3 research outputs found

    CENTRAL PROCESSING UNIT-GRAPHICS PROCESSING UNIT COMPUTING SCHEME FOR MULTI-OBJECT TRACKING IN SURVEILLANCE

    Get PDF
    This research work presents a novel central processing unit-graphics processing unit (CPU-GPU) computing scheme for multiple object trackingduring a surveillance operation. This facilitates nonlinear computational jobs to avail completion of computation in minimal processing time for tracking function. The work is divided into two essential objectives. First is to dynamically divide the processing operations into parallel units, and second is to reduce the communication between CPU-GPU processing units

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine

    Analogical Representation of Spatial Events for Understanding Traffic Behaviour

    No full text
    . In computer vision the usual level of "interpretation " is the identification of the objects in the image. In this paper, we extend the level of interpretation to include spatial event detection using a knowledge base for a known scene. This will allow us to formulate a computational theory for forming conceptual descriptions about the behaviours of the objects. Here we describe an analogical representation of space and time that supports the formation of these conceptual descriptions and allows strong contextual indexing of our spatial knowledge. Keywords: Spatial representation, spatio-temporal reasoning, high-level vision, scene understanding. 1 Introduction This paper describes how spatial reasoning can be used to interpret the results from low-level vision, to obtain a greater understanding of what is going on in the field-of-view. This higher-level visual processing is able to reason over longer time scales because the data used is a condensed summary of the initial camera inp..
    corecore