7 research outputs found

    Coordination of several robots based on temporal synchronization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes an approach to deal with the problem of coordinating multi-robot systems, in which each robot executes individually planned tasks in a shared workspace. The approach is a decoupled method that can coordinate the participating robots in on-line mode. The coordination is achieved through the adjustment of the time evolution of each robot along its original planned geometric path according to the movements of the other robots to assure a collision-free execution of their respective tasks. To assess the proposed approach different tests were performed in graphical simulations and real experiments.Postprint (published version

    A dynamic priority-based approach to concurrent toolpath planning for multi-material layered manufacturing

    Get PDF
    This paper presents an approach to concurrent toolpath planning for multi-material layered manufacturing (MMLM) to improve the fabrication efficiency of relatively complex prototypes. The approach is based on decoupled motion planning for multiple moving objects, in which the toolpaths of a set of tools are independently planned and then coordinated to deposit materials concurrently. Relative tool positions are monitored and potential tool collisions detected at a predefined rate. When a potential collision between a pair of tools is detected, a dynamic priority scheme is applied to assign motion priorities of tools. The traverse speeds of tools along the x-axis are compared, and a higher priority is assigned to the tool at a higher traverse speed. A tool with a higher priority continues to deposit material along its original path, while the one with a lower priority gives way by pausing at a suitable point until the potential collision is eliminated. Moreover, the deposition speeds of tools can be adjusted to suit different material properties and fabrication requirements. The proposed approach has been incorporated in a multi-material virtual prototyping (MMVP) system. Digital fabrication of prototypes shows that it can substantially shorten the fabrication time of relatively complex multi-material objects. The approach can be adapted for process control of MMLM when appropriate hardware becomes available. It is expected to benefit various applications, such as advanced product manufacturing and biomedical fabrication. © 2010 Elsevier Ltd. All rights reserved.postprin

    Toolpath Planning Methodology for Multi-Gantry Fused Filament Fabrication 3D Printing

    Get PDF
    Additive manufacturing (AM) has revolutionized the way industries manufacture and prototype products. Fused filament fabrication (FFF) is one of the most popular processes in AM as it is inexpensive, requires low maintenance, and has high material utilization. However, the biggest drawback that prevents FFF printing from being widely implemented in large-scale production is the cycle time. The most practical approach is to allow multiple collaborating printheads to work simultaneously on different parts of the same object. However, little research has been introduced to support the aforementioned approach. Hence a new toolpath planning methodology is proposed in this paper. The objectives are to create a collision-free toolpath for each printhead while maintaining the mechanical performance of the printed model. The proposed method utilizes the Tabu Search heuristic and a combination of two subroutines: collision checking and collision resolution (TS-CCR). A computer simulation was used to compare the performance of the proposed method with the industry-standard approach in terms of cycle time. Physical experimentation is conducted to validate the mechanical strength of the TS-CCR specimens. The experiment also validated that the proposed toolpath can be executed on a custom multi-gantry setup without a collision. Experimental results indicated that the proposed TS-CCR can create toolpaths with shorter makespans than the current standard approach while achieving better ultimate tensile strength (UTS). This research represents opportunities for developing general toolpath planning for concurrent 3D printing

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    A systematic literature review of multi-agent pathfinding for maze research

    Get PDF
    Multi-agent Pathfinding, also known as MAPF, is an Artificial Intelligence problem-solving. The aim is to direct each agent to find its path to reach its target, both individually and in groups. Of course, this path allows agents to move without colliding with each other. This MAPF application is implemented in many areas that require the movement of various agents, such as warehouse robots, autonomous cars, video games, traffic control, Unmanned Aerial Vehicles (UAV), Search and Rescue (SAR), many others. The use of multi-agent in exploring often assumes all areas to be explored are free of obstructions. However, the use of MAPF to achieve their goals often faces static barriers, and even other agents can also be considered dynamic barriers. Because it requires some constraints in the program, such as agents cannot collide with each other. The use of single-agent can find the shortest path through exploration. Still, multi-agent cooperation should shorten the time to find a target location, especially if there is more than one target. This paper explains the Systematic Literature Review (SLR) method to review research on various multi-agent pathfinding. The contribution of this paper is the analysis of multi-agent pathfinding and its potential application in solving maze problems based on an SLR

    Swarm-based planning and control of robotic functions

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Basic issues with a robotic task that requires multiple mobile robots moving in formations are to assemble at an initial point in the work space for establishing a desired formation, to maintain the formation while moving, to avoid obstacles by occasionally splitting/deforming and then re-establishing the formation, and to change the shape of the formation upon requests to accommodate new tasks or safety conditions. In the literature, those issues have been often addressed separately. This research proposes a generic framework that allows for tackling these issues in an integrated manner in the optimal formation planning and control context. Within this proposed framework, a leader robot will be assigned and the path for the leader is obtained by utilising a modified A* search together with a vector approach, and then smoothed out to reduce the number of turns and to satisfy the dynamic and kinematic constraints of mobile robots. Next, a reference trajectory is generated for the leader robot. Based on the formation configuration and the workspace environment, desired trajectories for follower robots in the group are obtained. At the lowest level, each robot tracks its own trajectory using a unified tracking controller. The problem of formation initialisation, in which a group of robots, initially scattering in the workspace, is deployed to get into a desired formation shape, is dealt with by using a Discrete Particle Swarm Optimisation (DPSO) technique incorporated with a behaviour-based strategy. The proposed technique aims to optimally assign desired positions for each robot in the formation by minimisation of a cost function associated with the predefined formation shape. Once each robot has been assigned with a desired position, a search scheme is implemented to obtain a collision free trajectory for each robot to establish the formation. Towards optimal maintenance of the motion patterns, the path that has been obtained for robots in the group by using the modified A* search, is further adjusted. For this, the Particle Swarm Optimisation (PSO) technique is proposed to minimise a cost function involving global motion of the formation, with the main objective of preventing unnecessary changes in the follower robot trajectories when avoiding obstacles. A PSO formation motion planning algorithm is proposed to search for motion commands for each robot. This algorithm can be used to initialise the formation or to navigate the formation to its target. The proposed PSO motion planning method is able to maintain the formation subject to the kinematic and velocity constraints. Analytical work of the thesis is validated by extensive simulation of multiple differential drive wheeled mobile robots based on their kinematic models. The techniques proposed in this thesis are also experimentally tested, in part, on two Amigo mobile robots

    Analysis and classification of multiple robot coordination methods

    No full text
    corecore