3 research outputs found

    Configurable Low Power Analog Multilayer Perceptron

    Get PDF
    A configurable, low power analog implementation of a multilayer perceptron (MLP) is presented in this work. It features a highly programmable system that allows the user to create a MLP neural network design of their choosing. In addition to the configurability, this neural network provides the ability of low power operation via analog circuitry in its neurons. The main MLP system is made up of 12 neurons that can be configurable to any number of layers and neurons per layer until all available resources are utilized. The MLP network is fabricated in a standard 0.13 μm CMOS process occupying approximately 1 mm2 of on-chip area. The MLP system is analyzed at several different configurations with all achieving a greater than 1 Tera-operations per second per Watt figure of merit. This work offers a high speed, low power, and scalable alternative to digital configurable neural networks

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction

    Analog CMOS current mode neural primitives

    No full text
    The CMOS circuit implementation of the feedforward neural primitives of a generic Multi Layer Perceptron network is presented. Basically our approach is based on current mode computation and is aimed at a low power/low voltage circuit implementation; moreover, it is easily scalable to implement networks of any size. Experimental results are reporte
    corecore