3 research outputs found

    Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    Full text link
    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter BB to the rate of the analog-to-digital converter fsf_s to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm B≤fsB\leq f_s. To this end, at the receiver, we allow for a higher pre-filter bandwidth B>fsB>f_s and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.Comment: 15 pages, 16 figure

    Analog transmit signal optimization for Undersampled delay-Doppler estimation

    No full text
    In this work, the optimization of the analog transmit waveform for joint delay-Doppler estimation under sub-Nyquist conditions is considered. Based on the Bayesian Cramér-Rao lower bound (BCRLB), we derive an estimation theoretic design rule for the Fourier coefficients of the analog transmit signal when violating the sampling theorem at the receiver through a wide analog pre-filtering bandwidth. For a wireless delay-Doppler channel, we obtain a system optimization problem which can be solved in compact form by using an Eigenvalue decomposition. The presented approach enables one to explore the Pareto region spanned by the optimized analog waveforms. Furthermore, we demonstrate how the framework can be used to reduce the sampling rate at the receiver while maintaining high estimation accuracy. Finally, we verify the practical impact by Monte-Carlo simulations of a channel estimation algorithm
    corecore