1,808 research outputs found

    Analog Neural Networks as Decoders

    Get PDF
    Analog neural networks with feedback can be used to implement l(Winner-Take-All (KWTA) networks. In turn, KWTA networks can be used as decoders of a class of nonlinear error-correcting codes. By interconnecting such KWTA networks, we can construct decoders capable of decoding more powerful codes. We consider several families of interconnected KWTA networks, analyze their performance in terms of coding theory metrics, and consider the feasibility of embedding such networks in VLSI technologies

    Analog VLSI neural network integrated circuits

    Get PDF
    Two analog very large scale integration (VLSI) vector matrix multiplier integrated circuit chips were designed, fabricated, and partially tested. They can perform both vector-matrix and matrix-matrix multiplication operations at high speeds. The 32 by 32 vector-matrix multiplier chip and the 128 by 64 vector-matrix multiplier chip were designed to perform 300 million and 3 billion multiplications per second, respectively. An additional circuit that has been developed is a continuous-time adaptive learning circuit. The performance achieved thus far for this circuit is an adaptivity of 28 dB at 300 KHz and 11 dB at 15 MHz. This circuit has demonstrated greater than two orders of magnitude higher frequency of operation than any previous adaptive learning circuit

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page
    corecore