625 research outputs found

    Analysing features of lecture slides and past exam paper materials towards automatic associating E-materials for self-revision

    Get PDF
    Digital materials not only provide opportunities as enablers of e-learning development, but also create a new challenge. The current e-materials provided on a course website are individually designed for learning in classrooms rather than for revision. In order to enable the capability of e-materials to support a students revision, we need an efficient system to associate related pieces of different e-materials. In this case, the features of each item of e-material, including the structure and the technical terms they contain, need to be studied and applied in order to calculate the similarity between relevant e-materials. Even though difficulties regarding technical term extraction and the similarities between two text documents have been widely discussed, empirical experiments for particular types of e-learning materials (for instance, lecture slides and past exam papers) are still rare. In this paper, we propose a framework and relatedness model for associating lecture slides and past exam paper materials to support revision based on Natural Language Processing (NLP) techniques. We compare and evaluate the efficiency of different combinations of three weighted schemes, term frequency (TF), inverse document frequency (IDF), and term location (TL), for calculating the relatedness score. The experiments were conducted on 30 lectures (~900 slides) and 3 past exam papers (12 pages) of a data structures course at the authors’ institution. The findings indicate the appropriate features for calculating the relatedness score between lecture slides and past exam papers

    SRECMATs - an intelligent tutoring system to deliver online materials for student revision

    Get PDF
    The use of online course material is the approach adopted by most universities to support students’ revision, and teachers usually have the responsibility for designing or uploading online materials on their own course websites. However, some teachers might lack programming skills or motivation, and most current online materials are just uploaded in a static format (such as PDF) which is not suitable for all students. Moreover, during revision periods students may be faced with a lot of unorganised materials to be revised in a short period of time, and this can lead to an ineffective revision process. In order to address these issues, this paper proposes a software framework that aims to maximise the benefit of current online materials when used to support student revision. This framework is called SRECMATs (Self-Revision E-Course MATerials) and has been deployed as a tool that allows teachers to automatically create an intelligent tutoring system to manage online materials without any programming knowledge, and to support students to navigate easily through these online materials during their revision. This paper evaluates the proposed framework in order to understand students’ perceptions with regard to the use of the system prototype, and the results indicate which features are suitable for providing online revision materials as well as confirming the benefit of the revision framework

    Proceedings of the International Symposium for Engineering Education, ISEE-08

    Get PDF

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Influence of employer support for professional development on MOOCs enrolment and completion: Results from a cross-course survey

    Get PDF
    Although the potential of open education and MOOCs for professional development is usually recognized, it has not yet been explored extensively. How far employers support non-formal learning is still an open question. This paper presents the findings of a survey-based study which focuses on the influence of employer support for (general) professional development on employees’ use of MOOCs. Findings show that employers are usually unaware that their employees are participating in MOOCs. In addition, employer support for general professional development is positively associated with employees completing MOOCs and obtaining certificates for them. However, the relationship between employer support and MOOC enrollment is less clear: workers who have more support from their employers tend to enroll in either a low or a high number of MOOCs. Finally, the promotion of a minimum of ICT skills by employers is shown to be an effective way of encouraging employee participation in the open education ecosystem.JRC.J.3-Information Societ

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting

    Exploring the practical use of a collaborative robot for academic purposes

    Get PDF
    This article presents a set of experiences related to the setup and exploration of potential educational uses of a collaborative robot (cobot). The basic principles that have guided the work carried out have been three. First and foremost, study of all the functionalities offered by the robot and exploration of its potential academic uses both in subjects focused on industrial robotics and in subjects of related disciplines (automation, communications, computer vision). Second, achieve the total integration of the cobot at the laboratory, seeking not only independent uses of it but also seeking for applications (laboratory practices) in which the cobot interacts with some of the other devices already existing at the laboratory (other industrial robots and a flexible manufacturing system). Third, reuse of some available components and minimization of the number and associated cost of required new components. The experiences, carried out following a project-based learning methodology under the framework of bachelor and master subjects and thesis, have focused on the integration of mechanical, electronic and programming aspects in new design solutions (end effector, cooperative workspace, artificial vision system integration) and case studies (advanced task programming, cybersecure communication, remote access). These experiences have consolidated the students' acquisition of skills in the transition to professional life by having the close collaboration of the university faculty with the experts of the robotics company.Postprint (published version
    • 

    corecore