2 research outputs found

    Multilevel Modulation and Transmission in VCSEL-based Short-range Fiber Optic Links

    Get PDF
    As the demand for ever higher throughput short-range optical links is growing, research and industry associations have shown increased interest in multilevel modulation formats, such as the four leveled pulse amplitude modulation, referred to as 4-PAM. As on-off keying (OOK) persists to be the choice for low latency applications, for example high performance computing, datacenter operators see 4-PAM as the next format to succeed current OOK-based optical interconnects. Throughput can be increased in many ways: parallel links can be deployed, multicore fibers can be used or more efficient modulation formats with digital signal processing is an alternative. Therefore, to improve link data rates, the introduction of new modulation formats and pre-emphasis are primarily considered in this thesis. In a bandwidth-limited link, turning towards spectrally efficient formats is one of the methods to\ua0 overcome the bandwidth requirements of OOK. Such are the considerations when opting for 3-PAM or 4-PAM schemes. Both require lower bandwidth than OOK and are potential candidates in such scenarios. 4-PAM provides double spectral efficiency and double data rate at the same symbol rate as on-off keying, but, as with any technology transition, new challenges emerge, such as a higher SNR requirement, a lower tolerance to VCSEL nonlinearities and skewing of the signal in the time domain. 3-PAM could potentially be an in-between solution, as it requires 33% less bandwidth than OOK and is less sensitive to VCSEL dynamics which could impair the transmission. A study is presented where 3-PAM has outperformed both OOK and 4-PAM in the same link. Detailed investigation of legacy 25G class VCSELs has shown that devices with moderate damping are suitable for the transition to 4-PAM. The pre-emphasis of signals is a powerful tool to increase link bandwidth at the cost of modulation amplitude. This has been investigated in this thesis for on-offkeying and has shown 9% and 27% increase in bit rate for error-free operation with two pre-emphasis approaches. Similarly, pre-emphasis of a 4-PAM electrical signals has enabled 71.8 Gbps transmission back-to-back with lightweight forward error correction and 94 Gbps net data rate was achieved with the same pre-emphasis and post-processing using an offline least-mean-square equalizer

    OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    Get PDF
    corecore