes us out of the optimality.

1.3.2 Our A pproach

The fundamental reason for the deficiency of (L)BFGS on a nonsmooth function is that 
it may not be able to determine a descent (downhill) direction to decrease the objective 
function value at a non-differentiable point. Although a convex function might not be 
differentiable everywhere, a subgradient always exists (Hiriart-Urruty and Lemarechal, 
1993). Let w  be a point where a convex function J  is finite. Then a subgradient is the 
normal vector to any tangential supporting hyper plane of J  at w. Formally, g is called 
a subgradient of J  at w  if and only if (Hiriart-Urruty and Lemarechal, 1993, Definition 
VI.1.2.1)

(Vti/) J(w ') > J (w ) -I- (w ' — w )Tg. (1-10)

The set of all subgradients at a point is called the subdifferential, and is denoted dJ{w).  
If this set is not empty, then J  is said to be subdifferentiable atw.  If it contains exactly 
one element, fie., dJ{w) — (VJ(w )}, then J  is differentiable at w. Figure 1.2 (right) 
provides the geometric illustration of (1.10).

Recall that BFGS assumes the objective function J  is differentiable everywhere so 
that at the current iterate w t it can construct a local quadratic model (1.4) of J ( wt). 
For a nonsmooth objective function, such a model becomes ambiguous at nonsmooth 
points: replacing the gradient VJ(m^) in (1.4) with different subgradients yields dif-
ferent models. To resolve the ambiguity, we could simply replace the gradient V J ( w t) 
in (1.4) with an arbitrary subgradient gt G dJ(wt ), and minimize this model to obtain 
the quasi-Newton direction p t := —B tgt, which, however, is not necessarily a direction 
of descent. This is essentially caused by the fact that the negative direction of a sub-
gradient need not be a descent direction, as Figure 1.3 illustrates. Formally, a direction
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Pt is a descent direction at a point Wt if and only if

sup g pt < 0. (1.11)
g edJ (w t )

Since pt may not fulfill this condition, it may not be possible for a line search to find 
a valid step size rp > 0. To fix this fundamental modeling problem, we propose a 
new model that takes the supremum over all possible quadratic models generated from 
different subgradients taking the place of the gradient in the BFGS quadratic model 
(1.4). This corresponds to replacing the last term in (1.4) with s u p ^ ^ j^ )  g Tpt-

Having constructed a local model of J , we can minimize it to obtain a direction of 
descent. Minimizing our new model is itself a challenging task due to the presence of 
the supremum over the entire set of subgradients. However, since the nonsmoothness 
in our problem stems only from piecewise linear terms in the objective function, the 
subdifferential is very well structured. Specifically, d J(w t) is a convex and compact 
polyhedron characterised as the convex hull of its extreme points. For instance, all 
subgradients of the piecewise linear function shown in Figure 1.2 (right) form the in-
terval between the gradients of its left and right linear segments. The fact that the 
supremum over a polyhedral set can only be attained at an extreme point (Bertsekas, 
1999, Proposition B.21c) allows us to easily compute supg£dJ(wt) 9TPt- Based on this 
observation, we are able to develop an efficient iterative procedure that is guaranteed 
to produce a quasi-Newton direction that satisfies the descent condition (1.11).

Given a descent direction, we need to find a step size that reduces the objective 
function value in this direction, i.e., reduces the value of the one-dimensional function 
<f> (1.7). Since <f> is simply the objective function J  restricted to a line, the structure of 
J  is preserved in <f>, e.g., if J  is piecewise quadratic, then so is <f>. Using this knowledge, 
we can not only generalize standard inexact line searches to the nonsmooth setting, but 
also develop efficient exact line searches that take into account the structured functional 
form of <f>.

1.4 S tochastic  Q uasi-N ew ton  M ethods

As we have already seen (e.g., in (1.1)), machine learning poses data-driven optimization 
problems in which the objective function involves the summation of loss terms over a 
set of data to be modeled. Classical optimization techniques must compute this sum in 
its entirety for each evaluation of the objective function, respectively its gradient. As 
available datasets grow ever larger, such “batch” (deterministic) optimizers therefore 
become increasingly inefficient. They are also ill-suited for the online (incremental) 
setting, where partial data must be modeled as it arrives.

Stochastic (online) gradient methods, by contrast, work with function and gradient
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estimates obtained from small subsamples (mini-batches) of the data. The stochastic 
approximation of the regularized risk (1.1), for instance, takes the form

J(w,  X)  := Xfl(w) +  -  ^ 2  l (x i , zi ,w)  (1.12)
(® iiZi)&X

where X  is a mini-batch of b training instances (cc*, zi), he., pairs of feature vectors and 
their corresponding correct labels drawn from the set of training data. It has been noted 
(Bottou, 1998) that stochastic methods are generally robust to the nonsmoothness of 
the objective function. Intuitively, this is because we can always take another batch of 
data to avoid landing on the same nonsmooth points.

Since the batch size b in (1.12) is usually much less than the size of the training 
set, function (and hence gradient) evaluation in the stochastic setting is cheap. This 
can greatly reduce computational requirements: on large, redundant datasets, simple 
stochastic gradient descent:

w t+i = w t -  f]tV wJ{wt, X t) (1.13)

routinely outperforms sophisticated second-order batch methods, e.g., LBFGS, by or-
ders of magnitude (Bottou, 2009; Vishwanathan et ah, 2006), in spite of the slow 
convergence of first-order gradient descent. In the stochastic setting the step size r/t is 
commonly decayed over iterations, e.g., by a decay schedule

Vt = ——  ho , (1-14)T + t

where 770, t  > 0 are tuning parameters. Schraudolph (1999, 2002) further accelerates 
stochastic gradient descent through online adaptation of a step size vector.

Attempts to develop more advanced stochastic methods are hampered by the fact 
that core tools of conventional gradient-based optimization, such as line searches and 
Krylov subspaces, are not amenable to stochastic approximation (Schraudolph and 
Graepel, 2003): online implementations of conjugate gradient methods (Mpller, 1993; 
Schraudolph and Graepel, 2003), for instance, have proven largely ineffective.

Natural gradient descent (NG, Amari et ah, 1998) is an online second-order learning 
algorithm that works by incrementally maintaining an approximation to the inverse of

Ex [VwJ (w t, X ) V wJ ( w t , X ) T] (1.15)

(the covariance matrix of the stochastic gradient), which is then used to scale the 
parameter update. While quite effective, NG does not model the curvature (Hessian) 
of the objective function, and requires 0{d2) space and time per iteration to optimize 
a system with d parameters.
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We overcome these limitations by systematically modifying BFGS so as to make it 
amenable to stochastic approximation of gradients. The changes required to get BFGS 
to work well with stochastic approximation fall into three aspects: making do without 
a line search, modifying the update of BFGS’ inverse Hessian approximation (1.8), and 
taking consistent gradient measurements for the calculation of yt in (1.9). Moreover, by 
applying analogous modifications to LBFGS we are able to obtain a stochastic LBFGS 
method.

1.5 Thesis Contributions

The major contributions of this thesis are:

1. We systematically extend the classical quasi-Newton framework for smooth non-
linear optimization to nonsmooth objectives. The resulting quasi-Newton al-
gorithms are amenable to subgradients and proven to converge to the optimal 
objective value. In addition, our algorithms are able to take advantage of the 
polyhedral structure present in the subdifferential of nonsmooth objective func-
tions often encountered in machine learning. This allows our methods to per-
form competitively when benchmarked against state-of-the-art machine learning 
solvers on a range of machine learning problems.

2. We develop new exact line search methods specialized for .^-regularized risk min-
imization with the hinge loss (1.2) and its generalizations to the more challenging 
multiclass and multilabel classification problems. In the multiclass setting the 
class label 2  can take any integer value instead of being restricted to the set {±1}, 
while in the multilabel setting multiple labels can be assigned to one feature vec-
tor, z.e., 2  becomes a set. By exploiting the piecewise linear structure in this class 
of convex but nonsmooth classification problems, our exact line search methods 
efficiently find the optimal step size that minimizes the objective function in a 
given search direction. These line search methods can be used as black-box pro-
cedures to accelerate the convergence of any adaptive classifier whose parameter 
update takes the form of (1.6).

3. Stochastic variants of BFGS and LBFGS are also developed in this thesis. To the 
best of our knowledge, this is the first successful extension of the standard quasi- 
Newton methods to the stochastic setting. Stochastic LBFGS, in particular, is 
significant as the first stochastic gradient algorithm which combines the desirable 
properties of quasi-Newton methods with good scaling to both large datasets and 
large models (z.e., with many parameters).
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1.6 Outline

The rest of this thesis is organized as follows:

• C hapter 2:
This chapter provides an overview of the standard BFGS quasi-Newton method 
and its limited-memory variant (LBFGS). In particular, we describe in detail the 
three building blocks of the BFGS method: (1) the local quadratic model, (2) the 
line search method, and (3) the BFGS inverse Hessian approximation.

• C hapter 3:
We extend standard (L)BFGS to nonsmooth convex optimization. This is done in 
a rigorous fashion by extending key components of BFGS to subdifferentials. We 
then demonstrate the use of the resulting subBFGS (resp. subLBFGS) algorithm 
for regularized risk minimization with various hinge losses for binary, multiclass, 
and multilabel classification tasks.

• C hapter 4:
An extensive empirical evaluation of subLBFGS is carried out in this chapter. We 
compare the performance of subLBFGS with specialized state-of-the-art machine 
learning solvers on Z/2-regularized risk minimization with various hinge losses. We 
also apply the direction-finding component of our algorithm to L \-regularized risk 
minimization with the logistic loss.

• C hapter 5:
We develop stochastic variants of BFGS in both full and memory-limited forms. 
The resulting algorithms demonstrate competitive performance in comparison to 
previous stochastic approaches.

• C hapter 6:
The online LBFGS method is applied to parameter estimation in Conditional 
Random Fields with over 105 parameters, as used in natural language processing.

• C hapter 7:
We conclude with a summary of the thesis and ideas for future work.

1.7 N otation

This section describes notational conventions used throughout this thesis. Scalars are 
denoted by non-bold letters, e.g., x. Vectors are denoted by lowercase boldface letters, 
e.g., x , and matrices by capital boldface letters, e.g., A . We use boldface numbers to 
denote a vector of that number: 1 denotes a vector of all ones and 0 a vector of all
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zeros. Calligraphic letters refer to sets, but we denote the set of natural numbers N, 
the set of integers Z, the set of real numbers R and the set of d-dimensional real vectors 
R d .

Vectors are viewed as column vectors. A superscript T denotes the transpose of 
a vector or matrix. For a vector x  G Rf/, x T is therefore a d-dimensional row vector. 
The inner product of two vectors x , y  G Rd is written as x  y. To denote the zth 
element of a vector x , we use the notation xf, the entry of a matrix A at the zth row 
and the j th column is denoted by Aij. [x\, X2, ■ • ■ , x n] denotes a matrix with columns 
X \ , X2i • • • , x n. For an invertible matrix A, A -1 denotes its inverse. We use / ■< A ■< u 
to express that all eigenvalues of A lie between l and u. We use || • || as a shorthand 
for the Z/2 (Euclidean) norm, z.e., ||cc|| := V r  a:; for a matrix, || • || denotes the matrix 
norm induced by the L2 vector norm, he., ||A|| := m ax ^o  We use || • ||i to
denote the L\ vector norm, he., ||cc||i := \x i\-

If J  is a function, we use the notation J  : A  —► B to indicate that J  is defined 
on a set A, and takes values from a set B. Following the notational conventions in 
convex analysis, we use V J  to denote the gradient of a differentiable function J; if 
J  is non-differentiable, we use dJ  to denote its subdifferential. The expectation of a 
function J(x, y) with respect to a random variable x  is denoted by Ex [J(x, y)]. When 
it is clear which random variable an expectation is taken over, we omit the subscript, 
e.g., E( x x t ).

The “big O” notation O(-) is used in this thesis to characterize the size of a quantity 
or the computational complexity of an algorithm. We write y — O(x) if and only if 
there exists a constant c > 0 such that for any value of x E R, \y\ < cx. For vectors 
and matrices, we use O(-) to quantify their Euclidean norms. For instance, for a vector 
y E Rd, we write y  = O(x) if and only if there exists a constant c > 0 such that 
(Vx G R) \\y\\ < cx.

Subscript t is reserved as an iteration (time) index: Xt means the value of x  at 
iteration t. When there is an iterative sub-procedure within a main iteration, we use 
the superscript (i) to index the sub-iteration: x± denotes the value of xt  after i 
iterations of the sub-procedure.
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C lassical Q uasi-N ew ton  M ethods

In this chapter we review the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton 
method (Dennis and More, 1977) in both its full (Section 2.1) and memory-limited forms 
(Section 2.2). Throughout this chapter we assume the objective function J  : Rd —> R 
is convex, deterministic, and continuously differentiable everywhere. The new quasi- 
Newton methods developed in Chapters 3 and 5 will relax these constraints, while 
maintaining the solid foundation of this classical optimization technique.

2.1 The BFGS Q uasi-Newton M ethod

The BFGS quasi-Newton algorithm (Dennis and More, 1977; Fletcher, 1989; Nocedal 
and Wright, 1999) was invented independently by Broyden, Flecher, Goldfarb, and 
Shanno in the early seventies. It is by far the most successful quasi-Newton method for 
unconstrained smooth nonlinear optimization due to its combination of computational 
efficiency and good asymptotic convergence. In what follows, we review this algorithm 
(Algorithm 2.1), focusing on its three key components, namely, the local quadratic 
model, the line search method, and the inverse Hessian approximation.

2.1.1 Local Q uadratic M odel

Given a continuously differentiable objective function: J : Rd —> R and a current iterate 
Wt € Rd, BFGS forms a local quadratic model of J:

Qt{p) := J{wt) +  \ p l B ~ 1p  +  V J( wt)Tp, (2.1)

where B t is a symmetric positive definite estimate of the inverse Hessian of J (assuming 
that J is twice-differentiable), and V J  denotes the gradient. The quadratic model (2.1) 
can be seen as an approximation to a truncated second-order Taylor expansion of J

13
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A lgorithm  2.1 C l a s s ic a l  BFGS Me t h o d  
1: Initialize: t := 0, B o =  7, and Wq 
2: Set: convergence tolerance e > 0 
3: w hile ||VJ(iat)|| > e do 
4: p t =  - B tV J ( w t)
5: Find r]t that obeys (2.7) and (2.8)
6: s t =  T]tpt
7 : W t + l  = W t +  St

8: yt =  V J ( w t+1) -  V J ( w t)
9: if t = 0 then

10: B f . =  ^ - I
v l  yt

11: end if
12: pt =  ( s j y t) - 1

13: B t + 1 =  {I -  pts ty j ) B t (I  -  ptyts j ) +  pts ts j
14: t :— t 1
15: end w hile

around Wt:

Qt(p) ~  J(wt) +  \  p TH t p  +  \7J(wt)Tp  «  J(Lei +  p), (2.2)

where FT, is the Hessian (second-order derivative of J) at Wt- Taking the derivative of 
(2.1) and setting it to zero give the so-called quasi-Newton direction:

p t := - B tV J (w t), (2.3)

which is always a direction of descent, z.e., along pt the objective function value can 
be decreased. Formally, a direction p e JRrf is a descent direction at an iterate w  if 
and only if it satisfies V J(w)Tp < 0. This is true for the quasi-Newton direction (2.3) 
because

S/J(wt)"pt =  - V J ( w t)T< 0 (2.4)

holds due to the positivity of B t.
Given the quasi-Newton direction pt, BFGS adjusts the parameters by taking a 

step along this descent direction (Lines 6-7 of Algorithm 2.1):

w t+i = w t +  ritPt, (2.5)

where the step size yt > 0 is normally determined by a line search procedure (Line 5 
of Algorithm 2.1, see also Section 2.1.2) that enforces technical conditions to ensure 
global convergence to the optimum of J . The parameter update (2.5) is carried out
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acceptable interval

F igu re  2.1: Geometric illustration of the Wolfe conditions (2.7) and (2.8).

iteratively until the norm of the gradient drops below a pre-specified small tolerance, 
indicating that the solution is within a close neighbourhood of the optimum.

2.1.2 Line Search

Given the current iterate wt and a descent search direction p t, the task of a line search 
is to determine how far to move along the ray: (wt + r)pt) with 77 > 0 to reduce the 
value of the objective function, z.e., reducing the value of the one-dimensional function

$(77) := J(wt + r]pt). (2.6)

Exact line search finds the optimal step size by minimizing $(77) but is only feasible 
when the exact functional form of the objective function (and hence $) is known and 
amenable to efficient minimization. This is, in general, not possible. However, we can 
often do it in machine learning because objective functions (resp. <£) of most machine 
learning problems are explicitly given.

Inexact line searches only require the access to function and gradient values. They 
only seek to minimize (2.6) approximately by enforcing conditions designed to ensure 
convergence. As implemented here (Algorithm 2.1), BFGS uses an inexact line search 
that obeys the Wolfe conditions (Wolfe, 1969):

J(wt+1) < J(wQ + ciTjtVJ(wt)TPt (sufficient decrease) (2-7)

and V J(wt+i) ' Pt > C2V J (w t)TPt-, (curvature) (2.8)

with 0 < ci < C2 < 1. Typical values for ci and C2 are 10~4 and 0.9, respectively. The 
Wolfe conditions facilitate global convergence by guaranteeing a sufficient decrease in 
the value of the objective function and excluding pathologically small step sizes via (2.7)
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and (2.8), respectively (Nocedal and Wright, 1999, Thorem 3.2 and 8.5). Figure 2.1 
illustrates this geometrically.

A natural question to ask is whether the optimal step size 77* obtained by exact 
line search satisfies the Wolfe conditions. The answer is no because depending on the 
choice of ci, 77* may violate the sufficient decrease condition (2.7). For instance, for the 
function plotted in Figure 2.1, we can increase the value of c\ such that the acceptable 
interval for the step size excludes 77*. To prevent this from happening, in practical 
implementations c\ is often set to a small value, e.g., 10~4. On the other hand, the 
curvature condition (2.8) is always satisfied by 77*:

VJ(wt  +  h*Pt)TPt = 0 > J (w t)Tp t (2.9)

because pt is a descent direction (2.4) and the gradient of <f>:

V $( t7) =  V J ( w t + rjpt)Tpt (2.10)

vanishes at 77*.
The most commonly used inexact line search procedure is a backtracking line search 

that obeys the Wolfe conditions. It tries candidate steps of the form rjoßk for k = 
0 ,1 ,2 ,... until (2.7) and (2.8) are satisfied, where 0 < ß < 1 is a decay factor, and 
770 > 0 an initial step size that satisfies the curvature condition (2 .8), he., 770 must not 
be less than the minimal acceptable step size as illustrated in Figure 2.1. Bertsekas 
(1999, Proposition 1.2.1) shows that a backtracking line search that obeys the sufficient 
descent direction (2.7) can already guarantee global convergence to the optimum of a 
convex and smooth objective function, provided that all search directions supplied to 
the backtracking line search are descent directions.

2.1.3 Inverse H essian  A pp roxim ation

The BFGS' symmetric positive-definite approximation B t to the inverse Hessian (cur-
vature) plays a key role in forming the quasi-Newton direction (2.3). It is maintained 
incrementally alongside the parameter update (2.5): as BFGS moves to the new iterate 
Wt+1, it adjusts its quadratic model to

Qt+i{p) ■ =  J(v>t+i) + k P TB^+iP +  VJ(™m )Tp, (2.11)

where the new estimate B t+1 of the inverse Hessian is computed in such a way that 
the gradient of Qt+i  matches the gradient of J  at W t+ \  and wt  (Figure 2.2), z.e.,

VQ(+i(0 ) = VJ(u)f+i) and V Q i + i = VJ(u>t). (2 .12)
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-  -  BFGS Model Qt+1
- ■ - • Objective Function J

Figure 2.2: The gradient of the BFGS quadratic model Qt+i constructed at the new iterate 
Wt+i matches the gradient of the objective function J at wt and wt+\: tangents of Qt+i and 
J  (solid lines) are parallel at wt, and coincide at Wt+i.

It is easy to check that VQ*+i(0) =  VJ(wt+i) holds independent of the exact form of 
Bt+1 - Using the derivative of (2.11) to expand the second equality in (2.12) gives

VJ(u>t+i) -  r j tB ^ p t  = V J ( w t). (2-13)

Rearranging terms in (2.13) gives rise to the so-called secant equation:

B t+iy t = s t, where (2.14)

s t := rjtpt = w t+i -  w t and y t := V J(w t+i) -  V J ( w t) (2.15)

are the most recent steps along the optimization trajectory in parameter and gradient 
space, respectively. A matrix B t+1 that satisfies (2.14) is a good approximation to 
the inverse Hessian of the objective function. To see this, we use Taylor’s theorem 
(Theorem 2.1.1 below) for the gradient of a continuously twice-differentiable function:

T heorem  2.1.1 (Nocedal and Wright, 1999, Theorem 2.1) Let J  : Rd —> R be contin-
uously twice-differentiable and p  6 Rd. Then we have

V J(w  + p) = V J(w)  + f  V2J(ie  + tp) pdt. (2-16)
J o

Simple manipulation of (2.16) gives

V J(w  T p ) -  VJ ( w)  = V 2J(w) p  + [  [V2 J ( w  + tp) -  V2 J(w)] p dt. (2.17)
J o
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Further assume that the Hessian of J is Lipschitz continuous, then the size of the 
integral in (2.17) is 0 ( ||p ||2) (Dennis and Schnabel, 1996, Lemma 4.1.12). Omitting 
the higher order term, we can write

V J(w  + p) — VJ(w)  «  V2 J{w) p, (2.18)

or equivalently

[V2 J(w )]_1 [V J(w  + p) -  X7J{w)} «  p. (2.19)

Comparing (2.19) with (2.14), we can see that B t+\ assumes the role of [V2 J(wt)]~i . 
Another implication of the secant equation (2.14) is that we must have

VtBt+iyt  = s j y t > 0 (2.20)

for any St,yt 7̂  0 since B t+\ must be positive definite. For strongly convex functions, 
Theorem 2.1.2 (below) shows that (2.20) is always true, provided that the norm of St 
is nonzero.

Theorem  2.1.2 (Hiriart-Urruty and Lemarechal, 1993, Theorem VI.6.1.2)
A necessary and sufficient condition for a convex (and possibly nonsmooth) function 
J  : —> R to be strongly convex (with modulus c > 0) on a convex set C is that the
following inequality holds for all W\, W2 £ C:

(92 ~ gi)J (w2 -  Wi) > c \\w2 -  Will2, With gi G dJ(wi),  i =  1,2. (2.21)

On a general smooth convex function we can achieve this by using a line search that 
obeys the curvature condition (2.8). To see this, we rearrange (2.8) to write

[VJ(wt+i) -  J(wt)]T pt > (c2 -  l)\7J(wt)Tp t > 0 with c2 6 (0,1), (2.22)

where the last inequality holds because pt satisfies the descent condition (2.4).
The secant equation (2.14) itself is not enough to determine B t + 1 uniquely. There-

fore, BFGS additionally requires B t + 1 to be as close as possible to its previous iterate 
Bti in the sense that it minimizes a weighted Frobenius norm of the two. This results 
in the following constrained optimization problem in B t+p

minimize \\Bt+i — B t\\w (2.23)

s.t. Bj+ 1= B t+1 , B t+iy t =  su and W s t = y t ,

lrThis means ||V 2J(m +  p)  — V 2J { w )|| <  c||p|| for some Lipschitz constant c >  0.
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A lgorithm  2.2 L i m i t e d -M e m o r y  BFGS (LBFGS)
1: Initialize: t := 0 and Wo
2: Set: convergence tolerance e > 0 and buffer size m > 0 
3: while ||V J(iüt)|| > e do 
4: Compute pt via Algorithm 2.3
5: Find T]t that obeys (2.7) and (2.8)
6: if t > m th en
7: Discard vectors S t - m , Vt -m
8: end if
9: Store s t =  rjtpt

10: Wt+l  = W t +  St
11: Store yt =  V J (w t+i) — WJ(wt)
12: t t 1
13: end while

where the constraint on the weighting matrix W  is justified by using an argument based 
on the invariant property of the weighted Frobenius norm (Fletcher, 1989, Thorem 
3.3.2). The unique solution to (2.23) leads to a rank-two update1’ for B t+\'.

B t + 1 = (I -  PtStyJ)Bt(I -  ptVtsJ) +  pts ts l , where pt := [s] y t)~l . (2.24)

The update (2.24) implicitly enforces the positivity of B t+1 , provided that B t is positive 
definite (Dennis and Schnabel, 1996, Thorem 7.8). Substantial experimental evidence 
has suggested that (2.24) yields the best inverse Hessian approximation, compared 
to other options such as DFP and SRI approximations (Fletcher, 1989; Nocedal and 
Wright, 1999). In terms of practical implementation, the initial approximation B q is 
usually set to the identity matrix, but subsequently scaled by an estimate of the largest 
eigenvalue of the inverse Hessian (Line 10 of Algorithm 2.1).

2.2 T he L im ited-M em ory  BFG S M ethod

Limited-memory BFGS (LBFGS, Algorithm 2.2) is a variant of BFGS designed for 
solving high-dimensional optimization problems where the 0(d2) cost of storing and 
updating B t would be prohibitive (Liu and Nocedal, 1989).

In LBFGS the estimation of the inverse Hessian is based on only the last m steps 
in parameter and gradient space. Unrolling the recursive rank-two update (2.24), we

2The update (2.24) can be written as B t + 1  =  B t +  C , where C  is a rank-two correction matrix in 
the form C  := abT +  6aT; Fletcher (1989, Theorem 3.3.2) provides the exact forms of a and b.
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Algorithm 2.3 LBFGS D i r e c t io n  U pd a t e

1: input buffer size m > 0, current iterate index t > 0, current gradient VJ(iCf), 
and V i = 1,2, . . . ,  min(£, m) : vectors St-i and y t-i from Algorithm 2.2 

2: output quasi-Newton direction p t 
3 : p t := —V J (w t)
4: for i := 1 , 2 , , min(t, m)  : do

Oct —
SJ-rPt

6 : p t := p t -  O tiV t-i
7: end for 
8: if t > 0 then

s I - i  V t - \
9 : p t := -  ------- P t

10: end if
yJ-iVt-i

11: for i := min(t, m ) , . . . ,  2,1 : do 

12: ß yJ-iPt
y j - i s t - i

13: p t := p t +  (oti -  ß )s t—i
14: end for 
15: return p t .

obtain the LBFGS inverse Hessian approximation:

B t + i  — [ A t • • • B q  [ A t —m + 1 ■ ■ '  A t \

+  P t - m + l  [A-t • • • A t_ m + 2 ] St—m + l s t - m + l  [ A t —m+2 ' ' ’ A t \

+  Pt—m+ 2 ' ‘ ' - ^ 4—771+ 3 ] s t - m + 2 5 ^ _ m + 2 [ ^ t —m + 3 ' ' ‘

+  . . .

+ (2.25)

where the auxiliary matrix At is defined as A t := ( /  — ptVtsJ)• It is customary to set 
the initial approximation B o  to a scaled identity matrix, but unlike in BFGS where the 
scaling factor is fixed, here it can vary from iteration to iteration to reflect the latest 
estimate of the largest eigenvalue of the inverse Hessian. Nocedal (1980) shows that 
the product of a matrix of the form (2.25) with a vector can be efficiently computed via 
a recursive procedure. Algorithm 2.3 implements this procedure to obtain the quasi- 
Newton direction —B t V J ( w t ) .  Note that B t is not explicitly used by Algorithm 2.3. A 
standard implementation of LBFGS (Algorithm 2.2) thus omits Lines 4 and 9-13 from 
Algorithm 2.1, maintains a buffer of the last m  parameter and gradient displacement 
vectors, he., V i = 1, 2, . . . ,  min(£, m ) : vectors St-i and yt-i as in (2.15), and replaces 
Line 4 of Algorithm 2.1 with Algorithm 2.3. This reduces the cost from 0 (d 2) to 0(md) 
space and time per iteration, with m  freely chosen (typically between 3 and 20).
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2.3 Summary

We reviewed the standard BFGS quasi-Newton method and its limited-memory variant 
(LBFGS). These two quasi-Newton optimizers are widely considered as the workhorses 
of smooth nonlinear optimization due to their superior practical performance. However, 
their application to nonsmooth optimization has been problematic because their key 
components critically depend on differentiability of the objective function. In the next 
chapter we relax this dependence so as to generalize this framework from smooth to 
nonsmooth nonlinear optimization. In Chapter 5 we then extend (L)BFGS to the 
stochastic setting where optimization is based on approximate function (resp. gradient) 
measurements obtained from small subsamples of the training data.
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C hapter 3

A Q uasi-N ew ton  A pproach  to  
N onsm oo th  C onvex O p tim iza tion

In this chapter we extend the classical BFGS method to nonsmooth convex optimiza-
tion. This is done in a rigorous fashion by generalizing three components of BFGS 
to subdifferentials: the local quadratic model, the identification of a descent direction, 
and the Wolfe line search conditions. We prove that under some technical conditions, 
the resulting subBFGS algorithm is globally convergent in objective function value. We 
demonstrate the use of our algorithms for /^-regularized risk minimization with the 
hinge loss. To extend them to the multiclass and multilabel settings, we also develop 
a new, efficient, exact line search algorithm. Throughout this chapter we assume that 
the objective function J  : —> R is convex.

We first motivate our work by illustrating the difficulties of (L)BFGS on nonsmooth 
functions, and the advantage of incorporating BFGS’ curvature estimate into the pa-
rameter update. In Section 3.2 we develop our optimization algorithms generically, 
before discussing their application to Z/2-regularized risk minimization with the hinge 
loss in Section 3.3. We describe a new efficient algorithm to identify the nonsmooth 
points of a one-dimensional pointwise maximum of linear functions in Section 3.4, then 
use it to develop an exact line search that extends our optimization algorithms to the 
multiclass and multilabel settings (Section 3.5). We compare and contrast our work 
with other recent efforts in this area in Section 3.6, before concluding this chapter with 
a discussion (Section 3.7). Our experimental results on a number of public machine 
learning datasets are presented in Chapter 4.

3.1 M otiva tion

BFGS (resp. LBFGS) works surprisingly well on some nonsmooth problems but is not 
guaranteed to converge (Haarala, 2004; Lewis and Overton, 2008a,b; Luksan and Vlcek, 
1999). Various fixes can be used to avoid this problem, but only in an ad-hoc man-
ner. Therefore, subgradient-based approaches such as subgradient descent (Nedic and

23
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BFGS subBFGS

.01 0.00 0.01

X X

Figure 3.1: Left: the nonsmooth convex function (3.1); optimization trajectory of BFGS with 
inexact line search (center) and subBFGS (right) on this function.

Bertsekas, 2000) or bundle methods (Franc and Sonnenburg, 2008; Joachims, 2006; Teo 
et al., 2010) have gained considerable attention for minimizing nonsmooth objectives. 
Our aim is to develop principled and robust quasi-Newton methods that are suitable 
for solving nonsmooth convex optimization problems in machine learning.

The application of standard (L)BFGS to nonsmooth optimization has been problem-
atic since the quasi-Newton direction generated at a nonsmooth point is not necessarily 
a descent direction. Nevertheless, BFGS’ inverse Hessian estimate can still be used to 
effectively model the shape of a nonsmooth objective; incorporating it into the pa-
rameter update can therefore be beneficial. We discuss these two aspects of (L)BFGS 
to motivate our work on developing new quasi-Newton methods that are amenable to 
subgradients while preserving the fast convergence properties of standard (L)BFGS.

3.1.1 P rob lem s o f (L )B FG S on N o n sm ooth  O bjectives

Smoothness of the objective function is essential for classical (L)BFGS because both 
the local quadratic model (2.1) and the Wolfe conditions (2.7, 2.8) require the existence 
of the gradient V J  at every point. As pointed out by Hiriart-Urruty and Lemarechal 
(1993, Remark VIII.2.1.3), even though nonsmooth convex functions are differentiable 
everywhere except on a set of Lebesgue measure zero, it is unwise to just use a smooth 
optimizer on a nonsmooth convex problem under the assumption that “it should work 
almost surely.” Below we illustrate this on both a toy example and real-world machine 
learning problems.

3.1.1.1 A Toy Example

The following simple example demonstrates the problems faced by BFGS when work-
ing with a nonsmooth objective function, and how our subgradient BFGS (subBFGS) 
method (to be introduced in Section 3.2) with exact line search overcomes these prob-
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lems. Consider the task of minimizing

f ( x , y)  = 10|x| + |y| (3.1)

with respect to x and y. Clearly, f {x, y)  is convex but nonsmooth, with the minimum 
located at (0,0) (Figure 3.1, left). It is subdifferentiable whenever x or y is zero:

We call such lines of subdifferentiability in parameter space hinges.
We can minimize (3.1) with the standard BFGS algorithm, employing a backtrack-

ing line search (Nocedal and Wright, 1999, Procedure 3.1) that starts with a step size 
that obeys the curvature condition (2.8), then exponentially decays it until both Wolfe 
conditions (2.7, 2.8) are satisfied.1 2 The curvature condition forces BFGS to jump across 
at least one hinge, thus ensuring that the gradient displacement vector y t in (2.24) is 
non-zero; this prevents BFGS from diverging. Moreover, with such an inexact line 
search BFGS will generally not step on any hinges directly, thus avoiding (in an ad-hoc 
manner) the problem of non-differentiability. Although this algorithm quickly decreases 
the objective from the starting point (1,1), it is then slowed down by heavy oscillations 
around the optimum (Figure 3.1, center), caused by the utter mismatch between BFGS’ 
quadratic model and the actual function.

A generally sensible strategy is to use an exact line search that finds the optimum 
along a given descent direction (c/. Section 3.3.2.1). However, this line optimum will 
often lie on a hinge (as it does in our toy example), where the function is not differ-
entiable. If an arbitrary subgradient is supplied instead, the BFGS update (2.24) can 
produce a search direction which is not a descent direction, causing the next line search 
to fail. In our toy example, standard BFGS with exact line search consistently fails 
after the first step, which takes it to the hinge at x = 0.

Unlike standard BFGS, our subBFGS method can handle hinges and thus reap the 
benefits of an exact line search. As Figure 3.1 (right) shows, once the first iteration of 
subBFGS lands it on the hinge at x = 0, its direction-finding routine (Algorithm 3.2) 
finds a descent direction for the next step. In fact, on this simple example Algorithm 3.2 
yields a vector with zero x component, which takes subBFGS straight to the optimum 
at the second step.“

3.1 .1 .2  Typical N onsm ooth  O ptim ization  Problem s in M achine Learning

The problems faced by smooth quasi-Newton methods on nonsmooth objectives are 
not only encountered in cleverly constructed toy examples, but also in real-world appli-

1We set ci =  10-3 in (2.7) and C2 = 0.8 in (2.8), and used a decay factor of 0.9.
2This is achieved for any choice of initial subgradient g {l) (Line 3 of Algorithm 3.2).

dxf ( 0, -) =  [-10,10] and dy/(-, 0) =  [-1,1]. (3.2)
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Leukemia ( A =  10 1 )

----- LBFGS-LS
....... LBFGS-ILS
------subLBFGS

1 0"1
CPU Seconds

xl0-i Real — sim ( A =  10 5 )
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....... LBFGS-ILS

subLBFGS

CPU Seconds
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Figure 3.2: Performance of subLBFGS (solid) and standard LBFGS with exact (dashed) and 
inexact (dotted) line search methods on sample L2-regularized risk minimization problems with 
the binary (left and center) and multiclass hinge losses (right). LBFGS with exact line search 
(dashed) fails after 3 iterations (marked as x) on the Leukemia dataset (left).

cations. To show this, we apply LBFGS to /^-regularized risk minimization problems 
(1.1) with binary hinge loss (1.2), a typical nonsmooth optimization problem encoun-
tered in machine learning. For this particular objective function, an exact line search is 
cheap and easy to compute (see Section 3.3.2.1 for details). Figure 3.2 (left Sz center) 
shows the behavior of LBFGS with this exact line search (LBFGS-LS) on two datasets, 
namely Leukemia and Real-sim.3 It can be seen that LBFGS-LS converges on Real-sim 
but diverges on the Leukemia dataset. This is because using an exact line search on a 
nonsmooth objective function increases the chance of landing on nonsmooth points, a 
situation that standard BFGS (resp. LBFGS) is not designed to deal with. To prevent 
(L)BFGS’ sudden breakdown, a scheme that actively avoids nonsmooth points must 
be used. One such possibility is to use an inexact line search that obeys the Wolfe 
conditions. Here we used an efficient inexact line search that uses a caching scheme 
specifically designed for Z/2-regularized hinge loss (c/. end of Section 3.3.2). This im-
plementation of LBFGS (LBFGS-ILS) converges on both datasets shown here but may 
fail on others. It is also slower, due to the inexactness of its line search.

For the multiclass hinge loss (3.40) we encounter another problem: if we follow the 
usual practice of initializing w = 0, which happens to be a non-differentiable point, 
then LBFGS stalls. One way to get around this is to force LBFGS to take a unit step 
along its search direction to escape this nonsmooth point. However, as can be seen 
on the Letter dataset in Figure 3.2 (right), such an ad-hoc fix increases the value of 
the objective above J(0) (solid horizontal line), and it takes several CPU seconds for 
the optimizers to recover from this. In all cases shown in Figure 3.2, our subgradient 
LBFGS (subLBFGS) method (as will be introduced later) performs comparable to or 
better than the best implementation of LBFGS.

3Descriptions of these datasets can be found in Section 4.1.
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Figure 3.3: Performance of subLBFGS, GD, and subGD on sample /^-regularized risk min-
imization problems with the binary (left), multiclass (center), and multilabel (right) hinge 
losses.

3.1 .2  A dvan tage o f Incorporating B F G S ’ C urvature E stim ate

In machine learning one often encounters /^-regularized risk minimization problems 
(1.1) with various hinge losses (1.2, 3.40, 3.55). Since the Hessian of those objective 
functions at differentiable points equals XI (where A is the regularization constant), 
one might be tempted to argue that for such problems, BFGS’ approximation B t to 
the inverse Hessian should be simply set to A-1/ .  This would reduce the quasi-Newton 
direction p t = —B tg t , gt £ dJ(wt)  to simply a scaled subgradient direction.

To check if doing so is beneficial, we compared the performance of our subLBFGS 
method with two implementations of subgradient descent: a vanilla gradient descent 
method (denoted GD) that uses a random subgradient for its parameter update, and an 
improved subgradient descent method (denoted subGD) whose parameter is updated 
in the direction produced by our direction-finding routine (Algorithm 3.2) with B t = 
I.  All algorithms used exact line search, except that GD took a unit step for the 
first update in order to avoid the nonsmooth point wo = 0 (c/. the discussion in 
Section 3.1.1.2). As can be seen in Figure 3.3, on all sample /^-regularized hinge 
loss minimization problems, subLBFGS (solid) converges significantly faster than GD 
(dotted) and subGD (dashed). This indicates that BFGS’ B t matrix is able to model 
the objective function, including its hinges, better than simply setting B t to a scaled 
identity matrix.

We believe that BFGS’ curvature update (2.24) plays an important role in the 
performance of subLBFGS seen in Figure 3.3. Recall that (2.24) satisfies the secant 
condition B t+\y t = St, where St and yt are displacement vectors in parameter and gra-
dient space, respectively. The secant condition in fact implements a finite differencing
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Figure 3.4: BFGS’ quadratic approximation to a piecewise linear function (left), and its 
estimate of the gradient of this function (right).

scheme: for a one-dimensional objective function J  : R —■> R, we have

_  (w + p ) - w  
,+1 V J{w +  p) — V J{w)

(3.3)

Although the original motivation behind the secant condition was to approximate the 
inverse Hessian, the finite differencing scheme (3.3) allows BFGS to model the global 
curvature (z.e., overall shape) of the objective function from first-order information. 
For instance, Figure 3.4 (left) shows that the BFGS quadratic model (2.1) fits a 
piecewise linear function quite well despite the fact that the actual Hessian in this case 
is zero almost everywhere, and infinite (in the limit) at nonsmooth points. Figure 3.4 
(right) reveals that BFGS captures the global trend of the gradient rather than its 
infinitesimal variation, that is, the Hessian. This is beneficial for nonsmooth problems, 
where Hessian does not fully represent the overall curvature of the objective function.

3.2 S ubgrad ien t BFG S M ethod

We modify the standard BFGS algorithm to derive our new algorithm (subBFGS, Al-
gorithm 3.1) for nonsmooth convex optimization. Our modifications can be grouped 
into three areas, which we elaborate on in turn: generalizing the local quadratic model, 
finding a descent direction, and finding a step size that obeys a subgradient reformula-
tion of the Wolfe conditions. We then show that our algorithm’s estimate of the inverse 
Hessian has a bounded spectrum, which allows us to prove its convergence.

4For ease of exposition, the model was constructed at a differentiable point.
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Algorithm  3.1 Subgradient BFGS (subBFGS)
1: Initialize: t := 0, wq  = 0. Bo = I
2: Set: direction-finding tolerance e > 0, iteration limit /cmax > 0, 

lower bound h > 0 on (cf. discussion in Section 3.2.4)

3: Compute subgradient go G dJ(wo)
4: while not converged do
5: p t  =  d e sc e n tD ir e c tio n (<?£, e,/cmax) (Algorithm 3.2)
6: if pt = failure then
7: Return W t

8: end if
9: Find r/t that obeys (3.17) and (3.18) (e.g., Algorithm 3.3 or 3.5)

10; s t =  r]tPt
11: W t + 1 =  W t  +  S t

12: Choose subgradient g t + 1 € dJ{w t+ \) : s j (g t + 1 -  ^ )  > 0
13: V t  ■= 9t+l — 9t
14: Sf :=  s t +  m a x (o , h  -  y t (ensure ^ 7 >h)
15: Update B t + 1 via (2.24) *
16: t :— t -I- 1
17: end while

3 .2 .1  G eneralizing  th e  L ocal Q uadratic M od el

Recall that BFGS assumes that the objective function J  is differentiable everywhere 
so that at the current iterate wt it can construct a local quadratic model (2.1) of 
J (w t). For a nonsmooth objective function, such a model becomes ambiguous at non- 
differentiable points (Figure 3.5, left). To resolve the ambiguity, we could simply replace 
the gradient V J ( w t) in (2.1) with an arbitrary subgradient gt G dJ(wt).  However, 
as will be discussed later, the resulting quasi-Newton direction p t := —B tgt is not 
necessarily a descent direction. To address this fundamental modeling problem, we 
first generalize the local quadratic model (2.1) as follows:

Qt{p) := J{wt) + M t{p), where

M t{p) := \ p  B ~ lp  +  sup g p. (3.4)
ged J( wt )

Note that where J  is differentiable, (3.4) reduces to the familiar BFGS quadratic model 
(2.1). At non-differentiable points, however, the model is no longer quadratic, as the 
supremum may be attained at different elements of dJ(wt)  for different directions p. 
Instead it can be viewed as the tightest pseudo-quadratic fit to J  at Wt (Figure 3.5, 
right).
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Figure 3.5: Left: selecting arbitrary subgradients yields many possible quadratic models 
(dotted lines) for the objective (solid blue line) at a subdifferentiable point. The models were 
built by keeping B t fixed, but selecting random subgradients. Right: the tightest pseudo-
quadratic fit (3.4) (bold red dashes); note that it is not a quadratic.

Having constructed the model (3.4), we can minimize Qt(p),  or equivalently Mt(p):

min ( \ P TB ~lp  +  sup pTp ]  (3.5)
p€Kc y gedJ (w t )  )

to obtain a search direction. We now show that solving (3.5) is closely related to 
the problem of finding a normalized steepest descent direction. A normalized steepest 
descent direction is defined as the solution to the following problem (Hiriart-Urruty 
and Lemarechal, 1993, Chapter VIII):

min J'(wt , p) s.t. |||p||| < 1 , (3.6)
p e R d

where
f ( w t , p) +

ViO T)

is the directional derivative of J  at Wt in direction p, and ||| • ||| is a norm defined 
on Rd. In other words, the normalized steepest descent direction is the direction of 
bounded norm along which the maximum rate of decrease in the objective function 
value is achieved. Using the property: p) =  supgedJ{wt) Q P (Bertsekas, 1999,
Proposition B.24.b), we can rewrite (3.6) as:

min sup g p  s.t. |||p||| < 1. (3.7)
pCRd gEdJ(wt)

If the matrix B t y  0 as in (3.5) is used to define the norm ||| • ||| as

| p | 2 •= P B 1 , (3.8)
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then the solution to (3.7) points to the same direction as that obtained by minimiz-
ing our pseudo-quadratic model (3.5). To see this, we write the Lagrangian of the 
constrained minimization problem (3.7):

L(p ,a ) := a p B ^ lp  — a -f sup g p
g ed J (  w t )

= \ p T(2a B~[l )p — a +  sup g p , (3.9)
g ed J (w t )

where a > 0 is a Lagrangian multiplier. It is easy to see from (3.9) that minimizing the 
Lagrangian function L with respect to p  is equivalent to solving (3.5) with B ^ 1 scaled 
by a scalar 2<a, implying that the steepest descent direction obtained by solving (3.7) 
with the weighted norm (3.8) only differs in length from the search direction obtained 
by solving (3.5). Therefore, our search direction is essentially an unnomalized steepest 
descent direction with respect to the weighted norm (3.8).

Ideally, we would like to solve (3.5) to obtain the best search direction. This is 
generally intractable due to the presence a supremum over the entire subdifferential set 
dJ(wt).  In many machine learning problems, however, dJ(wt)  has some special struc-
ture that simplifies the calculation of that supremum. In particular, the subdifferential 
of all the problems considered in this chapter is a convex and compact polyhedron 
characterised as the convex hull of its extreme points. This dramatically reduces the 
cost of calculating supg^dJ{wt) 9 P since the supremum can only be attained at an 
extreme point of the polyhedral set dJ(wt)  (Bertsekas, 1999, Proposition B.21c). In 
what follows, we develop an iterative procedure that is guaranteed to find a quasi- 
Newton descent direction, assuming an oracle that supplies a rg s u p ^ ^ j^ )  g p  for a 
given direction p  E Rd. Efficient oracles for this purpose can be derived for many 
machine learning settings; we provides such oracles for Z/2-regularized risk minimiza-
tion with the binary hinge loss (Section 3.3.1), multiclass and multilabel hinge losses 
(Section 3.5), and L\ -regularized logistic loss (Section 4.1.4).

3.2 .2  F inding a D escen t D irection

A direction p t is a descent direction if and only if g p t < 0 \/g E dJ(wt)  (Hiriart- 
Urruty and Lemarechal, 1993, Theorem VIII. 1.1.2), or equivalently

sup g pt < 0. (3.10)
g ed J (w t )

For a smooth convex function, the quasi-Newton direction (2.3) is always a descent 
direction because

V J ( w t) p, =  - V J ( w t y B tVJ(wt)  < 0
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Algorithm 3.2 pt = descentD irection(p(1) ,e, kmax)
1: input (sub)gradient p(1) G dJ(w t), tolerance e > 0, iteration limit kmax > 0, 

and an oracle to calculate arg s u p ^ ^ g p  for any given w  and p  
2: output descent direction p t 
3: Initialize: i = 1, g ^  = g^l\  p (1) = —B tg l' l')
4: e/(2) =  arg sup9eaj(u;t) p ' p ( 1 ]
5: gf1) :=r p i 1) 1 g C )  _  pH) 1 p i1)
6: while 1 p^  > 0 or > e) and > 0 and i < kmax do

7: g* := min ( g ( 0 - g (i+1))T B t g (0  <
/ ■ ’  ( g ( i ) - £ / ( !  +  1) ) T B t ( g O ) _ g U + 1 ) ) J  ’ cf (A.43)

8: p l ^ 1) =  (1 -  p*)pW +  p*p(i+1)
9: pb+b =  1 -  u*)p(0 -  / i * B ^ +1); cf. (A.18)

10: pb+2) =  arg supffGaj(lt,t) pTp (i+1)
11: ell+1) minj<(i+1) [plJ)Tplj,+1) — ^(p(J)Tp(J) -f p0+1) 1 p(l+1))]
12: 2 := 2 H- 1
13: end while
14: pt = argminj <i Mt(plJ))
15: if supg€aj(tüt) g p t > 0 then  
16: re tu rn  failure;
17: else
18: re tu rn  p t.
19: end if

holds due to the positivity of B t.

For nonsmooth functions, however, the quasi-Newton direction pt := —Btgt for a 
given gt G dJ(wt) may not fulfill the descent condition (3.10), making it impossible to 
find a step size 77 > 0 that obeys the Wolfe conditions (2.7, 2.8), thus causing a failure 
of the line search. We now present an iterative approach to finding a quasi-Newton 
descent direction.

Our goal is to minimize the pseudo-quadratic model (3.4), or equivalently minimize 
Mt{p). Inspired by bundle methods (Teo et ah, 2010), we achieve this by minimizing 
convex lower bounds of Mt(p) that are designed to progressively approach Mt{p) over 
iterations. At iteration i we build the following convex lower bound on Mt(p):

M t \ p )  :=  \ p  B f lp  A suppU)Tp, (3.11)
j<i

where i , j  G N and g ^  G dJiwt)  Vj < i. Given a pW G the lower bound (3.11) is 
successively tightened by computing

pO^1) argsup gTp^l\  (3-12)
gGdJ(wt)
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such that m [1\ p ) < M[l+l\ p )  < Mt (p) Vp G Rd. Here we set g ^  G dJ(wt) arbitrar-
ily, and assume that (3.12) is provided by an oracle (e.g., as described in Section 3.3.1). 
To solve minp€Rci M ^(p ), we rewrite it as a constrained optimization problem:

min (j^p B ^ lp  + ^j s.t. g r^Tp  < £ Vj < z. (3.13)

This problem can be solved exactly via quadratic programming, but doing so may 
incur substantial computational expense. Instead we adopt an alternative approach 
(Algorithm 3.2) which does not solve (3.13) to optimality. The key idea is to write 
the proposed descent direction at iteration i + 1 as a convex combination of p^> and 
—B tg (Line 9 of Algorithm 3.2); and as will be shown in Appendix A.2, the returned 
search direction takes the form

p t = - B tgu (3.14)

where gt is a subgradient in dJ{wt) that allows pt to satisfy the descent condition 
(3.10). The optimal convex combination coefficient p* can be computed exactly (Line 
7 of Algorithm 3.2) using an argument based on maximizing the dual objective of 
Mt(p); see Appendix A.l for details.

The weak duality theorem (Hiriart-Urruty and Lemarechal, 1993, Theorem XII.2.1.5) 
states that the optimal primal value is no less than any dual value, z.e., if Dt(oc) is 
the dual of Mt(p), then min €Kd Mt{p) > Dt(ot) holds for all feasible dual solutions a . 
Therefore, by iteratively increasing the value of the dual objective we close the gap to 
optimality in the primal. Based on this argument, we use the following upper bound 
on the duality gap as our measure of progress:

:= min p ^  1 g ^'+1  ̂ — i ( p ^  ' + p (?) 1 g ^ )
j<i L

> min Mt(p) -  Dt( a *), (3.15)

where g ^  is an aggregated subgradient (Line 8 of Algorithm 3.2) which lies in the 
convex hull of g ^  G dJ(w t) Vj < z, and a* is the optimal dual solution; equations 
A.19-A.21 in Appendix A.l provide intermediate steps that lead to the inequality in 
(3.15). Theorem A.2.3 (Appendix A.2) shows that is monotonically decreasing, 
leading us to a practical stopping criterion (Line 6 of Algorithm 3.2) for our direction-
finding procedure.

A detailed derivation of Algorithm 3.2 is given in Appendix A.l, where we also prove 
that at a non-optimal iterate a direction-finding tolerance e > 0 exists such that the 
search direction produced by Algorithm 3.2 is a descent direction; in Appendix A.2 we 
prove that Algorithm 3.2 converges to a solution with precision e in 0 ( l/e )  iterations. 
Our proofs are based on the assumption that the spectrum (eigenvalues) of BFGS’
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approximation B t to the inverse Hessian is bounded from above and below. This is a 
reasonable assumption if simple safeguards such as those described in Section 3.2.4 are 
employed in the practical implementation.

3.2 .3  Subgradient Line Search

Given the current iterate w t and a search direction p t , the task of a line search is to 
find a step size 77 > 0 which reduces the objective function value along the ray Wt + gpt, 
i.e., reduces the value of the one-dimensional function <f>(rt/) as defined in (2.6). Using 
the chain rule, we can obtain the subdifferential of <f>

d$(ri) := {g'pt : g e d J ( w t + 7ipt)}. (3.16)

Exact line search finds the optimal step size 77* by minimizing $(77), such that 0 G 
inexact line searches solve (2.6) approximately while enforcing conditions de-

signed to ensure convergence. The original Wolfe conditions, however, require the 
objective function to be smooth; to extend them to nonsmooth convex problems, we 
propose the following subgradient reformulation:

J (wt+i) < J (w t) + ci77t sup g Yp t
g e d J ( w t)

and sup g p t > c2 sup gTp t,
g '£ d J ( w t+ 1 ) g e d J ( w t )

where 0 < c\ < c2 < 1. Figure 3.6 illustrates how these conditions enforce acceptance 
of non-trivial step sizes that decrease the objective function value. In Appendix A.3 we 
formally show that for any given descent direction we can always find a positive step 
size that satisfies (3.17) and (3.18). Moreover, Appendix A.4 shows that the sufficient 
decrease condition (3.17) provides a necessary condition for the global convergence of 
subBFGS.

Employing an exact line search is a common strategy to speed up convergence, 
but it drastically increases the probability of landing on a non-differentiable point (as 
in Figure 3.2, left). In order to leverage the fast convergence provided by an exact 
line search, one must therefore use an optimizer that can handle subgradients, like our 
subBFGS.

Similar to the case of exact line search on smooth objective functions (c/. Sec-
tion 2.1.2), the optimal step size 77* obtained by an exact line search satisfies the 
reformulated Wolfe conditions (resp. the standard Wolfe conditions when J  is smooth) 
may violate the sufficient decrease condition (3.17). The curvature condition (3.18), on

(sufficient decrease) (3.17)

(curvature) (3.18)
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acceptable interval

Figure 3.6: Geometric illustration of the subgradient Wolfe conditions (3.17) and (3.18). Solid 
disks are subdifferentiable points; the slopes of dashed lines are indicated.

the other hand, is always satisfied by 77*, as long as pt is a descent direction (3.10):

sup g p t = sup g > 0 > sup g p t (3.19)
g ' e J { w t +r]*pt) ged${ri*) g e d J ( w t )

because 0  6  d$(rj*).

3.2 .4  B ound ed  Sp ectrum  of B F G S ’ Inverse H essian  E stim ate

Recall from Section 2.1.3 that to ensure positivity of BFGS’ estimate B t of the inverse 
Hessian, we must have (Vi) s] y t > 0. Extending this condition to nonsmooth functions, 
we require

(w t + 1 -  w t)T(gt+1 -  gt) > 0, where gt + 1 <E d J (w t+1) and gt e dJ (w t). (3.20)

By Theorem 2.1.2 if J  is strongly convex and wt+1 ^  w t, then (3.20) holds for any 
choice of gt+i  and gt- For general convex functions, gt+1 needs to be chosen (Line 
12 of Algorithm 3.1) to satisfy (3.20). The existence of such a subgradient is guaranteed 
by convexity of the objective function. To see this, we first use the fact that rgPt — 
Wt+ 1 — Wt and r]t > 0 to rewrite (3.20) as

P t 9 t + i > p j g t , where gt+\ € dJ{wt+\) and gt e d J ( w t). (3.21)

It follows from (3.16) that both sides of inequality (3.21) are subgradients of $ (77) at rg 
and 0, respectively. Furthermore, Theorem 3.2.1 below shows that the subdifferenital 
d<h(r]) is monotonically increasing with 77:

5We found empirically that no qualitative difference between using random subgradients versus 
choosing a particular subgradient when updating the Bt matrix.
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T heorem  3.2.1 (Hiriart-Urruty and Lemarechal, 1993, Theorem 1.4.2.1)
Let 4> be a one-dimensional convex function on its domain, then is increasing in
the sense that g\ < g2 whenever g\ € <72 £ (772), and pi < 772•

Therefore, p] gt+1 can not be less than p j gt for any choice of gt+\ and gt, he.,

inf p j  q > sup p jq .
g £ d J ( w t+i)  g € d J ( w t )

(3.22)

This means that the only case where inequality (3.21) is violated is when both terms 
of (3.22) are equal and in addition

9 t + 1 = arg inf g p t and gt = arg sup gTp t , (3.23)
g e d J { w t+ 1 ) gedJ ( w t )

that is, in this case p j  gt+1 =  p j  gt- To avoid this, we simply need to set gt+1 to a 
different subgradient in dJ(wt+1).

Our convergence analysis for the direction-finding procedure (Algorithm 3.2) as well 
as the global convergence proof of subBFGS in Appendix A.4 require the spectrum of 
B t to be bounded from above and below by a positive scalar:

3 (h, H  : 0 < h < H < 00) : (V£) h ■< B t -< H . (3.24)

From a theoretical point of view it is difficult to guarantee (3.24) (Nocedal and Wright, 
1999, page 212), but based on the fact that B t is an approximation to the inverse 
Hessian H f f 1, it is reasonable to expect (3.24) to be true if

(Vi) 1/H A H t A l/h.  (3.25)

Since BFGS “senses” the Hessian via (2.24) only through the parameter and gradient 
displacements St and y t , we can translate the bounds on the spectrum of Ht into 
conditions that only involve St and yp.

(Vi) ■ > — and , with 0 < h < H < 0 0 . (3.26)
St s t H si y t h

This technique is used in (Nocedal and Wright, 1999, Theorem 8.5). If J  is strongly 
convex and s t ^  0. then by Theorem 2.1.2, there exists an H  such that the left in-
equality in (3.26) holds. On general convex functions, one can skip BFGS’ curvature 
update if ( s j y t/ s j s t) falls below a threshold. To establish the second inequality, we 
add a fraction of y t to St at Line 14 of Algorithm 3.1 (though this modification is never 
actually invoked in our experiments of Chapter 4, where we set h = 10-8 ).
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INEX ( A =  10-6 )

500 1000 1500 2000  2500 3000 3500 4000 
Iterations

CCAT ( A = 1(T6 )

200 400 600 800 1000 1200 1400 1600 
Iterations

Figure 3.7: Convergence of subLBFGS in objective function value on sample /^-regularized 
risk minimization problems with binary (left) and multiclass (right) hinge losses.

3.2 .5  L im ited -M em ory Subgradient B FG S

It is straightforward to implement an LBFGS variant of our subBFGS algorithm: we 
simply modify Algorithms 3.1 and 3.2 to compute all products between Bt and a 
vector by means of the standard LBFGS matrix-free scheme (Algorithm 2.3). We call 
the resulting algorithm subLBFGS.

3.2 .6  C onvergence o f Subgradient (L )B FG S

In Section 3.2.4 we have shown that the spectrum of subBFGS’ inverse Hessian estimate 
is bounded. From this and other technical assumptions, we prove in Appendix A.4 that 
subBFGS is globally convergent in objective function value, i.e., J (w ) —> infw J(w).  
Moreover, in Appendix A.5 we show that subBFGS converges for all counterexam-
ples we could find in the literature used to illustrate the non-convergence of existing 
optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In most of our 
experiments of Section 4.1, we observe that after an initial transient, subLBFGS ob-
serves a period of linear convergence, until close to the optimum it exhibits superlinear 
convergence behavior. This is illustrated in Figure 3.7, where we plot (on a log scale) 
the excess objective function value J(wt ) over its “optimum” J*1' against the itera-
tion number in two typical runs. The same kind of convergence behavior was observed 
by Lewis and Overton (2008a, Figure 5.7), who applied the classical BFGS algorithm 
with a specially designed line search to nonsmooth functions. They caution that the 
apparent superlinear convergence may be an artifact caused by the inaccuracy of the

6Estimated empirically by running subLBFGS for 104 seconds, or until the relative improvement 
over 5 iterations was less than 10- 8 .
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estimated optimal value of the objective.

3.3  S ubB F G S for /^ -R egu larized  B inary  H inge Loss

Many machine learning algorithms can be viewed as minimizing the L2-regularized risk
(1.1) . A loss function commonly used for binary classification is the binary hinge loss
(1.2) . Z/2-regularized risk minimization with the binary hinge loss is a convex but non-
smooth optimization problem; in this section we show how subBFGS (Algorithm 3.1) 
can be applied to this problem.

Let £, Ad, and W index the set of points which are in error, on the margin, and 
well-classified, respectively:

£ := {i 6 {1,2,.. . ,  n} : 1 — Z{WTXi > 0},
A4 := {i E {1, 2 , . . . ,  n} : 1 — Z{WTX{ = 0},

W := {i G {1 ,2 , . . . ,  n} : 1 — ZiWTXi < 0}.

Differentiating (1.1) after plugging in (1.2) then yields

1 , 1
dJ(w) -  A w ---- Y" ßiZiXi = w ----- ßiZiXi,

n n '
(3.27)

i=l ieM .

1 . 1 if i e £,
where w := X w ---- Z{Xi  and ßi  := < [0,1] if i E  A4.

ie£ if iG W

3.3.1 Efficient Oracle for th e  D irection -F in d in g  M eth od

Recall that subBFGS requires an oracle that provides arg supge9J(u,/) g p  for a given 
direction p. For Z/2-regularized risk minimization with the binary hinge loss we can 
implement such an oracle at a computational cost of 0(d \ A4t |), where d is the dimen-
sionality of p and \AAt\ the number of current margin points, which is normally much 
less than n. Towards this end, we use (3.27) to obtain

sup gTp  =  sup U
gedJ ( w t )  ß i , iCMt \  n  i e M t  J

= w t p ----y  inf (ßiZ{Xj p). (3.28)
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A lgorithm  3.3 E x a c t  L in e  S e a rc h  fo r Z/2-R e g u la r iz e d  B in a r y  H in g e  L o ss

1: in p u t w , p , \ , f , and  A / as in (3.30)
2: o u tp u t o p tim a l s tep  size
3: h =  A ||p | |2 , j  :=  1

4: V :=  [(1 -  / ) - / A /<0] (vecto r of subd ifferen tiab le  po in ts Sz zero)
5: 7T =  argsort(77) (indices so rted  by non-descend ing  value of r;)
6: w h ile  rj7Tj < 0 do
7: j : = j  + l
8: en d  w h ile
9: V ■= Vnj/2

10: for i :=  1 to  / . s i z e  do

11: g f 1 if fi +  V A / i  <  1
1 1 0 o therw ise

(value of 6(g) (3.32) for any  77 €  (0,gnj))

12: en d  for
13: q ör A f  /n  — Aw Tp
14: 77 :=  0, q ' 0
15: 9 :=  -Q (value of sup  5 ^ ( 0 ) )
16: w h ile  g < 0 do
17: d  :=  e
18: if  j  > 7r.size th en
19: 77 :=  0 0 (no m ore subd ifferen tiab le  po in ts)
20: break
21: e lse
22: V ■= Vnj
23: en d  if
24: rep ea t

25: f Q - ^ U i / n  
\  g + A f n. /n

if Snj = 1 
o therw ise

(move to  n ex t subd ifferen tiab le  
po in t and  u p d a te  g accord ing ly)

26: 3'-=3 + 1
27: u n til r)n Vnj-i a n d j  <  7r.size
28: g := rjh — q (value of supd^(gnj_ß)
29: en d  w h ile
30: re tu rn  min(77, g'/h) (cf. eq u a tio n  3.35)

Since for a given p  the first term of the right-hand side of (3.28) is a constant, the 
supremum is attained when we set ßi Vz 6 M t  via the following strategy:

ßi  :=
if Zix j p t  > 0, 

if z ^ J p t  < 0.

3.3 .2  Im plem enting  th e  Line Search

The one-dimensional convex function $ (77) :=  J ( w  + r/p) (Figure 3.8, left) obtained by 
restricting J  to a line can be evaluated efficiently. To see this, rewrite (1.1) with the 
hinge loss (1.2) as

J{w)  := ^ ||rc||2 +  — l Tmax(0 , 1 — z  • X w ) , (3.29)
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Figure 3.8: Left: Piecewise quadratic convex function 4> of step size 77; solid disks in the zoomed 
inset are subdifferentiable points. Right: The subgradient of 4»(77) increases monotonically with 
77, and jumps discontinuously at subdifferentiable points.

where 0 and 1 are column vectors of zeros and ones, respectively, • denotes the Hadamard 
(component-wise) product, and z  £ Rn collects correct labels corresponding to each 
row of data in X  [x\ ,X2 , ■ • • , x n]T € Rnxd. Given a search direction p  at a point 
w,  (3.29) allows us to write

^  IM I2 + A 77 w p  +  ||p | | 2 +  -  1 : max [0, (1 -  ( /  +  77 A /) ) ] , (3.30)
2 A n

where /  := z • X w  and A f  := z  ■ Xp.  Differentiating (3.30) with respect to 77 gives 
the subdifferential of <f>:

£ $ ( 77) = A w p  + 77A||p | |2 -  A f , (3.31)
n

where S : R —> Rn outputs a column vector [̂ 1 (77), £2 (77), • • • , 5n(r])]T with

f 1 if fi +  t?A fi < 1 ,
^ ( 77) := i [0,1] if /i +  fjA /i =  1, (3.32)

[ 0  if fi + r]Afi > 1.

We cache /  and A f .  expending 0(nd ) computational effort and using O(n) storage. 
We also cache the scalars | | | i e | |2, A w p,  and | | |p | |2, each of which requires O(d) work. 
The evaluation of 1 — ( /  + 77 A /) , <5(77), and the inner products in the final terms of 
(3.30) and (3.31) all take 0(n)  effort. Given the cached terms, all other terms in (3.30) 
can be computed in constant time, thus reducing the cost of evaluating $ (77) (resp. 
its subgradient) to O(n). Furthermore, from (3.32) we see that <£(77) is differentiable
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step size search direction

target segment

step size search direction

target segment

Figure 3.9: Nonsmooth convex function 4> of step size 77. Solid disks are subdifferentiable 
points; the optimal step 77* either falls on such a point (left), or lies between two such points 
(right).

everywhere except at

rji := (1 -  f i ) / Af i  with A fc ±  0, (3.33)

where it becomes subdifferentiable. At these points an element of the indicator vector 
(3.32) changes from 0 to 1 or vice versa (causing the subgradient to jump, as shown 
in Figure 3.8, right); otherwise S(rj) remains constant. Using this property of <5(77), we 
can update the last term of (3.31) in constant time when passing a hinge point (Line 
25 of Algorithm 3.3). We are now in a position to introduce an exact line search which 
takes advantage of this scheme.

3.3.2.1 Exact Line Search

Given a direction p, exact line search finds the optimal step size 77* := argminT?>0 ^(rj) 
that satisfies 0 G <94>(t7*), or equivalently

inf <9<f>(?7*) < 0 < sup<94>(?7*). (3.34)

By Theorem 3.2.1, sup d >̂(77) is monotonically increasing with 77. Based on this prop-
erty, our algorithm first builds a list of all possible subdifferentiable points and 77 =  0, 
sorted by non-descending value of 77 (Lines 4-5 of Algorithm 3.3). Then, it starts with 
77 = 0, and walks through the sorted list until it locates the “target segment”, an inter-
val [77a, rib] between two subdifferential points with sup<94>(?7a) < 0 and sup d ${r]b) > 0. 
We now know that the optimal step size either coincides with r/b (Figure 3.9, left), or 
lies in (770,775) (Figure 3.9, right). If 77* lies in the smooth interval (7/0,775), then setting
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(3.31) to zero gives

* 6(r]')TA f /n  — A w p
Mr]' <E (77a, 77b).

Otherwise, 77* = 775. See Algorithm 3.3 for the detailed implementation.

(3.35)

3.4  S e g m e n tin g  th e  P o in tw ise  M a x im u m  o f 1-D L in ea r  

F u n c tio n s

The line search of Algorithm 3.3 requires a vector 77 listing the subdifferentiable points 
along the line w  + 77p. and sorts it in non-descending order (Line 5). For an objective 
function like (1.1) whose nonsmooth component is just a sum of hinge losses (1.2), this 
vector is very easy to compute (c/. (3.33)). In order to apply our line search approach 
to multiclass and multilabel losses (Sections 3.5.1 and 3.5.4), however, we must solve a 
more general problem: we need to efficiently find the subdifferentiable points of a one-
dimensional piecewise linear function g : R —> R defined to be the pointwise maximum 
of r lines:

0(77) =  max (bp + 7] CLP), (3.36)
l< p < r

where ap and bp denote the slope and offset of the pth line, respectively. Clearly, g is 
convex since it is the pointwise maximum of linear functions (Boyd and Vandenberghe, 
2004, Section 3.2.3), cf. Figure 3.10(a). The difficulty here is that although g consists 
of at most r line segments bounded by at most r — 1 subdifferentiable points, there are 
r(r — l)/2  candidates for these points, namely all intersections between any two of the 
r  lines. A naive algorithm to find the subdifferentiable points of g would therefore take 
0 ( r 2) time. In what follows, however, we show how this can be done in just 0 (r  log r) 
time. In Section 3.5 we will then use this technique (Algorithm 3.4) to perform efficient 
exact line search in the multiclass and multilabel settings.

We begin by specifying an interval [L,U] (0 < L < U < 00) in which to find 
the subdifferentiable points of g, and set y := b + La, where a =  [ai,a2, • • • , ar] and 
b — [61, &25 • • • , br]. In other words, y contains the intersections of the r lines defining 
0(77) with the vertical line 77 = L. Let 7r denote the permutation that sorts y in non-
ascending order, z.e., p < q ==> ynp > ynq: and let g^  be the function obtained by 
considering only the top q < r lines at 77 = L, i.e., the first q lines in 7r:

Q{q\v )  = max (6^  +  770^ ) . (3.37)
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Algorithm 3.4 Segmenting a Pointwise Maximum of 1-D Linear Functions 
1: input vectors a and b of slopes and offsets

lower bound L, upper bound U , with 0 < L < U < oo 
2: output sorted stack of subdifferentiable points 77 

and corresponding active line indices £
3: y := b +  La
4: 7T := argsort(—y) (indices sorted by non-ascending value of y)
5: 5.push (L, 7Ti) (initialize stack)
6: for q := 2 to y .s ize  do 
7: while not S'.empty do
8; (77, £) := 5.top

9: / b * q  k
Ö-7T q

(intersection of two lines)

10: if L < 77' < 77 or (t)' = L and anq > a )̂ th e n
ll: 5.pop (c/. Figure 3.10(c))
12: else
13: b re a k
14: en d  if
15: en d  w hile
16: if L < v! < U or (77' = L and a7Tq > a )̂ th e n
17: 5.push (77', 7Tq) (c/. Figure 3.10(b))
18: end  if
19: en d  for 
20-, r e tu r n  S

It is clear that q^  = q . Let 77 contain all q' < q — 1 subdifferentiable points of q ^  
in [L, U] in ascending order, and £ the indices of the corresponding active lines, he., 
the maximum in (3.37) is attained for line £j_i over the interval [77̂ _ 1,77̂ ]: 1 7rp«,
where p* = argmax1<p<g(67rp + 77^) for 77 e [77.7 _ 1,77̂ ], and lines 1 and £7 intersect 
at rjj.

Initially we set 770 := L and £0 := the leftmost bold segment in Figure 3.10(a). 
Algorithm 3.4 goes through lines in n  sequentially, and maintains a Last-In-First-Out 
stack S  which at the end of the qih iteration consists of the tuples

(7/0 , Co), (m, £1), • • • , £9') (3-38)

in order of ascending 77*, with (rjq/,£qt) at the top. After r iterations S' contains a sorted 
list of all subdifferentiable points (and the corresponding active lines) of g = g ^  in 
[L,U], as required by our line searches.

In iteration q -f- 1 Algorithm 3.4 examines the intersection 77' between lines ^q> and 
7Tg+i: If 77' > U, line 7rq+\ is irrelevant, and we proceed to the next iteration. If 
r)q/ < rj' < U as in Figure 3.10(b), then line 7t9+i is becoming active at 77', and we simply 
push (77'7t 9 + i )  onto the stack. If 77' <  77̂  as in Figure 3.10(c), on the other hand, then
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(a) Pointwise maximum of lines (b) Case 1 (c) Case 2

Figure 3.10: (a) Convex piecewise linear function defined as the maximum of 5 lines, but 
comprising only 4 active line segments (bold) separated by 3 subdifferentiable points (black 
dots), (b, c) Two cases encountered by our algorithm: (b) The new intersection (black cross) 
lies to the right of the previous one (red dot) and is therefore pushed onto the stack; (c) The 
new intersection lies to the left of the previous one. In this case the latter is popped from the 
stack, and a third intersection (blue square) is computed and pushed onto it.

line 7Tq+i dominates line £q> over the interval (?/, oo) and hence over (jjqi,U] C (77', 0 0 ), 
so we pop (rjq/ ^ qi) from the stack (deactivating line £g/), decrement q\ and repeat the 
comparison.

T heorem  3.4.1 The total running time of Algorithm 3.1+ is O (rlo g r).

P roof Computing intersections of lines as well as pushing and popping from the stack 
require 0(1) time. Each of the r  lines can be pushed onto and popped from the stack 
at most once; amortized over r  iterations the running time is therefore O(r). The time 
complexity of Algorithm 3.4 is thus dominated by the initial sorting of y (i.e., the 
computation of 7r), which takes 0 ( r  logr) time. ■

3.5 SubB FG S for M ulticlass and  M ultilabe l H inge Losses

We now use the algorithm developed in Section 3.4 to generalize the subBFGS method 
of Section 3.3 to the multiclass and multilabel settings with finite label set Z . We 
assume that given a feature vector x  our classifier predicts the label

z* =  argm ax/(ie , x, z), (3.39)
z £ Z

where /  is a linear function of w, i.e., f ( w . x , z ) =  w'(p(x, z ) for some feature map 
H x ,z).

3.5.1 M ulticlass H inge Loss

A variety of multiclass hinge losses have been proposed in the literature that generalize 
the binary hinge loss, and enforce a margin of separation between the true label Z{
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and every other label. We focus on the following rather general variant (Taskar et ah, 
2004) :7

l ( x i ,Z i , w) := max[A(z,Zi)  + f ( w , X i , z )  -  f (w,Xi ,Zi)],  (3.40)
zGZ

where A (z, Zi) > 0 is the label loss specifying the margin required between labels z and 
Z{. For instance, a uniform margin of separation is achieved by setting A (z,z' ) := t  >  

OMz 7  ̂ z’ (Crammer and Singer, 2003a). By requiring that Vz € Z  : A (z,z) = 0 we 
ensure that (3.40) always remains non-negative. Adapting (1.1) to the multiclass hinge 
loss (3.40) we obtain

A 1 xn A
J(w)  := — H^ll2 + -  V  max[A(z,2j) +  f ( w , X i , z )  -  f (w,Xi ,Zi)].  (3 .41) 2 n 1 zezi—1

For a given -m, consider the set

Z \  := argmax[A(z, Zi) + f {w,  z) -  f ( w , Xi, Zi)\ (3.42)
zEZ

of maximum-loss labels (possibly more than one) for the 2th training instance. Since 
f ( w , x , z )  = tx;T0(cc,z), the subdifferential of (3.41) can then be written as

dJ(w)  

with ßifZ

Xw  +  “
i = l  z E Z

( [0,1] i l z e z ;  1 
0 otherwise

Xz,Zi S.t • ßi , z  — 0,
zEZ

(3.43)

(3.44)

where 6 is the Kronecker delta: 6a^ = 1 if a = b, and 0 otherwise.''

3.5 .2  Efficient M ulticlass D irection -F in d in g  O racle

For L2-regularized risk minimization with multiclass hinge loss, we can use a similar 
scheme as described in Section 3.3.1 to implement an efficient oracle that provides 
argsupg<EdJ(w)  Q P f°r direction-finding procedure (Algorithm 3.2). Using (3.43),

7Our algorithm can also deal with the slack-rescaled variant of Tsochantaridis et al. (2005).
8Let l* := maxz^ Zi[A(z, Z i )  + f ( w , X i ,  z) — f ( w , X i ,  Z i ) } .  Definition (3.44) allows the following values

of ß i,z -

Z —  Z i 2 e z *  \{2i} otherwise
i* < 0 0 0 0
l* = 0 [ - 1, 0 ] [0 , 1] 0
1 * >  0 -1 [0 , 1] 0

s.t. ^  ß i , z = 0. 
zez
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we can write

1  "

sup g p  = AwTp + -Y ] Y] sup (ßiiZ(p{xl,z)Tp) . (3.45)
g edJ (w )  n  i = l  z e Z  ßi,z

The supremum in (3.45) is attained when we pick, from the choices offered by (3.44),

ßi,z := <5z,z* ~ <5z,Zi, where z* := argmax0 (cc;, z f p .
zez*

3.5.3 Im plem enting th e  M ulticlass Line Search

Let <£(77) := J(w gp) be the one-dimensional convex function obtained by restricting 
(3.41) to a line along direction p. Letting Qi{g) l(x{ , z*, w  + gp), we can write

$fa) =  ^ I M | 2 + XgwTp +  —̂ - ||p ||2 +  ^ 5 ^ 0 *  fa). (3-46)
72 * = i

Each Qi{g) is a piecewise linear convex function. To see this, observe that

f (w  4- gp , x, z)  := (m + gp)T(J)(x, z) = /(ic , x, z) + gf(p,  x , z) (3.47)

and hence

ftfa) := max [A(z, z») +  /(«>, *», z) -  /fau, *», z*) + g (/(p . «*, z) -  /(p , a*, z»))], 
zez '----------------------- ------------------------ '  '----------------- -̂----------------'

(i)

(3.48)

which has the functional form of (3.36) with r =  \Z\. Algorithm 3.4 can therefore 
be used to compute a sorted vector rpl> of all subdifferentiable points of Qi ( g )  and 
corresponding active lines in the interval [0, 0 0 ) in 0(\Z \ log \Z\) time. With some 
abuse of notation, we now have

g e  [ri j \gjh]  = >  Qi{g) =  ^ ( 0  + ga^)-  (3.49)

The first three terms of (3.46) are constant, linear, and quadratic (with non-negative 
coefficient) in 77, respectively. The remaining sum of piecewise linear convex functions 
Qi { g )  is also piecewise linear and convex, and so $ (77) is a piecewise quadratic convex 
function.
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A lgorithm  3.5 Exact Line Search for Z/2-Regularized Multiclass Hinge Loss
1: input base point m, descent direction p, regularization parameter A, vector a of

all slopes as defined in (3.48), for each training instance i: sorted stack S i  of 
subdifferentiable points and active lines, as produced by Algorithm 3.4

2: output optimal step size
3: a :=  a /n , h  :=  A||p||2
4: q  := Aw Tp

5: for i 1 to n do
6: w hile not S i .empty do
7: R i  .push S'*.pop (reverse the stacks)
8: end w hile
9: a,a*oifII

10: Q := Q +  %
11: end for
12: V ■= 0 , q ' = 0
13: 9  := Q (value of supö4>(0))
14: w hile g  <  0 do
15: g ' :=  g

16: if Vi : R i .empty then
17: 77 := 00 (no more subdifferentiable points)
18: break
19: end if
20: I  := argmin1<i<n 77' : ( 7 / ,  •) =  ^ .to p (find the next subdifferentiable point)
21: Q Q ~  S i e i  a Zi
22: 2  := {& : (r/,&) := ft*.pop, i € 1 }
23: Q :=  Q +
24: g  :=  g - \ - r ] h (value of sup<9<f>(77))
25: end while
26: return min(77, — g '/h )

3.5.3.1 E xact M ulticlass Line Search

Our exact line search employs a similar two-stage strategy as discussed in Section 3.3.2.1 
for locating its minimum 77* := argmin7?>0 $(77): we first find the first subdifferentiable 
point 77 past the minimum, then locate 77* within the differentiable region to its left. 
We precompute and cache a vector of all the slopes (offsets b ^  are not needed), 
the subdifferentiable points 77^  (sorted in ascending order via Algorithm 3.4), and the 
corresponding indices ^  of active lines of Q\ for all training instances 7, as well as 
||m ||2 mTp, and A||p||2.

Since $(77) is convex, any point 77 < 77* cannot have a non-negative subgradient. !

9If < £ ( 7 7 )  has a flat optim al region, we define 7 7 *  to be the infimum of th a t region.
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The first subdifferentiable point 77 > 77* therefore obeys

77 := min 77 G {rj^\ i = 1, 2 , . . . ,  n} : rj > 77*

= min 77 G {77^, i — 1, 2 , . . . ,  n} : sup d$>(rj) > 0. (3.50)

We solve (3.50) via a simple linear search: Starting from 77 =  0, we walk from one 
subdifferentiable point to the next until sup <9$(77) > 0. To perform this walk effi-
ciently, define a vector 7/7 G Nn of indices into the sorted vector 77^  resp. initially
7/7 := 0. indicating that (Vi) 77g = 0 .  Given the current index vector 7/7, the next
subdifferentiable point is then

^  — where i, =  argmin77((̂ )i+1); (3.51)

the step is completed by incrementing 7/y , i.e., t/v  := i\)p +  1 so as to remove 77̂  ' from 
future consideration.i! Note that computing the argmin in (3.51) takes O(logn) time 
(e.77., using a priority queue). Inserting (3.49) into (3.46) and differentiating, we find 
that

1 ^
sup <9 4> (77') — At j/ p  + A?7/ ||p | | 2 H— 7  a (i). (3.52)

nt{ £*

The key observation here is that after the initial calculation of supd4>(0) =  \w  p  + 
n a (̂0 f°r 77 =  0, the sum in (3.52) can be updated incrementally in constant time
through the addition of a (ip — a pp (Lines 20-23 of Algorithm 3.5).

S q/  M V y-i)
/  * / \

Suppose we find 77 = j for some %'. We then know that the minimum 77* is either 
equal to 77 (Figure 3.9, left), or found within the quadratic segment immediately to its 
left (Figure 3.9, right). We thus decrement 7/y (i.e., take one step back) so as to index 
the segment in question, set the right-hand side of (3.52) to zero, and solve for 77' to 
obtain

/  k T P + ;E S = i“f(o \
V- = min -------- ----- SL j . (3.53)

This only takes constant time: we have cached w p  and A||p||2, and the sum in (3.53)
can be obtained incrementally by adding a (ip — a (ip to its last value in (3.52).

S y  V v y + i)
To locate 77 we have to walk at most 0(n\Z \) steps, each requiring O(logn) com-

putation of argmin as in (3.51). Given 77, the exact minimum 77* can be obtained in

10For ease of exposition, we assume i in (3.51) is unique, and deal with multiple choices of i' in 
Algorithm 3.5.
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0(1). Including the preprocessing cost of 0(n\Z\  log \Z\) (for invoking Algorithm 3.4), 
our exact multiclass line search therefore takes O (n\Z\ (log n\Z\)) time in the worst 
case. Algorithm 3.5 provides an implementation which instead of an index vector if; 
directly uses the sorted stacks of subdifferentiable points and active lines produced by 
Algorithm 3.4. (The cost of reversing those stacks in Lines 6-8 of Algorithm 3.5 can 
easily be avoided through the use of double-ended queues.)

3.5 .4  M u ltilab el H inge Loss

Recently, there has been interest in extending the concept of the hinge loss to multilabel 
problems. Multilabel problems generalize the multiclass setting in that each training 
instance Xi is associated with a set of labels Zi  C Z  (Crammer and Singer, 2003b). For 
a uniform margin of separation r, a hinge loss can be defined in this setting as follows:

l ( x i ,Z i ,w ) := max[0, r  +  max f (w ,  Xj, z') — min f (w ,  Xi, z)]. (3.54)
z'<£Zi z e Z i

We can generalize this to a not necessarily uniform label loss A (zf, z) > 0 as follows:

l (x i ,Z i ,w )  := max [A(z', z) +  f (w,  x {, z )  -  f ( w,  x i: z)\, (3.55)
Cz,z '); zeZi 
z ' t Z i \ { z }

where as before we require that A(z, z) = 0 Vz 6 Z  so that by explicitly allowing z' = z 
we can ensure that (3.55) remains non-negative. For a uniform margin A (z' ,z) = 
t  \/z' ^  z our multilabel hinge loss (3.55) reduces to the decoupled version (3.54), 
which in turn reduces to the multiclass hinge loss (3.40) if Zi := {Zi} for all i.

For a given w , let

Z* := argmax [A(z , z) +  f (w,  *», z )  — f (w,  Xi, z)\ (3.56)
( 2 , 2 ' ) :  z E Zi
z't Z i \ { z }

be the set of worst label pairs (possibly more than one) for the 2th training instance. 
The subdifferential of the multilabel analogue of Z/2-regularized multiclass objective 
(3.41) can then be written just as in (3.43), with coefficients

:= Yi fz’l -  Y ffz' . where (v*) Y ft' = 1 and fzf ^  °- (3-57)
z':(z',z)eZ* z ':(z ,z ')eZ* (z , z ' ) e Z *

Now let (Zi,z[) argmax(2 2/̂ eZ* [(f>(xi, z1) — cf)(xi,z)]Tp  be a single steepest worst
label pair in direction p. We obtain arg supgeg g p  for our direction-finding pro-
cedure by picking, from the choices offered by (3.57), 7 ^ ,  := ^z,Z i ■

Finally, the line search we described in Section 3.5.3 for the multiclass hinge loss
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can be extended in a straightforward manner to our multilabel setting. The only caveat 
is that now Qiirf) := Z(ccj, Z ^ w  + r/p) must be written as

6i(v) '■= m a x  [ A ( z ' , z )  +  f ( w , X i , z ' )  -  f ( w , X i , z )  +  r ] ( f ( p , Xi , z ' )  -  f ( p , X i , z ) ) \ .
(z . z  z P Z ,  ^  s  n  s

In the worst case, (3.58) could be the piecewise maximum of 0( \Z \2) lines, thus increas-
ing the overall complexity of the line search. In practice, however, the set of true labels 
Z{ is usually small, typically of size 2 or 3 (c/. Crammer and Singer, 2003b, Figure 3). 
As long as Vz : \Z{\ — 0(1), our complexity estimates of Section 3.5.3.1 still apply.

We discuss related work in two areas: nonsmooth convex optimization and the problem 
of segmenting the pointwise maximum of a set of one-dimensional linear functions.

3.6.1 N on sm ooth  C onvex O ptim ization

There are three main approaches to nonsmooth convex optimization: quasi-Newton 
methods, bundle methods,and smooth approximation. We discuss each of these briefly, 
and compare and contrast our work with the state of the art.

3 .6 .1 .1  N o n sm o o th  Q u a si-N ew to n  M eth o d s

These methods try to find a descent quasi-Newton direction at every iteration, and in-
voke a line search to minimize the one-dimensional convex function along that direction. 
We note that the line search routines we describe in Sections 3.3-3.5 are applicable to 
all such methods. An example of this class of algorithms is the work of Luksan and 
Vlcek (1999), who propose an extension of BFGS to nonsmooth convex problems. Their 
algorithm samples subgradients around non-differentiable points in order to obtain a 
descent direction. In many machine learning problems evaluating the objective function 
and its (sub)gradient is very expensive, making such an approach inefficient. In con-
trast, given a current iterate wt,  our direction-finding routine (Algorithm 3.2) samples 
subgradients from the set dJ(wt ) via the oracle. Since this avoids the cost of explicitly 
evaluating new (sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, the Orthant- 
Wise Limited-memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizing

(z, z ' ) :  z E Z i  
z ' t  Z i \ { z }

(3.58)

3.6 R ela ted  W ork
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L\ -regularized log-linear models:

1 n
J(w ):= A|| w j| i + -  Yl ln(1 +  e“2‘ •), (3-59)

U i=l
logistic loss

where the logistic loss is smooth, but the regularizer is only subdifferentiable at points 
where w  has zero elements. From the optimization viewpoint this objective is very 
similar to Z/2-regularized hinge loss; the direction finding and line search methods that 
we discussed in Sections 3.2.2 and 3.2.3, respectively, can be applied to this problem 
with slight modifications.

OWL-QN is based on the observation that the L\ regularizer is linear within any 
given orthant. Therefore, it maintains an approximation B ow to the inverse Hessian 
of the logistic loss, and uses an efficient scheme to select orthants for optimization. In 
fact, its success greatly depends on its direction-finding subroutine, which demands a 
specially chosen subgradient gow (Andrew and Gao, 2007, Equation 4) to produce the 
quasi-Newton direction, pow = n(p.govf), where p  := —B owgow and the projection n 
returns a search direction by setting the ith element of p  to zero whenever Pigfw > 0. As 
shown in Section 4.1.4, the direction-finding subroutine of OWL-QN can be replaced by 
our Algorithm 3.2, which makes OWL-QN more robust to the choice of subgradients.

3.6.1.2 B undle M ethods

Bundle method solvers (Hiriart-Urruty and Lemarechal, 1993) use past (sub)gradients 
to build a model of the objective function. The (sub)gradients are used to lower-bound 
the objective by a piecewise linear function which is minimized to obtain the next 
iterate. This fundamentally differs from the BFGS approach of using past gradients to 
approximate the (inverse) Hessian, hence building a quadratic model of the objective 
function.

Bundle methods have recently been adapted to the machine learning context, where 
they are known as SVMStruct (Tsochantaridis et ah, 2005) resp. BMRM (Smola et ah, 
2007). One notable feature of these variants is that they do not employ a line search. 
This is justified by noting that a line search involves computing the value of the ob-
jective function multiple times, a potentially expensive operation in machine learning 
applications.

Franc and Sonnenburg (2008) speed up the convergence of SVMStruct for L2- 
regularized binary hinge loss. The main idea of their optimized cutting plane algo-
rithm, OCAS, is to perform a line search along the line connecting two successive 
iterates of a bundle method solver. Recently they have extended OCAS to multiclass 
classification (Franc and Sonnenburg, 2009). Although developed independently, their



52 A Quasi-Newton Approach to Nonsmooth Convex Optimization

line search methods for both settings are very similar to the methods we describe in 
Sections 3.3.2.1 and 3.5.3.1, respectively. In particular, their line search for multiclass 
classification also involves segmenting the pointwise maximum of r 1-D linear functions 
(c/. Section 3.4), though the 0 ( r 2) time complexity of their method is worse than our 
0(r  logr).

3.6.1.3 Smooth Approximation

Another possible way to bypass the complications caused by the nonsmoothness of an 
objective function is to work on a smooth approximation instead — see for instance 
the recent work of Nesterov (2005) and Nemirovski (2005). Some machine learning 
applications have also been pursued along these lines (Lee and Mangasarian, 2001; 
Zhang and Oles, 2001). Although this approach can be effective, it is unclear how to 
build a smooth approximation in general. Furthermore, smooth approximations often 
sacrifice dual sparsity, which often leads to better generalization performance on the 
test data, and also may be needed to prove generalization bounds.

3.6 .2  Segm enting th e  P ointw ise M axim um  o f 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximum of a 
given set of line segments has received attention in the area of computational geometry; 
see Agarwal and Sharir (2000) for a survey. Hershberger (1989) for instance proposed 
a divide-and-conquer algorithm for this problem with the same time complexity as our 
Algorithm 3.4. The Hershberger (1989) algorithm solves a slightly harder problem 
his function is the pointwise maximum of line segments, as opposed to our lines — but 
our algorithm is conceptually simpler and easier to implement.

A similar problem has also been studied under the banner of kinetic data structures 
by Basch (1999), who proposed a heap-based algorithm for this problem and proved 
a worst-case 0(r  log2 r) bound, where r is the number of line segments. Basch (1999) 
also claims that the lower bound is O (rlogr); our Algorithm 3.4 achieves this bound.

3.7  D iscu ss io n

We proposed subBFGS (resp. subLBFGS), an extension of the BFGS quasi-Newton 
method (resp. its limited-memory variant) for handling nonsmooth convex optimization 
problems, and proved its global convergence in objective function value. We demon-
strated the use of our algorithm on a variety of machine learning problems employing 
Z/2-regularized binary hinge loss and its multiclass and multilabel generalizations.

Our solver is easy to parallelize: The master node computes the search direction 
and transmits it to the slaves. The slaves compute the (sub)gradient and loss value on
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subsets of data. This information is then aggregated at the master node, and used to 
compute the next search direction before the process repeats. Similarly, the line search, 
which is the expensive part of the computation on multiclass and multilabel problems, 
is easy to parallelize: the slaves run Algorithm 3.4 on subsets of the data; the results 
are fed back to the master who can then run Algorithm 3.5 to compute the step size.

Our algorithms rely on an efficient exact line search. We proposed such line searches 
for the binary hinge loss and its generalizations to the multiclass and multilabel settings. 
The exact line searches for the multiclass and multilabel hinge losses are based on a 
conceptually simple yet optimal algorithm to segment the pointwise maximum of lines. 
A crucial assumption we had to make is that the number \Z\ of labels is manageable 
since it takes 0(\Z\log\Z\)  time to identify the hinges associated with each training 
instance. In certain structured prediction problems (Tsochantaridis et al., 2005) which 
have recently gained prominence in machine learning, the set Z  could be exponentially 
large — for instance, predicting binary labels on a chain of length n produces 2n possible 
labels. Clearly, our line searches are not efficient in such cases.

Finally, to put our contributions in perspective, recall that we modified three as-
pects of the standard BFGS algorithm, namely the quadratic model (Section 3.2.1), 
the descent direction finding (Section 3.2.2), and the Wolfe conditions (Section 3.2.3). 
Each of these modifications is versatile enough to be used as a component in other 
nonsmooth optimization algorithms. This not only offers the promise of improving ex-
isting algorithms, but may also help clarify connections between them. We hope that 
our research will focus attention on the core subroutines that need to be made more 
efficient in order to handle larger and larger datasets.
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SubL B FG S for N onsm oo th  
C onvex O p tim iza tion

C hapter 4

In this chapter we compare the performance of our limited-memory subBFGS (sub- 
LBFGS, Section 3.2.5 ) algorithm with other state-of-the-art nonsmooth optimiza-
tion methods on /^-regularized binary, multiclass, and multilabel hinge loss minimiza-
tion problems. We also compare the specialized Li-regularized logistic loss optimizer 
OWL-QN (Section 3.6.1) with a variant that uses our direction-finding routine (Algo-
rithm 3.2). In all these contexts our methods perform comparable to or better than 
specialized state-of-the-art solvers on a number of publicly available datasets. Open 
source software implementing our algorithms is available for download.

4.1 E xp erim en ts

In all experiments the regularization parameter was chosen from the set 1 0 -̂6>-5’" 
so as to achieve the highest prediction accuracy on the test dataset, while convergence 
behavior (objective function value vs. CPU seconds) is reported on the training dataset. 
To see the influence of the regularization parameter A, we also compared the time 
required by each algorithm to reduce the objective function value to within 2% of the 
optimal value.1 For all algorithms the initial iterate wo was set to 0. Open source 
C ++  code implementing our algorithms and experiments is available for download 
from http: //www. cs. adelaide. edu. au/~ j inyu/Code/nonsmoothOpt. tar. gz

The subgradient for the construction of the subLBFGS search direction (c/. Line 
12 of Algorithm 3.1) was chosen arbitrarily from the subdifferential. For the binary 
hinge loss minimization (Section 4.1.3), for instance, we picked an arbitrary subgradient 
by randomly setting the coefficient ßiVi  €E M. in (3.27) to either 0 or 1.

xFor L \-regularized logistic loss minimization, the “optimal” value was the final objective value 
achieved by the OWL-QN* algorithm (c/. Section 4.1.4). In all other experiments, it was found by 
running subLBFGS for 104 seconds, or until its relative improvement over 5 iterations was less than 
10- 8 .

55
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F igu re 4.1: Performance of subLBFGS with varying direction-finding tolerance e in terms of 
objective function value vs. the number of iterations (top row) resp. CPU seconds (bottom 
row) on sample Z^-regularized risk minimization problems with the binary (left), multiclass 
(center), and multilabel (right) hinge losses.

On strictly convex problems such as what we consider in this chapter, every con-
vergent optimizer will reach the same solution; comparing generalisation performance 
is therefore pointless. Hence we concentrate on empirically evaluating the convergence 
behavior (objective function value vs. CPU seconds). All experiments were carried out 
on a Linux machine with dual 2.4 GHz Intel Core 2 processors and 4 GB of RAM.

4.1.1 C onvergence Tolerance o f th e  D irection -F in d in g  P roced ure

The convergence tolerance e of Algorithm 3.2 controls the precision of the solution to 
the direction-finding problem (3.5): lower tolerance may yield a better search direction. 
Figure 4.1 (left) shows that on binary classification problems, subLBFGS is not sensitive 
to the choice of e (fie., the quality of the search direction). This is due to the fact that 
dJ{w ) as defined in (3.27) is usually dominated by its constant component w ; search 
directions that correspond to different choices of e therefore can not differ too much from 
each other. In the case of multiclass and multilabel classification, where the structure 
of d J ( w ) is more complicated, we can see from Figure 4.1 (top center and right) that 
a better search direction can lead to faster convergence in terms of iteration numbers. 
However, this is achieved at the cost of more CPU time spent in the direction-finding 
routine. As shown in Figure 4.1 (bottom center and right), extensively optimizing
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Figure 4.2: Performance of subLBFGS with varying buffer size on sample L2-regularized risk 
minimization problems with the binary (left), multiclass (center), and multilabel hinge losses 
(right).

Table 4.1: The binary datasets used in our experiments of Sections 3.1, 4.1.3, and 4.1.4.

Dataset Train/Test Set Size Dimensionality Sparsity
Covertype 522911/58101 54 77.8%
CCAT 781265/23149 47236 99.8%
Astro-physics 29882/32487 99757 99.9%
MNIST-binary 60000/10000 780 80.8%
Adult9 32561/16281 123 88.7%
Real-sim 57763/14438 20958 99.8%
Leukemia 38/34 7129 00.0%

the search direction actually slows down convergence in terms of CPU seconds. We 
therefore used an intermediate value of e = 10-5 for all our experiments, except that 
for multiclass and multilabel classification problems we relaxed the tolerance to 1.0 
at the initial iterate w  = 0, where the direction-finding oracle arg supg^dJ(0 ) g TP *s 
expensive to compute, due to the large number of extreme points in dJ{0).

4.1.2 Size of SubLBFGS Buffer

The size m  of the subLBFGS buffer determines the number of parameter and gradient 
displacement vectors St and yt used in the construction of the quasi-Newton direction. 
Figure 4.2 shows that the performance of subLBFGS is not sensitive to the particular 
value of m  within the range 5 < m < 25. We therefore simply set m  =  15 a priori for 
all subsequent experiments; this is a typical value for LBFGS (Nocedal and Wright, 
1999).
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Table 4.2: Regularization parameter A and overall number k of direction-finding iterations in 
our experiments of Sections 4.1.3 and 4.1.4, respectively.

Li-reg. logistic loss L2-reg. binary loss
D ataset Al i f^Li k L \ r Al 2
Covertype 1CT5 1 2 10“ 6 0
CCAT 1CT6 284 406 10“ 6 0
Astro-physics 1CT5 1702 1902 10"4 0
M NIST-binary 1(T4 55 77 10~6 0
Adult9 1(T4 2 6 10~5 1
Real-sim 1(T6 1017 1274 10~5 1

Table 4.3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) datasets used, values 
of the regularization parameter, and overall number k of direction-finding iterations in our 
multiclass and multilabel hinge loss experiments of Section 4.1.5.

D ataset T rain /T est Set Size Dimensionality \Z\ Sparsity A k
Letter 16000/4000 16 26 0.0% 10“ 6 65
USPS 7291/2007 256 10 3.3% 10“ 3 14
Protein 14895/6621 357 3 70.7% 10~2 1
MNIST 60000/10000 780 10 80.8% 10“ 3 1
INEX 6053/6054 167295 18 99.5% 10~6 5
News20 15935/3993 62061 20 99.9% 10“ 2 12
Scene 1211/1196 294 6 0.0% 10"1 14
TMC2007 21519/7077 30438 22 99.7% 10“ 5 19
RCV1 21149/2000 47236 103 99.8% i o - 5 4

4.1 .3  L2-R egularized  B inary H inge Loss

For our first set of experiments, we applied subLBFGS with exact line search (Algo-
rithm  3.3) to the task of L 2-regularized binary hinge loss minimization. Our control 
m ethods are the  bundle m ethod solver BMRM (Teo et al., 2010) and the optimized cut-
ting  plane algorithm  OCAS (Franc and Sonnenburg, 2008), both of which were shown 
to  perform competitively on this task. SVM Struct (Tsochantaridis et al., 2005) is an-
other well-known bundle m ethod solver th a t is widely used in the machine learning 
community. For L2-regularized optim ization problems BMRM is identical to SVM-
Struct, hence we omit comparisons with SVM Struct.

Table 4.1 lists the six datasets we used: The Covertype dataset of Blackard, Jock

2The source code of OCAS (version 0.6.0) was obtained from http://www.shogun-toolbox.org.
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Figure 4.3: Objective function value vs. CPU seconds on Z/2-regularized binary hinge loss 
minimization tasks.

& Dean,3 4 5 6 CCAT from the Reuters RCV1 collection, the Astro-physics dataset of 
abstracts of scientific papers from the Physics ArXiv (Joachims, 2006), the MNIST 
dataset of handwritten digits ' with two classes: even and odd digits, the Adult9 dataset 
of census income data,*’ and the Real-sim dataset of real vs. simulated data.h Table 4.2 
lists our parameter settings, and reports the overall number ki,2 of iterations through 
the direction-finding loop (Lines 6-13 of Algorithm 3.2) for each dataset. The very 
small values of kL2 indicate that on these problems subLBFGS only rarely needs to 
correct its initial guess of a descent direction.

It can be seen from Figure 4.3 that subLBFGS (solid) reduces the objective value 
considerably faster than BMRM (dashed). On the binary MNIST dataset, for instance, 
the objective function value of subLBFGS after 10 CPU seconds is 25% lower than that 
of BMRM. In this set of experiments the performance of subLBFGS and OCAS (dotted) 
is very similar.

Figure 4.4 shows that all algorithms generally converge faster for larger values of 
the regularization constant A. However, in most cases subLBFGS converges faster than 
BMRM across a wide range of A values, exhibiting a speedup of up to more than two 
orders of magnitude. SubLBFGS and OCAS show similar performance here: for small 
values of A, OCAS converges slightly faster than subLBFGS on the Astro-physics and

3h t t p : / /k d d . i c s . u c i . e d u /d a ta b a se s /c o v e r ty p e /c o v e r ty p e .h tm l
4h t t p :/ / w o t . d a v id d le w is . c o m / r e s o u r c e s / t e s t c o l l e c t i o n s / r c v l
5h t tp : / /y a n n . le c u n .c o m /e x d b /m n is t
6h t t p :/ / w w w .c s i e . n t u .e d u . t w / ~ c j l i n / l i b s v m t o o l s / d a t a s e t s / b i n a r y . html
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Figure 4.4: Regularization parameter A € {10 6, • • • , 10 x} vs. CPU seconds taken to reduce 
the objective function to within 2% of the optimal value.

Real-sim datasets but is outperformed by subLBFGS on the Covertype, CCAT, and 
binary MNIST datasets.

4 .1 .4  L i-R eg u la riz e d  L ogistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 3.2) in its own 
right, we plugged it into the OWL-QN algorithm (Andrew and Gao, 2007) as an 
alternative direction-finding method such that pow = descentD irection(gow, e, fcmax), 
and compared this variant (denoted OWL-QN*) with the original (c/. Section 3.6.1) 
on Li-regularized minimization of the logistic loss (3.59), on the same datasets as in 
Section 4.1.3.

An oracle that supplies arg s u p ^ ^ j ^  g p  for this objective is easily constructed 
by noting that (3.59) is nonsmooth whenever at least one component of the parameter 
vector w  is zero. Let W{ — 0 be such a component; the corresponding component of the 
subdifferential <9A||in||i of the L\ regularizer is the interval [—A, A]. The supremum of 
g p  is attained at the interval boundary whose sign matches that of the corresponding 
component of the direction vector p, i.e., at A sign (pi).

Using the stopping criterion suggested by Andrew and Gao (2007), we ran experi-
ments until the averaged relative change in the objective value over the previous 5 iter-
ations fell below 10-5 . As shown in Figure 4.5, the only clear difference in convergence

'The source code of OWL-QN (original release) was obtained from Microsoft Research through 
h t tp : / / t i n y u r l .com/p774cx.
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Figure 4.5: Objective function value vs. CPU seconds on Li-regularized logistic loss mini-
mization tasks.

between the two algorithms is found on the Astro-physics dataset where OWL-QN* 
is outperformed by the original OWL-QN method. This is because finding a descent 
direction via Algorithm 3.2 is particularly difficult on the Astro-physics dataset (as 
indicated by the large inner loop iteration number in Table 4.2); the slowdown on 
this dataset can also be found in Figure 4.6 for other values of A. Although finding a 
descent direction can be challenging for the generic direction-finding routine of OWL- 
QN*, in the following experiment we show that this routine is very robust to the choice 
of initial subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we also ran 
them with subgradients randomly chosen from the set dJ{w)  (as opposed to the spe-
cially chosen subgradient g°w used in the previous set of experiments) fed to their 
corresponding direction-finding routines. OWL-QN relies heavily on its particular 
choice of subgradients, hence breaks down completely under these conditions: the 
only dataset where we could even plot its (poor) performance was Covertype (dot-
ted “OWL-QNr” line in Figure 4.5). Our direction-finding routine, by contrast, is 
self-correcting and thus not affected by this manipulation: the curves for OWL-QN*r 
lie on top of those for OWL-QN*. Table 4.2 shows that in this case more direction-
finding iterations are needed though: k i ir > k i 1. This empirically confirms that as 
long as argsupg€ay(u;) 9 P given, Algorithm 3.2 can indeed be used as a generic 
quasi-Newton direction-finding routine that is able to recover from a poor initial choice
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F igu re 4.6: Regularization parameter A € {10—6, • • • , 10-1} vs. CPU seconds taken to reduce 
the objective function to within 2% of the optimal value. (No point is plotted if the initial 
parameter mo = 0 is already optimal.)

of subgradients.

4.1.5 Z/2-R egularized  M ulticlass and M u ltilab el H inge Loss

We incorporated our exact line search of Section 3.5.3.1 into both subLBFGS and 
OCAS (Franc and Sonnenburg, 2008), thus enabling them to deal with multiclass and 
multilabel losses. We refer to our generalized version of OCAS as line search BMRM 
(ls-BMRM). Using the variant of the multiclass and multilabel hinge loss which en-
forces a uniform margin of separation (A (z,z') = 1 Vz ^  z'), we experimentally eval-
uated both algorithms on a number of publicly available datasets (Table 4.3). All 
multiclass datasets except INEX were downloaded from h ttp ://w w w .cs ie .n tu .ed u . 
tw/~c j l in /l ib sv m to o ls /d a ta se ts /m u ltic la ss  . html, while the multilabel datasets 
were obtained from h ttp ://w w w .c s ie .n tu .e d u .tw /~ c jlin /lib sv m to o ls /d a ta se ts / 
m u ltilab e l.h tm l. INEX is available for download from h t tp : / /w e b ia . l ip 6 .f r /  
~bordes/m ywiki/doku.php?id=m ulticlass_data (details can be found in Maes et al. 
(2007)). The original RCV1 dataset consists of 23149 training instances, of which we 
used 21149 instances for training and the remaining 2000 for testing.
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Figure 4.7: Objective function value vs. CPU seconds on L2-regularized multiclass hinge loss 
minimization tasks.

4.1.5.1 Perform ance on M ulticlass P rob lem s

This set of experiments is designed to demonstrate the convergence properties of mul-
ticlass subLBFGS, compared to the BMRM bundle method (Teo et ah, 2010) and 
ls-BMRM.

Figure 4.7 shows that subLBFGS comprehensively outperforms BMRM in all cases. 
On the Letter dataset, the objective function value of subLBFGS after 20 CPU seconds 
is 24% lower than that of BMRM. On 4 out of 6 datasets, subLBFGS outperforms 
ls-BMRM early on but slows down later, for an overall performance comparable to 
ls-BMRM. On the MNIST dataset, for instance, subLBFGS takes only about half as 
much CPU time as ls-BMRM to reduce the objective function value to 0.3 (about 50% 
above the optimal value), yet both algorithms reach within 2% of the optimal value at 
about the same time (cf. Figure 4.8, bottom left). We hypothesize that subLBFGS’ 
local model (3.4) of the objective function facilitates rapid early improvement but is less 
appropriate for final convergence to the optimu. Bundle methods, on the other hand, 
are slower initially because they need to accumulate a sufficient number of gradients to 
build a faithful piecewise linear model of the objective function. These results suggest 
that a hybrid approach that first runs subLBFGS then switches to ls-BMRM may be 
promising.

Similar to what we saw in the binary setting (Figure 4.4), Figure 4.8 shows that all
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F igu re  4.8: Regularization parameter A G {10~6, • • • , 10“ vs. CPU seconds taken to reduce 
the objective function to within 2% of the optimal value. (No point is plotted if an algorithm 
fails to reach the threshold value within 104 seconds.)

algorithms tend to converge faster for large values of A. Generally, subLBFGS converges 
faster than BMRM across a wide range of A values; for small values of A it can greatly 
outperform BMRM (as seen on Letter, Protein, and News20). The performance of 
subLBFGS is worse than that of BMRM in two instances: on USPS for small values of 
A, and on INEX for large values of A. The poor performance on USPS may be caused 
by a limitation of subLBFGS’ local model (3.4) that causes it to slow down on final 
convergence. On the INEX dataset, the initial point w q  =  0 is nearly optimal for large 
values of A; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 3.5), ls-BMRM is competitive on all 
datasets and across all A values, exhibiting performance comparable to subLBFGS in 
many cases. From Figure 4.8 we find that BMRM never outperforms both subLBFGS 
or ls-BMRM.

4.1.5.2 Performance on M ultilabel Problems

In our final set of experiments we switch to the multilabel setting. Figure 4.9 shows 
that on the Scene dataset the performance of subLBFGS is similar to that of BMRM, 
while on the larger TMC2007 and RCV1 sets, subLBFGS outperforms both of its 
competitors initially but slows down later on, resulting in performance no better than
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Figure 4.9: Objective function value vs. CPU seconds in Z/2-regularized multilabel hinge loss 
minimization tasks.
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Figure 4.10: Regularization parameter A € {10—6, • • • , 10—1} vs. CPU seconds taken to reduce 
the objective function to within 2% of the optimal value. (No point is plotted if an algorithm 
fails to reach the threshold value within 104 seconds.)

BMRM. Comparing performance across different values of A (Figure 4.10), we find that 
in many cases subLBFGS requires more time than its competitors to reach within 2% 
of the optimal value, and in contrast to the multiclass setting, here ls-BMRM only 
performs marginally better than BMRM. The primary reason for this is that the exact 
line search used by ls-BMRM and subLBFGS requires substantially more computational 
effort in the multilabel than in the multiclass setting. There is an inherent trade-off 
here: subLBFGS and ls-BMRM expend computation in an exact line search, while 
BMRM focuses on improving its local model of the objective function instead. In 
situations where the line search is very expensive, the latter strategy seems to work 
similarly well.

4.2 D iscu ss io n

We applied subLBFGS to a variety of machine learning problems employing /^-regularized 
binary hinge loss and its multiclass and multilabel generalizations as well as Li-regularized 
risk minimization with the logistic loss. Our experiments show that our algorithm is 
versatile, applicable to many problems, and often outperforms specialized solvers.
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In many of our experiments we observe that subLBFGS decreases the objective 
function rapidly at the beginning but slows down closer to the optimum. We hypoth-
esize that this is due to an averaging effect: Initially (he., when sampled sparsely at 
a coarse scale) a superposition of many hinges looks sufficiently similar to a smooth 
function for optimization of a quadratic local model to work well (c/. Figure 3.4). Later 
on, when the objective is sampled at finer resolution near the optimum, the few nearest 
hinges begin to dominate the picture, making a smooth local model less appropriate.

Even though the local model (3.4) of sub(L)BFGS is nonsmooth, it only explicitly 
models the hinges at its present location — all others are subject to smooth quadratic 
approximation. Apparently this strategy works sufficiently well during early iterations 
to provide rapid improvement on multiclass problems, which typically comprise a large 
number of hinges. The exact location of the optimum, however, may depend on in-
dividual nearby hinges which are not represented in (3.4), resulting in the observed 
slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but tend to be 
competitive asymptotically. This is because they build a piecewise linear lower bound of 
the objective function, which initially is not very good but through successive tightening 
eventually becomes a faithful model. To take advantage of this we are contemplating 
hybrid solvers that switch over from sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping crite-
rion based on the duality gap, no such stopping criterion exists for BFGS and other 
quasi-Newton algorithms. Therefore, it is customary to use the relative change in func-
tion value as an implementable stopping criterion. Developing a stopping criterion for 
sub(L)BFGS based on duality arguments remains an important open question.



A S tochastic  Q uasi-N ew ton 
M eth o d  for O nline Convex 
O p tim iza tion

C hapter 5

In this chapter we develop variants of the BFGS quasi-Newton method, in both its full 
and memory-limited forms, for stochastic (online) optimization of convex functions. We 
begin by providing background material on stochastic gradient-based learning. A brief 
review of past stochastic gradient methods is given in Section 5.2. We modify BFGS 
so as to make it amenable to stochastic approximation (Section 5.3), before applying 
analogous modifications to LBFGS in Section 5.4. We then set up two stochastic 
quadratic problems (Section 5.5), on which we illustrate the merits of our algorithms in 
Section 5.6. Further experimental studies are carried out in Chapter 6, where we apply 
oLBFGS to the training of Condition Random Fields in natural language processing.

For ease of exposition, in this chapter we assume the objective function J  : —> R
to be convex and differentiable everywhere, though it has been noted (Bottou, 1998; 
LeCun et ah, 1998) that stochastic methods are inherently robust to non-convexity and 
non-differentiability of an objective function.

5.1 S to ch a stic  G rad ien t-B ased  L earning

In machine learning the objective function usually involves summation of loss terms 
over a set of training data. Classical optimization methods must compute this sum 
in its entirety for every parameter update. Such “batch” methods are therefore very 
inefficient for real-world applications involving large datasets.

Stochastic gradient methods address this problem by using gradient estimates ob-
tained from small subsamples of the data. For instance, under the regularized risk min-
imization framework (1.1), the stochastic approximation of the regularized risk J(w)

67
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only involves summation of loss terms over a mini-batch A  of the training data:

J(w , X ) := \Q (w) +  -  ^ 2  (5.1)

where X  contains a batch of b pairs (xt, zQ of feature vectors and the corresponding 
labels. Usually b is much smaller than the size n of the training dataset. The cost 
of evaluating the stochastic function (and hence gradient) is therefore often far less 
than in the batch setting. To distinguish J(w)  from its data-dependent counterpart 
J (w, X) ,  we refer to J(w)  as the deterministic objective function.

For purposes of convergence analysis, training instances in the mini-batch X  are 
commonly assumed to be drawn independently according to some underlying distribu-
tion (Bottou, 1998). In practice, however, they are better chosen by repeated exhaus-
tive sampling without replacement, implemented by repeating the following two-step 
procedure:

1. randomly permute the training data;

2. sequentially take batches of data until the training set is exhausted.

The simplest stochastic gradient method is stochastic gradient descent (SGD), 
which adjusts the parameter vector w  in the direction of the negative stochastic gradient 
—V wJ(w, X).  Stochastic gradient methods can be slow in converging to the optimum 
of the deterministic objective function (Bottou and Murata, 2002), due to the noise 
in the stochastic approximation of gradients. Nevertheless, it has been shown (LeCun 
et ah, 1998) that they often can quickly obtain an approximate solution in the vicinity 
of the optimum, which is sufficiently accurate to ensure good generalization perfor-
mance on the test dataset. Therefore, in terms of generalization performance, SGD 
is found to routinely outperform sophisticated batch optimization methods often by 
orders of magnitude on large datasets (Bottou and LeCun, 2004; Vishwanathan et ah, 
2006). However, it suffers from slow convergence on problems that are ill-conditioned, 
he., have eigenvalues of widely differing magnitude (see e.g., Bray et ah, 2004, Figure 
5). It is known from batch optimization that incorporating second-order information 
into the parameter update can greatly accelerate convergence on ill-conditioned prob-
lems, as evidenced by conjugate gradient (CG) (Shewchuk, 1994) and BFGS. A natural 
question to ask is whether the good asymptotic convergence of such second-order batch 
methods could be carried over to the stochastic setting. Schraudolph and Graepel 
(2003), however, show that online implementations of CG methods are ineffective; in 
our experiments BFGS is found to fail catastrophically on stochastic problems. The 
failure of these online implementations of batch methods is mainly due to the fact 
that core tools of conventional gradient-based optimization such as line searches and
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Krylov subspaces collapse in the presence of sampling noise in stochastic approximation 
(Schraudolph and Graepel, 2003).

Here we overcome these limitations by modifying BFGS and LBFGS so as to obtain 
fast stochastic quasi-Newton methods for online convex optimization. Moreover, our 
modifications to (L)BFGS offer the promise of devising new stochastic methods that are 
able to incorporate curvature information of an objective function into the parameter 
update; for instance, the recently developed SGD-QN (Bordes et ah, 2009) algorithm 
is of this kind.

5.2 Existing Stochastic Gradient M ethods

We review three stochastic gradient optimization algorithms that are representative of 
the spectrum of such methods developed to date.

5.2.1 S toch astic  G radient D escen t

Simple stochastic gradient descent (SGD) takes the form

w t+i = w t - r j tV wJ(w t , X t)1 (5.2)

where w t G M.d is the current parameter vector, r/t > 0 a step size, and X t the current 
mini-batch of training data. Robbins and Monro (1951) have shown that (5.2) converges 
to w * =  argm in^ J(w) as t —> oo, provided that the step size satisfies

^ ^ 7/f = oo and < °° • (5-3)
t t

A commonly used decay schedule for r]t that fulfills these conditions is given by

Vt = —77 ho , (5.4)T + t

where 770, r  > 0 are tuning parameters.
The SGD parameter update (5.2) takes only O(d) space and time per iteration. 

Although it can greatly outperform sophisticated batch methods on large datasets, it 
suffers from slow convergence on ill-conditioned problems.

5.2 .2  S toch astic  M eta-D escen t

Stochastic Meta-Descent (SMD) (Schraudolph, 1999, 2002) accelerates SGD by provid-
ing each element of the parameter vector w  with its own step size:

W t + 1 =  W t -  Tft ■ V J w(wt, X t), (5.5)
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where • denotes Hadamard (component-wise) multiplication. The step size vector r]t E 

Rd is adapted via a simultaneous stochastic gradient descent in log-space:

t
InTft+i =  ln7ft -

* = o
t

=  111 T]i [ l  V w t + i  J ( ' M t + 1 5 ^ t + l ) ^   ̂ ^ I n  774-, ^ i + 1

t=0

= InTjt -  p V Wt+1J(w t+i ,X t+i) • v t+1 , (5.6)

where // > 0 is a scalar tuning parameter, and := A1 Vinrft_i,u^+i models
the dependence of the current parameter on past step sizes over a time scale governed 
by the decay factor A E [0,1]. Elementwise exponentiation of (5.6) followed by the 
linearization exp(w) «  max(^, 1 + u) gives the desired multiplicative update

m+i = Vt • exp(-/iV lt,t+1 J(w t+\, X t+i) • v t+i)

~  T)t ■ max (±, 1 -  [1 V^ +1 J(w t+ i,X t+i) • Vt+i) . (5.7)

The auxiliary vector Vt+i is maintained incrementally via

v t+i =  Avt -  rjt ■ (S7wJ(w t, A!t) + AH tv t) , (5.8)

with H t := N ll}J(wt, A!t), he., the instantaneous Hessian at time t , and uo = 0; a 
detailed derivation is given by Schraudolph et al. (2006). Since H tvt can be computed 
very efficiently (Schraudolph, 2002), SMD still takes only O(d) space and time per 
iteration. It improves upon SGD by providing an adaptive step size decay, and handling 
some (but not all) forms of ill-conditioning. In the experiments of Section 5.6, however, 
its performance essentially equals that of SGD.

5.2 .3  N atural G radient D escent

The natural gradient (NG) algorithm (Amari et al., 1998) incorporates the Riemannian 
metric tensor G t := Ex[NwJ( w t, A ) N wJ(wt : T ) t ] into the stochastic gradient update:

w t+i = w t -  r\t G ^ N  wJ{wu X t), (5.9)

with step sizes 771 typically set by (5.4), and G t an estimate of Gt updated via

G t+1 = (1 - 1) G t + N wJ(w(5.10)
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Algorithm  5.1 On l in e  BFGS Method
1: in p u t

• stochastic approximation of convex objective J  and its gradient V J 
over data sequence Xt  for t = 0,1, 2, • • •

• initial parameter vector wo
• sequence of step sizes rjt > 0, e.g., obtained from (5.4)
• parameters 0 < c < 1, A > 0, e > 0

2: Output W t

3: t := 0 
4: B q = t l
5: w h ile  not converged do  

Pt =  B tV wJ(w t, Xt)
7: (no line search)
8 : S t =  p t

9: W t+1 =  W t +  St

10; y t  — ^ i  X t )  X t )  ASj

11: if  t = 0 th en

12: B t : = ^ I
y j y t

13: end  if
14: pt = ( s j y t)~ 1
15: B t+1 =  (I -  pts ty j  )B t(I ~ Pty ts j  ) +  CptStsJ
16: t := t +  1
17: end  w h ile  
18: retu rn  Wt

The Sherman-Morrison formula can be employed to directly update G t 1:

t
t -  1

t
t -  1

1 \  1 
Xt) j  V wJ{wt, X t)

(t -  1) +  V wJ(w t, X t )J G p V wJ(w u X t)\ ’
(5.11)

reducing the computational cost of NG from O(//’') (for inverting Gt) to 0(d 2) space 
and time per iteration — still prohibitively expensive for large d. Where it is affordable, 
NG greatly benefits from the incorporation of second-order information. Note that if 
the denominator of the fraction in the square brackets in (5.11) is zero, then NG’s 
Hessian approximation G t+\ is not invertible, he., it is singular in such a case.
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5.3 O nline BFG S M ethod

Algorithm 5.1 shows our online BFGS (oBFGS) method, with all modifications relative 
to standard BFGS (Algorithm 2.1) underlined. The changes required to get BFGS to 
work well with stochastic approximation fall into three aspects which we shall elaborate 
on in turn: making do without line search, modifying the update of BFGS’ inverse 
Hessian approximation, and taking consistent gradient measurements.

5.3.1 C onvergence w ith ou t Line Search

Line searches (Section 2.1.2) are highly problematic in the stochastic setting since the 
global validity of the criteria they employ such as the Wolfe conditions (2.7, 2.8) cannot 
be established from local subsamples of the problem.

Unlike conjugate gradient (Shewchuk, 1994), however, BFGS does not require an 
exact line search to correctly update its inverse Hessian estimate B t: we can actually 
replace the line search with a step size decay schedule such as (5.4) that satisfies (5.3) 
with no undue effect, provided that we can ensure (V£) B t >- 0 by other means. For now 
we do this by restricting our attention to convex optimization problems (no negative 
eigenvalues of the Hessian V2 J(w)),  for which

(Vi) s j y t > 0 (5.12)

holds, where s t and y t defined in (2.15) are the parameter resp. gradient displacement 
vectors. Zero and small eigenvalues (s j y t =  0 and s j y t  ~  0) are dealt with by 
modifying the BFGS update to estimate the inverse of X/2J(w)  + XI, where A > 0 is 
a model-trust region parameter. This can be achieved by simply adding As t to yt at 
Line 10 of Algorithm 2.1. To see this, recall from Section 2.1.3 that the secant equation 
Bt+iVt — St essentially models the following property of V 2J(w t):

V 2J(wt) st «  y t. (5.13)

Adding AI  to V 2J{wt) in (5.13), we obtain

{ y 2J(wt) + XI) s t «  y t -\-Xst, (5-14)

leading to the adjustment of yt at Line 10. Another possible way to ensure the positivity 
of (s jyt )  is to adopt a strategy similar to the dampened BFGS update (Nocedal and 
Wright, 1999, Procedure 18.2) by setting

y t - O L  [VwJ(wt+i , x t) -  V wJ(wt, X t)\ 4- (1 -  a) Bt 1s t , (5.15)
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where the convex combination coefficient a G [0,1] is chosen heuristically. Compared to 
this update, our modification to the calculation of y t is computationally more efficient 
since it does not need to maintain the approximation B t_1 to the Hessian.

A recent study by Sunehag et al. (2009, Theorem 3.2) shows that under some 
technical conditions on V 2J(w)  and V wJ { w1X)  ̂ a second-order stochastic method 
converges to the optimum of a twice-differentiable convex objective function almost 
surely, provided that (1) the step size yt obeys the Robbins-Monro conditions (5.3) and 
(2) the spectrum of the scaling matrix is bounded from below and above by positive 
scalars. Our choice of step size decay schedule for oBFGS satisfies the condition on 
rft. The model-trust region parameter A effectively provides an upper bound on the 
spectrum of B t\ to establish a lower bound, we can simply add a fraction of I  to Bt, 
i.e., add a fraction of —'VwJ(wt:Xt) to p t at Line 6 of Algorithm 5.1, though in the 
experiments of Section 5.6 we do not find it necessary to invoke this modification.

Finally, without line search we need to explicitly ensure that the first parameter 
update (before Bo has been appropriately scaled at Line 12) does not cause any prob-
lems. This is done by multiplying Bo at Line 4 with a very small e > 0 so that the 
first parameter update is likewise small. The value of e is application-dependent but 
non-critical; we typically use e = 10~10.

5.3.2 M odified  B FG S C urvature U p d a te

We have found empirically that scaling down the last term s ts j  of the curvature update 
by a factor c G (0,1] (Line 15 of Algorithm 5.1) substantially improves the performance 
of oBFGS for small batch sizes. In a sense the curvature matrix B t+\ obtained from 
the modified update approximates a dampened inverse Hessian c [\72J(wt)] using 
(5.13), we can write

c [V 2J(wt)] 1 y t «  cst\ (5.16)

replacing s t in the original BFGS curvature update (Lines 12-13 of Algorithm 2.1) 
with cst gives the modified curvature update. This scaling strategy for B t is known 
from standard BFGS (Brodlie, 1977).1 We compensate for the resulting scaling of B t 
by dividing the step size yt by c at Line 8 of Algorithm 5.1. It may be possible to 
determine the optimal value for c analytically; in the experiments reported here we 
simply used c =  0.1 throughout.

brodlie (1977, Equation 3.2) scales BFGS’ Hessian estimate, instead of the inverse Hessian estimate 
as shown in Line 15 of Algorithm 5.1.
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5 .3 .3  C on sisten t G radient M easurem ents

We also need to account for the fact that in the stochastic setting our gradient mea-
surements are noisy. This means that a simple convergence test like \\NJ(wt)\\ > e in 
Algorithm 2.1 must be replaced by a more robust one, for instance, checking whether 
the norm of a running average of recent stochastic gradients has remained below a given 
threshold for the last k iterations.

Finally, and most importantly, care must be taken in the computation of yt at Line 
10 of Algorithm 5.1. A naive translation of the “difference of last two gradients” into 
the stochastic setting would compute

VWJ % t + 1) — N WJiv^ti A’f). (5.17)

This would allow sampling noise to enter the BFGS’ curvature update since the two 
terms in (5.17) are computed on different data samples.

Instead we must compute the difference of gradients on the same data sample Xt 
used to compute the quasi-Newton direction p t , and hence the step s t: at Lines 6 and 
8, respectively.

5.4  L im ite d -M e m o ry  O n lin e  B F G S

It is straightforward to implement a limited-memory variant of our oBFGS algorithm: 
we simply modify the standard LBFGS (Algorithm 2.2) as follows:

• use stochastic gradients in place of deterministic gradients throughout, while al-
ways taking consistent gradient measurements as in Line 10 of Algorithm 5.1;

• modify the convergence test ||V./(iut)ll > e as discussed in Section 5.3.3;

• replace Line 5 of Algorithm 2.2 with a step size decay schedule such as (5.4) which 
obeys the Robbins-Monro conditions (5.3).

We also replace Line 9 of the LBFGS direction update (Algorithm 2.3) with

P t  :=

t P t
min(i,m) -r

P t  y -  S i - j U t - i  

min(L m) yj_ty t-i

if t = 0; 

otherwise.
(5.18)

This ensures that the first parameter update is small (c/. Line 4 of Algorithm 5.1), and 
improves online performance by averaging away some of the sampling noise. Note that 
the oBFGS’ curvature scaling factor c 6 (0,1] (c/. Section 5.3.2) is not required here, 
meaning one less tuning parameter for oLBFGS.
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■ J{w , X)
• J(w , X)

• J(w , X)
■ J(w , X)

Figure 5.1: One-dimensional deterministic quadratic J(w) (solid) and two stochastic approx-
imations J(w,X)  (dash-dotted and dashed) obtained from different data samples X.  Left: 
realizable; right: non-realizable.

5.5 S tochastic  Q uadra tic  P rob lem s

We follow Schraudolph and Graepel (2003) in their choices of two stochastic quadratic 
(albeit ill-conditioned and semi-sparse) problems, which will be used in the experiments 
of Section 5.6 to illustrate the performance of various stochastic methods.

5.5.1 D eterm in istic  Q uadratic

The d-dimensional quadratic provides the simplest possible test setting that differenti-
ates between various gradient methods. In its deterministic form, the objective function 
J  : Rd —> M is given by

J(w) = \  (w — w *) ' J  J  ' (w  — w* ) , (5.19)

where w* G Rd and J  G Rdxd are the optimal parameter vector and the Jacobian 
matrix, respectively, both of our choosing. Assuming that J  has full rank, then by 
definition, the Hessian X 2J(w) = J J T is constant and positive definite here; the 
gradient is VJ(w)  = S/2J(w)(w  — w*). Obviously, the minimal value of J{w)  is zero, 
z.e., J{w*) = 0.
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5.5.2 A  Sim ple S toch astic  Q uadratic

A stochastic optimization problem analogous to the above can be defined by the data- 
dependent objective

J(w,  X )  = ~ ( w ~  w*)TJ X X TJ T(w -  w *), (5.20)2 b

where

X  := [cci, X2 , . . .  Xb] with X{ ~  N{0, / ) ,  1 < z < 6 (5.21)

is a d x b  matrix collecting a batch of b random input vectors to the system, each drawn 
i.i.d. from a normal distribution. This means that E [T X t ] =  6 /, hence in expectation 
the stochastic objective (5.20) is identical to the deterministic formulation (5.19):

Ex [J(w, X)} = ^ - ( w -  w*)TJ  E [ I I t 1 J t (w  -  w*) = J(w).  (5.22)2 b

The optimization problem is harder here since the objective can only be probed by 
supplying stochastic inputs to the system, giving rise to the noisy estimates

N wJ ( w , X )  = V 2wJ { w, X) { w - w * )  and J{w,  X )  = i  J X X  J T (5.23)

of the true gradient and Hessian, respectively. The degree of stochasticity is determined 
by the batch size b; the system becomes deterministic in the limit as b —■> oo.

Note that depending on the choice of X , the matrix ( X T J T) can be rank deficient, 
meaning that the instantaneous Hessian J(w,  X )  may not have full rank, and hence 
the solution to min^ J ( w , X )  may not be unique. Here we use argminw J(w,  X )  to 
denote the set of all possible solutions. For the stochastic quadratic problem (5.20), 
the solution set is given by

argmin J ( w , X )  = {w : (w — w*) 6 Null(X J T)}. (5.24)
w

where Null(-) denotes the null space of a matrix.

A one-dimensional view of (5.20) is given in Figure 5.1 (left) where we can see that 
J(w,  X )  is data-dependent but coincides with the deterministic objective function J(w)  
at the optimum w*, z.e., V(X) J { w * , X ) = J ( w*) = 0. Furthermore, it follows from 
(5.24) that every stochastic approximation is minimized at w*:

(̂ 1 argmin J(w,  X )  = {w*}.  (5.25)

Schraudolph and Graepel (2003) call this realizable.
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5.5.3 A  N on -R ealizab le  Q uadratic

The stochastic quadratic (5.20) models realizable problems, z.e., those where the solu-
tion set argminw J ( w , X)  contains the optimum w* of the deterministic objective for 
all data samples. Of greater practical relevance are non-realizable problems in which 
w* is not necessarily in the solution set, and the stochastic objective can be minimized 
at different points for different data samples, reflecting the conflicting demands placed 
on the model by the data. Following Schraudolph and Graepel (2003), we model this 
by incorporating, along with each data sample X  € W1xb (5.21), an i.i.d. Gaussian 
random noise v  e R b with zero mean and variance E [ w  1 ] =  a21 into our objective:

where J ( w , X ) is the realizable stochastic quadratic defined in (5.20). The presence 
of v  makes it impossible to determine w* precisely from a finite set of data samples; 
Figure 5.1 (right) shows that in this case argminw J ( w , X 1v) does not necessarily 
contain w*. On the other hand, taking expectation of the stochastic gradient

(5.26)

where e := X  J  (w — w *) + v  .

In expectation this is still identical to the deterministic quadratic (5.19):

Ex  v \ J { w. X, v ) }  = Ex J ( w , X)  + h w - w , ) ' J E x .„[Xv]
0

= J{w), (5.27)

E x , v [ V wJ( w, X) \  = ^ E x ^ { j X X TJ T{ w - w * )  + J X ^

b
= J J T( w - w * )  +  0 

-  V J ( w ) (5.28)

reveals that it matches the true gradient. Therefore, we can use a step size decay sched-
ule such as (5.4) to effectively average the noisy gradient estimates over progressively 
larger stretches of data, and hence in the limit obtain an estimate of the true gradient.
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5.5 .4  C hoice o f Jacobian

For our experiments, we choose the Jacobian J  such that the Hessian has (1) eigenvalues 
of widely differing magnitude (ill-conditioning) and (2) eigenvectors with an interme-
diate degree of sparsity. We achieve this by imposing some sparsity on the notoriously 
ill-conditioned Hilbert matrix:

We use unconstrained online minimization of (5.20) and (5.26)," with J  given by (5.29) 
in d = 5 dimensions, as our model problems for stochastic gradient methods. The 
condition number of the Hessian V2 J(w)  is 4.9 x 103.

5.6 E xp erim en ts

We now apply the past stochastic methods reviewed in Section 5.2 and our o(L)BFGS 
to the two stochastic quadratic problems just introduced. Their performance at differ-
ent batch sizes is measured by the average number of data points needed to reach a 
pre-specified value of the deterministic objective (5.19). We also show the convergence 
behaviour of each algorithm at its optimal batch size by plotting the average deter-
ministic objective value vs. the number of data points. As the performance of SMD 
essentially equals that of SGD in our experiments, it is not shown in the figures.

In all experiments we found it sufficient to set o(L)BFGS’ free parameters e and A to 
10-10 and 0, respectively, c was moderately tuned for good performance of oBFGS, and 
fixed to 0.1 throughout. We ran oLBFGS with the buffer sizes m = 4 and 10 (denoted 
oLBFGS resp. oLBFGS’ in the figures). All experiments were run with varying batch 
size 5, taking values in the set {4* : i = 0 ,1, • • • , 8}.

5.6.1 R esu lts on th e  R ealizab le Q uadratic

Our first set of experiments were carried out on the realizable quadratic (5.20). For this 
simple problem, a constant step size proved sufficient. All methods used ijt = 5/(5 + 2) 
(tuned for good performance of SGD) except for NG, which required (5.4) with po = 1 
and r  =  100.

Figure 5.2 shows that SGD suffers from slow convergence on this ill-conditioned 
problem: in comparison to other stochastic methods SGD (solid diamonds) needs to

2We shift down the non-realizable stochastic quadratic of Schraudolph and Graepel (2003) by cr2/2
so as to establish (5.27).

if i mod j  = 0 
or j  mod i — 0 ;

otherwise.

(5.29)
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x- -x BFGS
■- -■ NG

*— * oLBFGS

Data Points

*• -■ NG

Batch Size

Figure 5.2: Average performance (with standard errors) of stochastic gradient methods on the 
realizable quadratic (5.20) over 10 matched random replications. Left: number of data points 
(up to a limit of 222) needed to reach J(w) < 10~15 vs. batch size b. Right: deterministic loss 
J(w) vs. number of data points seen at the optimal batch size for each algorithm.

see many more data points to decrease the deterministic objective value to a given 
threshold (10~15). NG (dashed squares) benefits from its incorporation of second-order 
information, and hence greatly outperforms SGD here for b < 103. Note that the use 
of a running average in NG’s estimate (5.10) of Riemannian metric tensor is optimal 
for this quadratic model, where the Hessian of J(w)  is constant.

We implemented a variant of oBFGS (denoted BFGS in the figures) that takes 
inconsistent gradient measurements (5.17). Figure 5.2 illustrates the disastrous conse-
quences: this variant (dashed crosses) diverges for all batch sizes less than 103 (Fig-
ure 5.2, left); at the optimal batch size, it is only marginally better than SGD (Fig-
ure 5.2, right). Note that Figure 5.2 (right) essentially shows the worst-case perfor-
mance of each method because the average of deterministic objective values shown on 
log scale is dominated by the maximal value of them: for instance, in the worst case 
BFGS requires about 6 • 104 data points to reach J ( w ) < 10~15, hence the average de-
terministic objective shown in Figure 5.2 (right) is dominated by this worst run, while 
we can see in Figure 5.2 (left) that on average, BFGS requires around 4-104 data points 
to reach the given threshold.

While properly implemented, oBFGS (solid disks) outperforms NG for all batch 
sizes. OLBFGS with m = 4 (solid triangles) performs well down to b m 100 but 
degrades for smaller batch sizes. This is not surprising considering that the curvature 
estimate is now based on only 4 noisy measurements of the objective. Fortunately, the 
situation improves rapidly with increasing buffer size: for m = 10 the performance of 
oLBFGS (dashed triangles) is close to that of full online BFGS for all batch sizes. '

3 Note that for m > d LBFGS is computationally more expensive than full BFGS. For higher-
dimensional problems, however, the beneficial effect of increasing m will be realized well before ap-
proaching this anomalous regime.
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*■ -■ NG

*— * oLBFGS
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Figure 5.3: Average performance (with standard errors) of stochastic gradient methods on 
the non-realizable quadratic (5.26) over 10 matched random replications. Left: number of data 
points (up to a limit of 222) needed to converge to J{w) < 10-5 vs. batch size b. Right: 
deterministic loss J(w ) vs. number of data points seen at the optimal batch size for each 
algorithm.

5.6.2 R esu lts  on th e  N on -R ealizab le  Q uadratic

We now turn to the more challenging non-realizable stochastic quadratic (5.26) with 
c7 — 10~2. In this set of experiments all methods used (5.4) with 770 and r  moderately 
tuned for fast convergence at small batch sizes. The initial step size 770 was set to 
b/{b +  2) for all methods except for NG and oLBFGS with m = 4 which required 
770 =  0.04 and 0.1 • b/(b +  2), respectively, r  was set to 104 for SGD, 20 for NG and 
oBFGS, and 2T04 resp. 10 for oLBFGS with m  = 4 resp. 10.

Figure 5.3 (left) shows the average number of data points needed to reach J(w)  < 
10~°, while the performance of each algorithm at its optimal batch size is illustrated 
in Figure 5.3 (right). Because the noise term v  inflates the metric tensor (5.10), NG 
overestimates the Hessian, and ends up performing no better than SGD here. OBFGS, 
by contrast, bases its curvature estimate on differences of gradient measurements; as 
long as these are consistent (Section 5.3.3), any data-dependent noise or bias terms will 
thus be cancelled out. Consequently, oBFGS greatly outperforms both SGD and NG, 
converging about 20 times faster to J(w)  = 10-5 at the convenient mini-batch size 
of b — 4 (Figure 5.3, right). The performance of oLBFGS with small buffer (m =  4) 
degrades for batch sizes below b — 64; a more generous buffer (m  =  10), however, 
restores it to the level of full oBFGS.

5.7 D iscussion

We developed stochastic variants of the BFGS and LBFGS quasi-Newton methods, 
suitable for online optimization of convex functions. Experiments on two stochastic
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quadratic problems show that our methods can greatly outperform past stochastic 
gradient algorithms, including a well-tuned natural gradient method. Unlike natural 
gradient, oLBFGS scales well to very high-dimensional problems, thanks to its matrix- 
free direction update.

Our online quasi-Newton methods require tuning of newly introduced free parame-
ters (r)t, c, and A for oBFGS; r]t and A for oLBFGS). Although no elaborate parameter 
tuning is needed, we expect further improvements from developing ways to automat-
ically set and adapt these. One limitation of oLBFGS is that for very sparse data, 
oLBFGS may require a substantial buffer size m  to emulate a non-degenerate inverse 
curvature estimate.

Having established the utility of o(L)BFGS on the two synthetic stochastic quadrat-
ics, in the next chapter we will turn to more challenging and realistic convex optimiza-
tion problems that stem from real-world applications.
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C hapter 6

O nline LBFG S for th e  T rain ing  
of C ond itional R andom  Fields

In this chapter we apply our online LBFGS (oLBFGS) method (Section 5.4) to the 
training of Conditional Random Fields (CRFs) in natural language processing. We 
show that oLBFGS achieves state-of-the-art results on benchmark datasets in far fewer 
passes through the training data than its batch counterpart LBFGS. First we briefly 
review the problem formulation of CRF parameter estimation. The experimental results 
on three natural language processing datasets are reported in the subsequent sections.

6.1 C on d ition a l R and om  F ields

Conditional Random Fields (CRFs) as a class of probabilistic models for labelling 
and parsing data have recently gained popularity in the machine learning community 
(Kumar and Hebert, 2004; Lafferty et ah, 2001; Sha and Pereira, 2003). Parameter 
estimation in CRFs can be viewed as minimizing the negative log-posterior of the 
parameters w  € Rd given the training data:

where X  {xi}™= l and Z  := {zi}™= l are the sets of feature vectors Xi and the
corresponding label vectors z*, respectively. Bayes’ rule suggests

If an i.i.d. conditional exponential family distribution over labels is assumed, z.e.,

- l n  P H * ,  Z), (6 . 1)

P { w \ X ,  Z)  oc P(w) P( Z  I ( 6 .2)

(6.3)

83
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where </>(•, •) gives a vector of sufficient statistics that encodes features of the training 
data, and Z(-, •) is the log-partition function

Z(w,  x ) In exp(0(cc, z ) Tw),  (6-4)

then we can translate (6.1) into

n
- I n [P(w)P{Z \X\w) \  =  - \ n P ( w )  -  {4>{xl, z i)Tw -  Z ( w , x l)̂ j . (6.5)

» = l

In practice, an isotropic Gaussian prior with variance cr2I  is often imposed on w , i.e.,

P{w)  oc e x p ( - ^ | |u ; | |2), (6.6)

turning (6.5) into the familiar Maximum a posteriori estimation formulation:

I I  I I 2 n
J(w)  := - ^ 2" -  ^  ^(® j,Z i)T«7 -  Z (m ,xz)) . (6.7)

i= 1

This objective is convex since the log-partition function (6.4) is convex in w  (Wain- 
wright and Jordan, 2003), and so are the other terms.

Conventional algorithms for batch CRF training, he., minimizing (6.7), include gen-
eralized iterative scaling (GIS), conjugate gradient (CG), and limited-memory BFGS 
(LBFGS) (Sha and Pereira, 2003). As shown by Bottou (2009) and Vishwanathan et al. 
(2006), first-order stochastic gradient methods routinely outperform the conventional 
batch algorithms, e.p., LBFGS, by carrying out the parameter update on stochastic 
approximation of J {w ), which can be formulated as

b  \ \ w \\2 k
Jt{w) := - (^(xbt+i, z bt+i)Tw -  Z(w,  x bt+i)̂ j , (6.8)

i= 1

where b is the size of a mini-batch of data sampled from the training set. Summing Jt(w)
- —1

over all batches of data recovers the deterministic objective: Ylt=o ^ ( lü) — J{w)-

6.2 E xp erim en ta l Tasks

We replicated three experiments by Vishwanathan et al. (2006) who apply 1-D chain 
CRFs to problems in natural language processing, using their software — an enhanced 
version of Taku Kudo’s CRF++ code — and following them in setting Gaussian prior 
(6.6) parameter o to 1. We used their CRF features for the experiment of Section 6.2.1.

Tt is available from h t t p : / / c r f p p . so u rcef orge . net.
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Table 6.1: Datasets used in our experiments and the batch size b for stochastic methods.
Dataset Training Set Size Test Set Size #  of Features b
CoNLL-2000 8936 2012 330731 8
BioNLP/NLPB A-2004 18546 3856 455142 6
BioCreAtlvE 7500 5000 382543 6

For the other two experiments, we used binary orthographic features introduced by 
Settles (2004) as well as features based on neighbouring words; the features used by 
Vishwanathan et al. (2006) to model the correlations between the current and previous 
labels were not used here because CRF++ actually can not properly process this type of 
features, causing it to produce misleadingly high generalization performance.

In our experiments we study the convergence behavior of various optimizers by 
plotting deterministic objective value on the training data vs. the number of passes 
through it. The generalization performance in terms of the F-score on the test data 
is reported, and benchmarked against the best F-score found in the literature that is 
achieved by using CRFs. The F-score is the harmonic mean of the precision and the 
recall measurements:

F-score := 2 (precision x recall)/(precision + recall), where

precision := T P /(T P  + FP) and recall := T P /(T P  +  FN). (6-9)

“TP”, “FP” , and “FN” stand for the number of the true positives, false positives, and 
false negatives, respectively.

Table 6.1 summarizes the three datasets used in our experiments and the batch 
sizes used by stochastic methods. Since these CRFs have many (over 105) parameters 
(he., the number of features), neither full BFGS nor natural gradient (Section 5.2.3) 
can be used. However, we can apply our online LBFGS algorithm here: since the CRF 
parameter estimation problem is convex, the non-negativity condition (5.12) holds, and 
thus guarantees non-negativity of the inverse Hessian estimate emulated by oLBFGS. 
Our control methods are batch LBFGS (Algorithm 2.2) as supplied by CRF++ and 
SMD (Section 5.2.2), which is the best performing stochastic method in (Vishwanathan 
et al., 2006); their implementation of SGD (SGD as in Section 5.2.1 with fixed step sizes 
T/t = 0.1) is only shown for our first experiment since in the other cases it performed 
worse than SMD, while producing heavy oscillations that would have obscured our 
figures.

To cope with regions of low curvature, we employed a model-trust region parameter

2 We note that the line search used by CRF++ for LBFGS does not guarantee a monotonic decrease 
in the objective function value.
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F igu re  6.1: Performance of optimization algorithms plotted against number of passes through 
the CoNLL-2000 dataset. Left, center: deterministic objective on the training set; right: F-score 
on the test set.

A for oLBFGS (c/. Line 10 of Algorithm 5.1); we found it sufficient to set A =  1 for 
our experiments. The step size of oLBFGS was determined by the decay schedule 
(5.4) with tuning parameters rjo and r .  We found empirically that setting 770 =  1 and 
r  =  104 typically leads to satisfactory results, and hence used this setting throughout. 
Free parameters of SMD were moderately tuned for good performance: 7 7 0  =  0.1 x 1 , 

/i =  0.02 throughout, A =  0.99 for the first experiment, and 0.1 for the others. The 
limited-memory buffer size m = 5 was used for both LBFGS and oLBFGS. To prevent 
stochastic methods from overfiting correlations across training instances, we randomly 
permuted the training data before each complete pass over it (cf. the two-step sampling 
procedure in Section 5.1). All methods were stopped after 100 full passes through the 
training data.

6.2.1 C oN LL -2000 B ase N P  C hunking

Our first experiment is the CoNLL-2000 Base NP chunking task (Sang and Buchholz, 
2000). Text chunking as an intermediate step towards full parsing divides a text into 
syntactically correlated chunks of words. Each word in the training sentences is an-
notated automatically with part-of-speech (POS) tags. The task is to label each word 
with a label indicating whether it lies outside, starts, or continues a chunk.

Figure 6.1 (left) shows that oLBFGS (solid) initially is slower than SGD (dash 
dotted) and SMD (dotted). However, as shown in the zoomed-in figure (Figure 6.1, 
center), oLBFGS surpasses both SGD and SMD after 7 passes over the training data, 
and asymptotically achieves the lowest objective value of all methods. Moreover, Figure
6.1 (center) shows that after about 30 passes over the data, oLBFGS already reaches 
the final objective value obtained by the batch LBFGS method (dashed).

The best F-score on the test set (solid horizontal line in Figure 6.1, right) was 
reported to be 93.6% (Vishwanathan et al., 2006). Figure 6.1 (right) shows tha t LBFGS
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Figure 6.2: Performance of optimization algorithms plotted against number of passes through 
the BioNLP/NLPBA-2004 dataset. Left, center: deterministic objective on the training set; 
right: F-score on the test set.

requires 40 passes over the data to achieve a comparable generalization performance 
(F-score of 93.3%, dashed horizontal line), while SMD and SGD do so in 7 passes, 
oLBFGS in 6, though in several later passes SGD oscillates to a lower level.

6.2 .2  B io N L P /N L P B A -2 0 0 4  Shared Task

The BioNLP/NLPBA-2004 shared task (Kim et al., 2004) involves biomedical named- 
entity recognition on the GENIA corpus, aiming to identify and classify molecular 
biology terms in sentences of MEDLINE abstracts.

As can be seen in Figure 6.2 (left and center), both stochastic methods not only 
decrease the objective value substantially faster than the batch LBFGS method, but 
also asymptotically converge to a lower objective value: oLBFGS and SMD obtain the 
deterministic objective value eventually reached by LBFGS in more than one order 
of magnitude less passes over the data. In this task, oLBFGS again asymptotically 
outperforms SMD (Figure 6.2, center).

The best F-score reported by Settles (2004) was 69.8%.; oLBFGS reliably surpasses 
this F-score (Figure 6.2, right), while LBFGS and SMD do not: LBFGS eventually 
obtains an F-score of just over 69.5; the F-score of SMD settles around 68.5%-70%.

6.2 .3  B io C reA tlv E  C hallenge Task 1A

The BioCreAtlvE challenge task 1A (Hirschman et al., 2005) is also a biomedical 
named-entity identification task. It focuses on gene and protein name identification 
in sentences of MEDLINE abstracts.

Similar to the previous set of experiments, both stochastic methods significantly 
outperform LBFGS in minimizing the objective; asymptotically, oLBFGS achieves the

3Settles (2005) later reported a better F-score of 70.5% for slightly improved features.
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F igu re  6.3: Performance of optimization algorithms plotted against number of passes through 
the BioCreAtlve dataset. Left, center: deterministic objective on the training set; right: F-score 
on the test set.

lowest objective value of all methods (Figure 6.3, left and center). On this dataset, 
oLBFGS reliable surpasses an F-score of 69.6%— 0.3% away from the F-score (69.9%) 
reported by Settles (2005) — after around 40 passes through the data, still faster than 
LBFGS (80 passes). Significant oscillations appear in the F-score of SMD, causing its 
poor performance here.

6.3 D iscussion

We applied our online LBFGS algorithm to the training of CRFs in natural language 
processing. In all tasks, oLBFGS achieves state-of-the-art generalization results in far 
fewer passes through the data than LBFGS, while requiring only moderate tuning effort 
for its free parameters, with 770, r ,  and A all fixed to their default values throughout. 
The generalization performance of oLBFGS is comparable to or better than existing 
stochastic methods, and the asymptotic objective value achieved by oLBFGS is consis-
tently the lowest among stochastic methods.



C hapter 7

C onclusions

This chapter concludes this thesis with a summary of key contributions and possible 
directions for future research.

7.1 S um m ary o f C on trib u tion s

The key contributions of this thesis are:

1. A principled and robust BFGS quasi-Newton optimization method (subBFGS, 
Algorithm 3.1) and its limited-memory variant (subLBFGS) that are specifically 
designed for nonsmooth convex optimization problems in machine learning. Sub-
BFGS is proven to globally converge to the optimal objective value under some 
technical conditions. SubLBFGS demonstrates competitive performance when 
benchmarked against specialized state-of-the-art machine learning solvers.

2. A subgradient reformulation (3.17 and 3.18) of the standard Wolfe conditions 
that can be used by an inexact line search to effectively reduce the value of a 
nonsmooth objective function in a given descent search direction.

3. An iterative direction-finding procedure (Algorithm 3.2) that is guaranteed to find 
a descent direction at a non-optimal position. This procedure can be plugged into 
any nonsmooth optimization algorithm which requires a descent direction for its 
parameter update.

4. A new efficient algorithm (Algorithm 3.4) for identifying the nonsmooth points 
of a one-dimensional pointwise maximum of linear functions.

5. Exact line search methods specialized for ./^-regularized risk minimization with 
the binary hinge loss (Algorithm 3.3) and its generalizations to the multiclass 
and multilabel settings (Algorithm 3.5). These methods can be used as black-
box procedures to accelerate the convergence of any adaptive classifier whose 
parameter update takes the form of (1.6).
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6. Stochastic variants of standard BFGS (Algorithm 5.1), in both its full and memory- 
limited forms, for online optimization of convex functions. Both algorithms are 
scalable to large datasets. Online LBFGS is, in addition, also scalable to large 
models with many parameters.

7.2 F u tu re  R esearch  D irections

In the following we suggest several possible extensions of the work presented in this 
thesis:

1. In many of our experiments of Chapter 4 we observe that subLBFGS decreases the 
objective function rapidly early on but slows down closer to the optimum. Bundle 
methods, by contrast, exhibit slow initial progress but tend to be competitive 
asymptotically. One promising research direction would be to develop hybrid 
optimizers that are able to combine the strength of these two methods, e.g., by 
switching from sub(L)BFGS to a bundle method as appropriate.

2. This thesis demonstrates the use of sub(L)BFGS on nonsmooth regularized risk 
minimization problems where the nonsmoothness stems from piecewise linear 
terms in the objective function. Extending sub(L)BFGS to problems with other 
forms of nonsmoothness would be an interesting research topic. For instance, the 
objective functions of computational problems in multiview geometry (Hartley 
and Kahl, 2007; Kahl and Hartley, 2008) are the pointwise maximum of quartic 
(4th-order) polynomials. These problems are nonsmooth at those intersections 
of polynomials where the maximum is attained. Moreover, they are not convex 
but quasi-convex, z.e., they have convex sublevel sets. Adapting sub(L)BFGS to 
these circumstances could improve the dominant second-order cone programming 
(SOCP) approach to these problems.

3. The current version of online BFGS (resp. online LBFGS) is applicable only to 
convex problems, where it can maintain positivity of its curvature estimate B t . 
Extending o(L)BFGS to local optimization of non-convex objectives would be an 
interesting research topic to pursue.

4. Our stochastic variants of the BFGS and LBFGS methods require tuning of a 
few free parameters; in our experience, such tuning becomes critical for non- 
convex optimization problems. It would be very useful if principled ways could 
be developed to automatically set and adapt them.
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A .l  B u n d le  S ea rch  for a  D e sc e n t D ire c t io n

Recall from Section 3.2.2 that at a subdifferential point w  our goal is to find a descent 
direction p * which minimizes the pseudo-quadratic model:

This is generally intractable due to the presence of a supremum over the entire subdiffer-
ential dJ(w).  We therefore propose a bundle-based descent direction finding procedure 
(Algorithm 3.2) which progressively approaches M(p)  from below via a series of con-
vex functions M ^ (p ) , • • • , M ^(p ), each taking the same form as M(p)  but with the 
supremum defined over a countable subset of dJ(w).  At iteration i our convex lower 
bound M^l\ p )  takes the form

M{p) := \ p TB lp +  sup g p-
gedJ(w)

(A.l)

M^l\ p )  := ^p^B lp +  sup g ' p ,  where
gevw

:=  {g ^  : j  < i,  i , j  G N} C dJ(w). (A.2)

Given an iterate p^ ^ G Rd we find a violating subgradient g ^  via

gb) ._  arg sup g p^  ^
gedJ(w)

(A.3)

Violating subgradients recover the true objective M(p)  at the iterates p^

= M ^ \ p ^ ~ 1̂ ) =  1 -f (A.4)

To produce the iterates p l̂\  we rewrite minpeRd M^l\ p )  as a constrained optimiza-

For ease of exposition we are suppressing the iteration index t here.
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tion problem (3.13), which allows us to write the Lagrangian of (A.2) as

Lw (p ,£ ,a ) := \ p '  B  lp  +  £ — aT(£l - G {l)Tp), (A.5)

where := [g^\ g 2̂\ . . . ,  g^]  G Rdxi collects past violating subgradients, and a  is 
a column vector of non-negative Lagrange multipliers. Setting the derivative of (A.5) 
with respect to the primal variables £ and p  to zero yields, respectively,

a  1 =  1 and (A.6)

p  =  —B G ^ ol . (A.7)

The primal variable p  and the dual variable a  are related via the dual connection 
(A.7). To eliminate the primal variables £ and p, we plug (A.6) and (A.7) back into 
the Lagrangian to obtain the dual of M^\p):

D^\cx) := -  ±(Gw a ) TB (G w a ) (A.8)

s.t. a  G [0,1]\ ||o:|| i =  1.

The dual objective D l̂\cx) (resp. primal objective M ^(p )) can be maximized (resp. 
minimized) exactly via quadratic programming. However, doing so may incur substan-
tial computational expense. Instead we adopt an iterative scheme which is cheap and 
easy to implement yet guarantees dual improvement.

Let G [0, l]1 be a feasible solution for D l̂\ a ) . 2 The corresponding primal 
solution pW can be found by using (A.7). This in turn allows us to compute the next 
violating subgradient g^+l  ̂ via (A.3). With the new violating subgradient the dual 
becomes

Z)(i+1)(a) := - \ { G ^ l+l)oc) B { G {i+l)c l )

s.t. a  G [0, l]l+1, ||a ||i  =  1, (A.9)

where the subgradient matrix is now extended:

G (i+1) =  [G w 9 «+l)]. (A.10)

Our iterative strategy constructs a new feasible solution ot € [0.1]I+1 for (A.9) by

2Note that a (1^= 1 is a feasible solution for D (1)(a ).
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constraining it to take the following form:

a  =
(1 — p ) a W  

ß
where g 6 [0,1]. (A .ll)

In other words, we maximize a one-dimensional function : [0,1] —> R:

£>(i+1)(p) := -  \  (G (i+1)a )  B  (A.12)

=  -  \  ((! -  ß)g[l) + ß g {l+1)) B  ((I ~ ß)9{l) + ß9{l+1)) ,

where

p (i) := G (i)a (i) € <9J(ie) (A.13)

lies in the convex hull of g ^  6  d J ( w ) V j  < « (and hence in the convex set d J ( w )) 
because 6 [0, l]z and | |a ^ | | i  =  1. Moreover, \i € [0,1] ensures the feasibility of 
the dual solution. Noting that D^l+l\/a) is a concave quadratic function, we set

dD (i+l\ ß ) =  (9 <i)- 9 <i+1)) T B ( ( l - ! ? ) g <i) +  r/g(i+1)) = 0  (A.14)

(g(i) _  g(i+l))T

to obtain the optimum

: =  =  m i n  (°--0 (0 -  a ( H i ) ) T B » ( 0  -  g < m ))

Our dual solution at step z -|- 1 then becomes

(i+D . =  ( i - p * ) « (i)
ß*

(A.15)

(A.16)

Furthermore, from (A.10), (A .ll), and (A.13) it follows that can be maintained 
via an incremental update (Line 8 of Algorithm 3.2):

g(i+i) ;= G «+i)a «+i) =  (1 -  Ii*)g{i) -f ß*g{i+1\  (A.17)

which combined with the dual connection (A.7) yields an incremental update for the 
primal solution (Line 9 of Algorithm 3.2):

p (i+1) -B g ^ i+l) = -(1  -  fj,*)Bg® -  g*B g{i+V

= (1 -  /U)p(i) -  g*Bg(i+1l  (A.18)

Using (A.17) and (A. 18), computing a primal solution (Lines 7-9 of Algorithm 3.2)
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costs a total of 0(d2) time (resp. 0(md)  time for LBFGS with buffer size m), where 
d is the dimensionality of the optimization problem. Note that maximizing L^z+1)(a) 
directly via quadratic programming generally results in a larger progress than that 
obtained by our approach.

In order to measure the quality of our solution at iteration z, we define the quantity

r(0 := min M ^ +1\ p ^ )  — = min M ( p ^ )  — (A.19)
j < i 3 < i

where the second equality follows directly from (A.4). Let D(a)  be the corresponding
aA) ^ — _D^)(a(1)), and let a* be thedual problem of M(p), with the property D ^

optimal solution to argmaxa e _4 D{ot) in some domain A  of interest. As a consequence 
of the weak duality theorem (Hiriart-Urruty and Lemarechal, 1993, Theorem XII.2.1.5), 
minpeRd M(p) > D(ot*). Therefore (A.19) implies that

> min M(p)  — > min M(p)  — D(ac*) > 0. (A.20)
peRd p€Rd

The second inequality essentially says that is an upper bound on the duality gap. 
In fact, Theorem A.2.3 below shows that (e^ — e^+1 )̂ is bounded away from 0, he., 
gh) is monotonically decreasing. This guides us to design a practical stopping criterion 
(Line 6 of Algorithm 3.2) for our direction-finding procedure. Furthermore, using the 
dual connection (A.7), we can derive an implementable formula for ê l>:

(0 -e' ' — min
j < i

= min
3 < i

— min
j < i

\ p W TB - lpW  + p & ! + I(G (i)a (i))TB (G (i)a (i))

p(j ) 1 gfO+L _  i ( püAgü)  _|_p(0 g b)) (A.21)

where </-7+1) := arg sup gTp^^ and g ^  := GL')a 0) \/j < p 
g e d J ( w )

It is worth noting that continuous progress in the dual objective value does not nec-
essarily prevent an increase in the primal objective value, he., it is possible that 
M (p^+1)) > M ( p W). Therefore, we choose the best primal solution so far,

p := argm inM (p(j )̂, (A.22)
3 < i

as the search direction (Line 18 of Algorithm 3.2) for the parameter update (2.5). This 
direction is a direction of descent as long as the last iterate p(1' fulfills the descent 
condition (3.10). To see this, we use (A.32-A.34) below to get supgedJ{w) 9T =
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M (p ^ )  -f Z )W (a^), and since

M (p ^ )  > m inM ( p ^ )  and D ^ ( a ^ )  > D ^ \c x ^ )  Vj < i , (A.23)
j < i

definition (A.22) immediately gives s u p ^ ^ j ^  g p ^  > s u p g ^ j^ )  g p. Hence if 
p ^  is a descent direction, then so is p.

We now show tha t if the current parameter vector w  is not optimal, then a direction-
finding tolerance e > 0 exists for Algorithm 3.2 such that the returned search direction 
p  is a descent direction, he., s u p ^ ^ j ^  g p  < 0.

Lem m a A. 1.1 Let B  be the current approximation to the inverse Hessian maintained 
by Algorithm 3.1, and h > 0 a lower bound on the eigenvalues of B . If the current 
iterate w is not optimal: 0 ^ dJ(w),  and the number of direction-finding iterations is 
unlimited (kmax =  oo), then there exists a direction-finding tolerance e > 0 such that 
the descent direction p  =  —B g , g € d J ( w ) returned by Algorithm 3.2 at w satisfies 
supge d J ( w ) 9 T P  < 0.

P roof Algorithm 3.2 returns p  after i iterations when e ^  < e, where =  M(p) — 
D(1)(q W) by definitions (A.19) and (A.22). Using definition (A.8) of D ^ ( a ^ ) ,  we 
have

- D (l)( a (i)) =  I ( G w a (i))TB (G (i)a (i)) =  \  g (i)rB g (i\  (A.24)

where g ^  = G ^ o t^  is a subgradient in dJ{w).  On the other hand, using (A.l) and 
(A. 18), one can write

M{p)  =  sup g p  +  \ p  B  lp
g£dJ (w)

= sup g p  +  ^ g B(fi where g € d J ( w ) .  (A.25)
gEdJ(w)

Putting together (A.24) and (A.25), and using B  >- h, one obtains

e(l) =  sup g p  +  \ g TB g  +  \ g {l)TB g [l) >  sup gTp  +  ^||<?||2 +  |||<7{l)||2.
gCdJ(w)  g€dJ (w)  ^ ^

(A.26)

Since 0 ^ d J ( w ), the last two terms of (A.26) are strictly positive; and by (A.20), >
0 . The claim follows by choosing an e such that (Vi) f  (||p ||2 + \\g^ ||2) > e > > 0. ■

Using the notation from Lemma A.1.1, we show in the following corollary that a 
stricter upper bound on e allows us to bound s u p g ^ j^ )  g p  in terms of g B g  and
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j|gf||. This will be used in Appendix A.4 to establish the global convergence of the 
subBFGS algorithm.

Corollary A. 1.2 Under the conditions of Lemma A. 1.1, there exists an e > 0 for 
Algorithm 3.2 such that the search direction p generated by Algorithm 3.2 satisfies

sup g p < - \ g  Bg < -^\\g\\2 < 0. (A.27)
gEdJ(w)  ^

Proof Using (A.26), we have

(Vz) eW > sup g Tp + \ g JBg  + ^ \ \g [l)\\2. (A.28)
gEdJ(w)  ^

The first inequality in (A.27) results from choosing an e such that

(Vi) b |g (i)||2 > € > e(i) > 0. (A.29)

The lower bound h  > 0 on the spectrum of B  yields the second inequality in (A.27), 
and the third follows from the fact that ||g|| > 0 at non-optimal iterates. ■

A .2 C onvergence o f  th e  D escen t D irection  Search

Using the notation established in Appendix A.l, we now prove the convergence of 
Algorithm 3.2 via several technical intermediate steps. The proof shares similarities 
with the proofs found in Smola et al. (2007), Shalev-Shwartz and Singer (2008), and 
Warmuth et al. (2008). The key idea is that at each iterate Algorithm 3.2 decreases 
the upper bound on the distance from the optimality, and the decrease in is 
characterized by the recurrence — e^+1) > c (e^)2 with c > 0 (Theorem A.2.3). 
Analysing this recurrence then gives the convergence rate of the algorithm (Theorem 
A.2.5).

We first provide two technical lemmas (Lemma A.2.1 and A.2.2) that are needed 
to prove Theorem A.2.3.

Lemma A .2.1 Let D^l+1\p )  be the one-dimensional function defined in (A.12), and 
the positive measure defined in (A. 19). Then < dD^l+l\ 0).

Proof Let p ^  be our primal solution at iteration z, derived from the dual solution 
using the dual connection (A.7). We then have

pb) _  where := (A.30)
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Definition (A .l) of M (p ) implies that

M (p°°) -  + p {i)Tg (i+1), (A.31)

where

p (l+1) :=  argsup g Tp {i). (A.32)
ged J{ w)

Using (A.30), we have B ~ lp ^  = —B ~ l B g ^  = —g^l\  and hence (A.31) becomes

=  p(‘)Tg « + i ) _ i p ( ‘ )TgW. (A.33)

Similarly, we have

Z)W (aw ) =  -  i ( G (l)a (i))TJB (G (l)a (i)) =  ± p (i)Tp (i)- (A.34)

From (A. 14) and (A.30) it follows that

&D( m ) (0) =  (p(i)- p (f+1))Tß p (i) =  (p(i+1)- p (i))Tp (i), (A.35)

where ph+i) js a violating subgradient chosen via (A.3), and hence coincides with 
(A.32). Using (A .33)- (A.35), we obtain

M (p (i)) -  D (i)( a (i)) =  (V m )  - p (i)) T p (i) -  d D (i+1)(0). (A.36)

Together with definition (A.19) of e ^ ,  (A.36) implies that

=  m inM ( p ^ )  — D ^
j < i  \  )

< M (p (i)) -  D (i)( a (i)) =  &D( m ) (0).

Lem m a A .2.2 Let /  : [0,1] —> R be a concave quadratic function with /(0 ) =  0, 
<9/( 0) € [0, a], and d f 2(x) > —a for some a > 0. Then maxxG[0)i] /(x )  > •

P roof Using a second-order Taylor expansion around 0, we have /(x )  > df (0) x  —  | x 2. 
x* =  df{f ))/a is the unconstrained maximum of the lower bound. Since d f ( 0) G [0, a], 
we have x* € [0,1]. Plugging x* into the lower bound yields (<9/(0))2/(2a). ■
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Theorem  A .2.3 Assume that at w the convex objective function J  : Rd —> R has 
bounded subgradient: ||dJ(tu)|| < G, and that the approximation B  to the inverse 
Hessian has bounded eigenvalues: B  A H . Then

£« - £<i+1> >
(6(i))2
8 G2H '

P ro o f Recall that we constrain the form of feasible dual solutions for D ^+1^(a) as in
(A.11). Instead of D ^+b (a ), we thus work with the one-diinensional concave quadratic

_ r (i)"
function D^1+1\p )  (A. 12). It is obvious that ^  is a feasible solution for D^l+l\o t).

In this case, ZMZ+1)(0) =  (A.16) implies that D^l+l\p*) = D^l+1\cx^+1̂ ).
Using the definition (A. 19) of we thus have

r(0 - e (i+1) > L>(i+1)( a (i+1)) -  L >^(aw ) = D^i+1\p * ) -  £>(i+1)(0). (A.37)

It is easy to see from (A.37) that — e^+1  ̂ are upper bounds on the maximal value 
of the concave quadratic function f (p)  := D^l+1\p )  — D^l+l\ 0) with \i G [0,1] and 
/(0) =  0. Furthermore, the definitions of D^l+1\p )  and f (p)  imply that

d f ( 0) = &D(m )(0) -  {gW -  g (l+l)Y B g ^  and (A.38)

d2f{p) = d2D(i+1\p )  =  -  {g(i) -  g(i+1))T B{g(i) -  g{l+D).

Since ||<9J(m)|| < G and g ^  G dJ(w)  (A.13), we have — gO+i)|| < 2G. Our 
upper bound on the spectrum of B  then gives |d/(0)| < 2G2H  and \d2f(p)\  < AG2H. 
Additionally, Lemma A.2.1 and the fact that B  >z 0 imply that

d f{0) =  dD^i+1\0 )  > 0 and d2f(p)  = d2D {i+l\p )  < 0, (A.39)

which means that

d f ( 0) G [0, 2G2H] c  [0, AG2H] and d2f(/i) > - 4 G2H. (A.40)

Invoking Lemma A.2.2, we immediately get

(<9/(0))2:(0 _  €(i+1) >
8 G2H

(dD^i+1\ 0))2 
8 G2H

(A.41)

Since < 0Z)^+1 (̂0) by Lemma A.2.1, the inequality (A.41) still holds when dD^l+l\0 )  
is replaced with e ^ . ■

(A.38) and (A.39) imply that the optimal combination coefficient p* (A. 15) has the
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property

p* =  min
dD(l+1\ 0)

(A.42)

Moreover, we can use (A.7) to reduce the cost of computing p* by setting B g ^  in 
(A. 15) to be —p ^  (Line 7 of Algorithm 3.2), and calculate

p* =  min
g ( i + l ) T p { i )  _  g ( i ) T p { i )

g(‘+l)Tß^(i+l) _)_ 2 g(®+l)Tp(i) _ p( i )  ’ (A.43)

where JBtg^+l  ̂ can be cached for the update of the primal solution at Line 9 of Algo-
rithm 3.2.

To prove Theorem A.2.5, we use the following lemma proven by induction by Abe 
et al. (2001, Sublemma 5.4):

Lemma A .2.4 Let {e^\ ê 2\  •••} be a sequence of non-negative numbers satisfying 
Vi 6 N the recurrence

€(*) _ e(i+l> > c (e(i))2,

where c € R+ is a positive constant. Then Vi € N we have

6«

We now show that Algorithm 3.2 decreases to a pre-defined tolerance e in 0(1 /e) 
steps:

Theorem A .2.5 Under the assumptions of Theorem A .2.3, Algorithm 3.2 converges 
to the desired precision e after

1 < t  <
8 G2H

steps for any e < 2G2H .

Proof Theorem A.2.3 states that

e(0 _ e(i+i) >
(CW ) 2

8 G2H'
(A.44)
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where is non-negative Vi G N by (A.20). Applying Lemma A.2.4 we thus obtain

:(i) < where c
. ( < * * ) ......................... ^

Our assumptions on \\dJ(w)\\ and the spectrum of B  imply that

Z)(*+1)(0) =  {g{i) -  g {i+1))TB g {i) < 2G2H.

(A.45)

(A.46)

Hence < 2G2H  by Lemma A.2.1. This means that (A.45) holds with =  2G2H .
Therefore we can solve

e <
1

c ( t -\-
with c

1
8 G2H

and e(1) := 2G2H (A.47)

to obtain an upper bound on t such that (Vi > t) e^' < e < 2G2H . The solution to 
(A.47) is t < -  4. ■

A .3 S a tis f ia b ili ty  o f th e  S u b g ra d ie n t W olfe C o n d itio n s

To formally show that there always is a positive step size that satisfies the subgradient 
Wolfe conditions (3.17,3.18), we restate a result of Hiriart-Urruty and Lemarechal 
(1993, Theorem VI.2.3.3) in slightly modified form:

Lem m a A .3.1 Given two points w  ^  w' in Rd, define w v — rjw' +  (1 — rf)w. Let 
J  : Rd —> R be convex. There exists p G (0,1) and g G dJ{wrj) such that

J{w') - J ( w ) =  gT(w' — w) < gT(w' — w),

where g := argsupgeöj (tx;77) gT(w' -  w ).

T heorem  A .3.2 Let p  be a descent direction at an iterate w. //4>(77) := J{w + gp) is 
bounded below, then there exists a step size 77 > 0 which satisfies the subgradient Wolfe 
conditions (3.17, 3.18).

P ro o f Since p  is a descent direction, the line J(w)-{-cirj supgedJ^  g p  with c\ G (0,1) 
must intersect $ (77) at least once at some 77 > 0 (see Figure 2.1 for geometric intuition). 
Let rf be the smallest such intersection point; then

J(w  + g'p) = J{w)  +  ci77/ sup g p. (A.48)
gGdJ(w)
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Since $(77) is lower bounded, the sufficient decrease condition (3.17) holds for all 77" £ 
[0,77']. Setting w' = w  + 7f p  in Lemma A.3.1 implies that there exists an 77" £ (0,77') 
such that

J(w + r]'p) — J(w) < r) sup g p. (A.49)
gedJ(w+T)"p )

Plugging (A.48) into (A.49) and simplifying it yields

ci sup g p < sup g p. (A.50)
g £ d J (w )  gedJ(w+r]"p)

Since p  is a descent direction, swpg£dj(w) g p  < 0, and thus (A.50) also holds when ci 
is replaced by C2 £ (ci, 1). ■

A .4 G lo b a l C o n v e rg e n ce  o f S u b B F G S

There are technical difficulties in extending the classical BFGS convergence proof to the 
nonsmooth case. This route was taken by Andrew and Gao (2007), which unfortunately 
left their proof critically flawed: In a key step (Andrew and Gao, 2007, Equation 7) 
they seek to establish the non-negativity of the directional derivative f'{x) q) of a convex 
function /  at a point x in the direction q, where x and q are the limit points of convergent 
sequences {rrfc} and {qk}K, respectively. They do so by taking the limit for k £ k  of

f ' ( x k + ötkqk\ qk) > 7 f ' ( x k]qk), where {cek} —> 0 and 7 £ (0,1), (A.51)

which leads them to claim that

f'{x-,q) > 7 f ' (x;q) ,  (A.52)

which would imply f { x \q )  > 0 because 7 £ (0,1). However, f ' ( x k,qk) does not 
necessarily converge to f ( x \  q) because the directional derivative of a nonsmooth convex 
function is not continuous, only upper semi-continuous (Bertsekas, 1999, Proposition 
B.23). Instead of (A.52) we thus only have

f'(x-q) > 7 limsup f \ x k-qk) , (A.53)
k—*oo,kEhi

which does not suffice to establish the desired result: f ( x ; q) > 0. A similar mistake is 
also found in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced by Birge et al. 
(1998) to prove the global convergence of subBFGS (Algorithm 3.1) in objective func-
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Algorithm A .l Algorithm 1 of Birge et al. (1998)
1: Initialize: t := 0 and wo 
2: while not converged do 
3: Find wt+1 that obeys

j ( w t + 1) < J ( w t ) -  a t\\9e't \\2 +  et (A.54)
where g€>t e  d ^J (w t+i), at > 0, et ,ej > 0.

4: t :— f T  1
5: end while

tion value, i.e . ,  J(wt)  — > inf^ J(w),  provided that the spectrum of BFGS’ inverse 
Hessian approximation B t is bounded from above and below for all £, and the step size 
r)t (obtained at Line 9) is not summable: YleLo dt — oo.

Birge et al. (1998) provide a unified framework for convergence analysis of opti-
mization algorithms for nonsmooth convex optimization, based on the notion of e- 
subgradients. Formally, g is called an e-subgradient of J  at w  iff (Hiriart-Urruty and 
Lemarechal, 1993, Definition XI.1.1.1)

(Vu/) J{w') > J{w)  +  (wr — w)Tg — e, where e > 0. (A.55)

The set of all e-subgradients at a point w is called the e-subdifferential, and denoted 
deJ(w).  From the definition of subgradient (1.10), it is easy to see that dJ(w) = 
doJ(w)  C deJ(w).  Birge et al. (1998) propose an e-subgradient-based algorithm (Al-
gorithm A.l) and provide sufficient conditions for its global convergence:

Theorem A .4.1 (Birge et al., 1998, Theorem 2.1(iv), first sentence)
Let J  : Rd —> Ru{oc} be a proper lower semi-continuous3 extended-valued convex 
function, and let {(et,e't ,at,Wt-\-i:ge't )} be any sequence generated by Algorithm A .l 
satisfying

oo oo
et < oo and at = oo 

t=o t=o

If e't —> 0, and there exists a positive number ß > 0 such that, for all large t,

ß \ \ w t + i - w t \\ < at ||0 £/||, (A.57)

(A.56)

then J(wt)  —>• inf^ J(w).

3This means that there exists at least one w  G Rd such that J(w) < oo, and that for all w  G Md, 
J(w) > — oo and J(w) < lim infi-xx, J(wt)  for any sequence {mt} converging to w.  All objective 
functions considered in this paper fulfill these conditions.
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We will use this result to establish the global convergence of subBFGS in Theo-
rem A.4.3. Towards this end, we first show that subBFGS is a special case of Al-
gorithm A.l:

Lem m a A .4.2 L e tp t =  —B tgt be the descent direction produced by Algorithm 3.2 at a 
non-optimal iterate Wt, where Bt f  h >  0 and gt E dJ(w t), and let Wt+\ — Wt -F PtPti 
where ry >  0 satisfies sufficient decrease (3.17) with free parameter c\ E (0,1). Then 
Wt+ 1  obeys (A.54) of Algorithm A .l for at := , et =  0, and e't := gfil — ^ )  djBtfjt-

P roof Our sufficient decrease condition (3.17) and Corollary A.1.2 imply that

J (w t+1 ) < J (w t) -  ^  g jB tgt (A.58)

< J (w t) -  a*||£h||2, where at := (A.59)

What is left to prove is that gt E de/ J(w t+ 1 ) for an e't >  0. Using gt E d J (w t) and the 
definition (1.10) of subgradient, we have

ifi/w) J(w) > J (w t) +  ( w - w t f g t

=  J (w t+1 ) +  (w -  w t+i) gt +  J (w t) -  J (w t+1 ) +  (wt+i -  w t) 'g t .
(A.60)

Using w t+i - w t =  -T)tB tgt and (A.58) gives

{\/w) J(w) > J (w t+1 ) +  (w - w t+i)Tgt +  C- ~ g j B tg t -  r]t g lB tgt 

=  J (w t+i) +  (w - w t+i)Tgt -  e't ,

where e't := 7 (̂1 — ^ )  g \B tg t■ Since r/t > 0, c\ < 1, and B t >z h > 0, e[ is non-negative. 
By the definition (A.55) of e-subgradient, gt E <9€/ J(wt+i). ■

T heorem  A .4.3 Let J  : Rd —* R u{oo} be a proper lower semi-continuous!3 extended-
valued convex function. Algorithm 3.1 with a line search that satisfies the sufficient 
decrease condition (3.17) with c\ E (0,1) converges globally to the minimal value of J , 
provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded above and 
below: 3(h,  H : 0 < h < H <  oo) : (Wt) h ■< Bt r< H

2. the step size r]t >  0 satisfies ht =  00 > anc^

3. the direction-finding tolerance e for Algorithm 3.2 satisfies (A.29).
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P ro o f We have already shown in Lemma A.4.2 that subBFGS is a special case of 
Algorithm A.l. Thus if we can show that the technical conditions of Theorem A.4.1 
are met, it directly establishes the global convergence of subBFGS.

Recall that for subBFGS at := Cl%h, et — 0, e't 7 (̂1 — gjBtgt, and gt = ge>t .
Our assumption on r]t implies that Ylt =̂ o at = dt — oc, thus establishing
(A.56). We now show that e't —► 0. Under the third condition of Theorem A.4.3, it 
follows from the first inequality in (A.27) in Corollary A. 1.2 that

sup gTp t < - \ g [ B tgt , (A.61)
g e d J ( w t )

where pt =  —B tgt , gt 6 dJ(wt) is the search direction returned by Algorithm 3.2. 
Together with the sufficient decrease condition (3.17), (A.61) implies (A.58). Now use 
(A.58) recursively to obtain

t
J (wt+i) < J(w0) -  ^ - ^ V i g j B i g i .  (A.62)

1 i=o

Since J  is proper (hence bounded from below), we have

OO ^  OG

^  Tji g jB lgl = l _ c ± '52ei < 00 • (A.63)
t—0 2 t=0

Recall that e[ > 0. The bounded sum of non-negative terms in (A.63) implies that the 
terms in the sum must converge to zero.

Finally, to show (A.57) we use wt+i — Wt =  —r]tB tgt , the definition of the matrix 
norm: ||ß || := m ax^o , and the upper bound on the spectrum of Bt to write:

\\wt+i - w t \\ =  Vt\\Btgt \\ < ^II^IHI^II < VtH\\gt \\. (A.64)

Recall that gt = ge't and at =  Cir£ h , and multiply both sides of (A.64) by to obtain 
(A.57) with ß  : =  ■

A .5 SubB F G S C onverges on V arious C oun terexam p les

We demonstrate the global convergence of subBFGS with an exact line search on 
various counterexamples from the literature, designed to show the failure to converge 
of other gradient-based algorithms.

4We run Algorithm 3.1 with h = 10 8 and e =  10 5.
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subBFGS

Figure A .l: Optimization trajectory of steepest descent (left) and subBFGS (right) on coun-
terexample (A.65).

A .5.1 C oun terexam ple for S teep est D escen t

The first counterexample (A.65) is given by Wolfe (1975) to show the non-convergent 
behaviour of the steepest descent method with an exact line search (denoted GD):

f ( x , y )  ■■=
by/(9x2 -F 1 by2) 

9x + 16)2/1

if x > 12/|,
otherwise.

(A.65)

This function is subdifferentiable along x < 0, y = 0 (dashed line in Figure A.l); 
its minimal value (—oo) is attained for x = —oo. As can be seen in Figure A.l (left), 
starting from a differentiable point (2,1), GD follows successively orthogonal directions, 
he., —V /(x , y), and converges to the non-optimal point (0, 0). As pointed out by Wolfe 
(1975), the failure of GD here is due to the fact that GD does not have a global view 
of / ,  specifically, it is because the gradient evaluated at each iterate (solid disk) is not 
informative about 9/(0, 0), which contains subgradients (e.g., (9,0)), whose negative 
directions point toward the minimum. SubBFGS overcomes this “short-sightedness” 
by incorporating into the parameter update (2.5) an estimate B t of the inverse Hessian, 
whose information about the shape of /  prevents subBFGS from zigzagging to a non- 
optimal point. Figure A.l (right) shows that subBFGS moves to the correct region 
(x < 0) at the second step. In fact, the second step of subBFGS lands exactly on the 
hinge x < 0, y = 0, where a subgradient pointing to the optimum is available.

A .5.2 C oun terexam ple for S teep est Subgradient D escen t

The second counterexample (A.66), due to Hiriart-Urruty and Lemarechal (1993, Sec-
tion VIII.2.2), is a piecewise linear function which is subdifferentiable along 0 < y =
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subGD

x

subBFGS

X

Figure A .2: Optimization trajectory of steepest subgradient descent (left) and subBFGS 
(right) on counterexample (A.66).

±3x and x — 0 (dashed lines in Figure A.2):

f (x,  y ) := max{ —100, ±  2x + 3y, ±  5x + 2y}. (A.66)

This example shows that steepest subgradient descent with an exact line search (de-
noted subGD) may not converge to the optimum of a nonsmooth function. Steepest 
subgradient descent updates parameters along the steepest descent subgradient direc-
tion, which is obtained by solving the min-sup problem (3.7) with respect to the Eu-
clidean norm. Clearly, the minimal value of /  (—100) is attained for sufficiently negative 
values of y. However, subGD oscillates between two hinges 0 < y = ±3x, converging 
to the non-optimal point (0,0), as shown in Figure A.2 (left). The zigzagging opti-
mization trajectory of subGD does not allow it to land on any informative position 
such as the hinge y — 0, where the steepest subgradient descent direction points to the 
desired region (y < 0); Hiriart-Urruty and Lemarechal (1993, Section VIII.2.2) provide 
a detailed discussion. By contrast, subBFGS moves to the y < 0 region at the second 
step (Figure A.2, right), which ends at the point (100, —300) (not shown in the figure) 
where the minimal value of /  is attained .

A .5.3 C oun terexam ple for B FG S

The final counterexample (A.67) is given by Lewis and Overton (2008b) to show that the 
standard BFGS algorithm with an exact line search can break down when encountering 
a nonsmooth point:

f { x , y )  max{2|x| + y, 3y}. (A.67)



§A.5 SubBFGS Converges on Various Counterexamples 107

Figure A .3: Optimization trajectory of standard BFGS (left) and subBFGS (right) on coun-
terexample (A.67).

This function is subdifferentiable along x = 0, y < 0 and y — \x\ (dashed lines in Figure 
A.3). Figure A.3 (left) shows that after the first step, BFGS lands on a nonsmooth 
point, where it fails to find a descent direction. This is not surprising because at a 
nonsmooth point w  the quasi-Newton direction p := —B g  for a given subgradient 
g G dJ(w)  is not necessarily a direction of descent. SubBFGS fixes this problem by 
using a direction-finding procedure (Algorithm 3.2), which is guaranteed to generate 
a descent quasi-Newton direction. Here subBFGS converges to /  =  — oo in three 
iterations (Figure A.3, right).
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