5 research outputs found

    0.13-µm CMOS tunable transconductor based on the body-driven gain boosting technique with application in Gm-C filters

    Get PDF
    We present a low-voltage low-power CMOS tunable transconductor exploiting body gain boosting to increase the small-signal output resistance. As a distinctive feature, the proposed scheme allows the OTA transconductance to be tuned via the current biasing the gain-boosting circuit. The proposed transconductor has been designed in a 0.13-µm CMOS technology and powered from a 1.2-V supply. To show a possible application, a 0.5-MHz tunable third order Chebyshev low pass filter suitable for the Ultra Low Power Bluetooth Standard has been designed. The filter simulations show that all the requirements of the chosen standard are met, with good performance in terms of linearity, noise and power consumption

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    Analysis and implementation of a minimum-supply body-biased CMOS differential amplifier cell

    No full text
    A CMOS differential amplifier cell for minimum supply requirements is presented. The solution uses transistors in strong inversion and an original biasing scheme that exploits the bulk terminals of the transistor pair to accurately set the quiescent current and provide common-mode control. As a result, we avoid the use of the tail current source adopted in traditional differential stages. An implementation based on an auxiliary switched-capacitor network used in the feedback control loop is proposed and theoretically examined. Measurements on a prototype fabricated in a standard 0.35- mumum technology (with threshold voltages around 0.5 V) and powered with 1.2 V show an error in the bias current of about 15% with respect to the expected value. It was found that the obtained overall performance is comparable to that of a traditional long-tailed differential pair that uses a higher supply of 1.5 V. © 2006 IEEE

    Impact of atomistic device variability on analogue circuit design

    Get PDF
    Scaling of complementary metal-oxide-semiconductor (CMOS) technology has benefited the semiconductor industry for almost half a century. For CMOS devices with a physical gate-length in the sub-100 nm range, extreme device variability is introduced and has become a major stumbling block for next generation analogue circuit design. Both opportunities and challenges have therefore confronted analogue circuit designers. Small geometry device can enable high-speed analogue circuit designs, such as data conversion interfaces that can work in the radio frequency range. These designs can be co-integrated with digital systems to achieve low cost, high-performance, single-chip solutions that could only be achieved using multi-chip solutions in the past. However, analogue circuit designs are extremely vulnerable to device mismatch, since a large number of symmetric transistor pairs and circuit cells are required. The increase in device variability from sub-100 nm processes has therefore significantly reduced the production yield of the conventional designs. Mismatch models have been developed to analytically evaluate the magnitude of random variations. Based on measurements from custom designed test structures, the statistics of process variation can be estimated using design related parameters. However, existing models can no longer accurately estimate the magnitude of mismatch for sub-100 nm “atomistic” devices, since short-channel effects have become important. In this thesis, a new mismatch model for small geometry devices will be proposed to address this problem. Based on knowledge of the matching performance obtained from the mismatch model, design solutions are desired at different design levels for a variety of circuit topologies. In this thesis, transistor level compensation solutions have been investigated and closed-loop compensation circuits have been proposed. At circuit level, a latch-based comparator has been used to develop a compensation solution because this type of comparator is extremely sensitive to the device mismatch. These comparators are also used as the fundamental building block for the analogue-to-digital converters (ADC). The proposed comparator compensation scheme is used to improve the performance of a high-speed flash ADC

    Analysis and design of low-power data converters

    Get PDF
    In a large number of applications the signal processing is done exploiting both analog and digital signal processing techniques. In the past digital and analog circuits were made on separate chip in order to limit the interference and other side effects, but the actual trend is to realize the whole elaboration chain on a single System on Chip (SoC). This choice is driven by different reasons such as the reduction of power consumption, less silicon area occupation on the chip and also reliability and repeatability. Commonly a large area in a SoC is occupied by digital circuits, then, usually a CMOS short-channel technological processes optimized to realize digital circuits is chosen to maximize the performance of the Digital Signal Proccessor (DSP). Opposite, the short-channel technology nodes do not represent the best choice for analog circuits. But in a large number of applications, the signals which are treated have analog nature (microphone, speaker, antenna, accelerometers, biopotential, etc.), then the input and output interfaces of the processing chip are analog/mixed-signal conversion circuits. Therefore in a single integrated circuit (IC) both digital and analog circuits can be found. This gives advantages in term of total size, cost and power consumption of the SoC. The specific characteristics of CMOS short-channel processes such as: • Low breakdown voltage (BV) gives a power supply limit (about 1.2 V). • High threshold voltage VTH (compared with the available voltage supply) fixed in order to limit the leakage power consumption in digital applications (of the order of 0.35 / 0.4V), puts a limit on the voltage dynamic, and creates many problems with the stacked topologies. • Threshold voltage dependent on the channel length VTH = f(L) (short channel effects). • Low value of the output resistance of the MOS (r0) and gm limited by speed saturation, both causes contribute to achieving a low intrinsic gain gmr0 = 20 to 26dB. • Mismatch which brings offset effects on analog circuits. make the design of high performance analog circuits very difficult. Realizing lowpower circuits is fundamental in different contexts, and for different reasons: lowering the power dissipation gives the capability to reduce the batteries size in mobile devices (laptops, smartphones, cameras, measuring instruments, etc.), increase the life of remote sensing devices, satellites, space probes, also allows the reduction of the size and weight of the heat sink. The reduction of power dissipation allows the realization of implantable biomedical devices that do not damage biological tissue. For this reason, the analysis and design of low power and high precision analog circuits is important in order to obtain high performance in technological processes that are not optimized for such applications. Different ways can be taken to reduce the effect of the problems related to the technology: • Circuital level: a circuit-level intervention is possible to solve a specific problem of the circuit (i.e. Techniques for bandwidth expansion, increase the gain, power reduction, etc.). • Digital calibration: it is the highest level to intervene, and generally going to correct the non-ideal structure through a digital processing, these aims are based on models of specific errors of the structure. • Definition of new paradigms. This work has focused the attention on a very useful mixed-signal circuit: the pipeline ADC. The pipeline ADCs are widely used for their energy efficiency in high-precision applications where a resolution of about 10-16 bits and sampling rates above hundreds of Mega-samples per second (telecommunication, radar, etc.) are needed. An introduction on the theory of pipeline ADC, its state of the art and the principal non-idealities that affect the energy efficiency and the accuracy of this kind of data converters are reported in Chapter 1. Special consideration is put on low-voltage low-power ADCs. In particular, for ADCs implemented in deep submicron technology nodes side effects called short channel effects exist opposed to older technology nodes where undesired effects are not present. An overview of the short channel effects and their consequences on design, and also power consuption reduction techniques, with particular emphasis on the specific techniques adopted in pipelined ADC are reported in Chapter 2. Moreover, another way may be undertaken to increase the accuracy and the efficiency of an ADC, this way is the digital calibration. In Chapter 3 an overview on digital calibration techniques, and furthermore a new calibration technique based on Volterra kernels are reported. In some specific applications, such as software defined radios or micropower sensor, some circuits should be reconfigurable to be suitable for different radio standard or process signals with different charateristics. One of this building blocks is the ADC that should be able to reconfigure the resolution and conversion frequency. A reconfigurable voltage-scalable ADC pipeline capable to adapt its voltage supply starting from the required conversion frequency was developed, and the results are reported in Chapter 4. In Chapter 5, a pipeline ADC based on a novel paradigm for the feedback loop and its theory is described
    corecore