76 research outputs found

    Homeostatic plasticity of eye movement performance in Xenopus tadpoles following prolonged visual image motion stimulation

    Get PDF
    Visual image motion-driven ocular motor behaviors such as the optokinetic reflex (OKR) provide sensory feedback for optimizing gaze stability during head/body motion. The performance of this visuo-motor reflex is subject to plastic alterations depending on requirements imposed by specific eco-physiological or developmental circumstances. While visuo-motor plasticity can be experimentally induced by various combinations of motion-related stimuli, the extent to which such evoked behavioral alterations contribute to the behavioral demands of an environment remains often obscure. Here, we used isolated preparations of Xenopus laevis tadpoles to assess the extent and ontogenetic dependency of visuo-motor plasticity during prolonged visual image motion. While a reliable attenuation of large OKR amplitudes can be induced already in young larvae, a robust response magnitude-dependent bidirectional plasticity is present only at older developmental stages. The possibility of older larvae to faithfully enhance small OKR amplitudes coincides with the developmental maturation of inferior olivary-Purkinje cell signal integration. This conclusion was supported by the loss of behavioral plasticity following transection of the climbing fiber pathway and by the immunohistochemical demonstration of a considerable volumetric extension of the Purkinje cell dendritic area between the two tested stages. The bidirectional behavioral alterations with different developmental onsets might functionally serve to standardize the motor output, comparable to the known differential adaptability of vestibulo-ocular reflexes in these animals. This homeostatic plasticity potentially equilibrates the working range of ocular motor behaviors during altered visuo-vestibular conditions or prolonged head/body motion to fine-tune resultant eye movements

    Functional characterization and plasticity of extraocular motor responses in Xenopus laevis

    Get PDF

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 165, March 1977

    Get PDF
    This bibliography lists 198 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1977

    Same same but different: plasticity of a 'conserved' reflex

    Get PDF
    Transformation of sensory percepts into motor output form a core element of how any animal interacts with their environment. While some such sensorimotor transformations can be very elaborate and depend on the lifestyle of a species, others serve basic functions and are ubiquitous across vertebrates. Among the latter ones are gaze-stabilizing reflexes, which serve to maintain stable vision during head motion through compensatory eye movements. Despite this conservation throughout evolution, these reflexive behaviors must remain plastic depending on context or past experience to maintain functionality after e.g. impairments of motor or sensory systems through compensation, or to changes in the environment through adaptation. In this thesis, I employ tadpoles of the frog Xenopus laevis to investigate how neuronal circuits contribute to either adaptive or compensatory plasticity on otherwise conserved gaze-stabilizing reflexes. My first study centers on the role of bilateral visual pathways in the development of the optokinetic reflex (OKR). In early embryos, I unilaterally remove the precursor of the eye, the optic vesicle. Tadpoles that develop under such monocular conditions display pathfinding errors of retinal ganglion cells at the optic chiasm. Tadpoles with near normal contralateral projections functionally compensate for the loss of one eye and show consistent responses to both leftward and rightward moving stimuli. In animals with an induced aberrant ipsilateral projection, compensation is increasingly impaired with more pathfinding errors. Combined, this study shows that binocular eyes are required for appropriate visual circuit formation, and that resulting anatomical aberrations impose limitations on compensatory plasticity. In my second study I focus on the role of the cerebellum in plasticity. Combinations of prolonged, repetitive stimulation with lesions of the cerebellum revealed adaptive plasticity of the OKR, where initially very variable OKR responses converge towards a homeostatic motor output by selective increase and decrease of response magnitude. The cerebellum is specifically associated only with response increases, and only starts to exert this influence well after initial OKR onset. This study therefore shows that multiple brain areas differentially contribute to plasticity of eye movements, leading to heterogenous appearance of different modes of plasticity throughout development. Combined, these studies contribute to the understanding of development and purpose of plasticity in Xenopus OKR. Multiple brain areas are involved with plasticity, and their formation depends on canonical, bilateral visual input. Once functional, plasticity mechanisms serve to maintain homeostasis of the OKR response in response to both adaptation and compensation

    Problems of space biology. Volume 50: Nystagmometry for evaulation of the status of the vestibular function

    Get PDF
    Various aspects of nystagmometry are studied, primarily those in which the study of hystagmus serves as a means to learn about the vestibular apparatus. Along with exhaustive published material, the monograph presents data from many years of research on the physioloigical mechanisms of nystagmus, the features of nystagmus when vestibular stimulation is combined with optokinetic, the pole of vertibular afferentation asymmetry in the asymmetry of reactions to optokinetic stimulus, a nystagmometric approach to studying the hydrodynamic interaction among semicircular canals, as well as several other questions. A great deal of attention is given to methods of recording nystagmus, calibrating nystagmograms, quantitative evaluation of nystagmographic material, new nystagmometric characteristics and diagnostic techniques. A diagnostic model is proposed which makes it possible to obtain important information on the condition of the vestibular system from results of vestibular testing

    Compensatory eye movements in mice

    Get PDF

    Compensatory eye movements in mice

    Get PDF

    Brainstem plasticity in vestibular motion-processing sensorimotor networks

    Get PDF

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Aerospace Medicine and Biology: A continuing supplement 180, May 1978

    Get PDF
    This special bibliography lists 201 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1978
    • …
    corecore