39,570 research outputs found

    Analysis Guided Visual Exploration of Multivariate Data

    Get PDF
    Visualization systems traditionally focus on graphical representation of information. They tend not to provide integrated analytical services that could aid users in tackling complex knowledge discovery tasks. Users¡¯ exploration in such environments is usually impeded due to several problems: 1) Valuable information is hard to discover, when too much data is visualized on the screen. 2) They have to manage and organize their discoveries off line, because no systematic discovery management mechanism exists. 3) Their discoveries based on visual exploration alone may lack accuracy. 4) They have no convenient access to the important knowledge learned by other users. To tackle these problems, it has been recognized that analytical tools must be introduced into visualization systems. In this paper, we present a novel analysis-guided exploration system, called the Nugget Management System (NMS). It leverages the collaborative effort of human comprehensibility and machine computations to facilitate users¡¯ visual exploration process. Specifically, NMS first extracts the valuable information (nuggets) hidden in datasets based on the interests of users. Given that similar nuggets may be re-discovered by different users, NMS consolidates the nugget candidate set by clustering based on their semantic similarity. To solve the problem of inaccurate discoveries, data mining techniques are applied to refine the nuggets to best represent the patterns existing in datasets. Lastly, the resulting well-organized nugget pool is used to guide users¡¯ exploration. To evaluate the effectiveness of NMS, we integrated NMS into XmdvTool, a freeware multivariate visualization system. User studies were performed to compare the users¡¯ efficiency and accuracy of finishing tasks on real datasets, with and without the help of NMS. Our user studies confirmed the effectiveness of NMS. Keywords: Visual Analytics, Visual Knowledg

    Uncertainty-Aware Principal Component Analysis

    Full text link
    We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach
    corecore