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Abstract

A configurable, low power analog implementation of a multilayer perceptron (MLP) is

presented in this work. It features a highly programmable system that allows the user

to create a MLP neural network design of their choosing. In addition to the configurability,

this neural network provides the ability of low power operation via analog circuitry in its

neurons. The main MLP system is made up of 12 neurons that can be configurable to

any number of layers and neurons per layer until all available resources are utilized. The

MLP network is fabricated in a standard 0.13 µm CMOS process occupying approximately

1 mm2 of on-chip area. The MLP system is analyzed at several different configurations with

all achieving a greater than 1 Tera-operations per second per Watt figure of merit. This

work offers a high speed, low power, and scalable alternative to digital configurable neural

networks.
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Chapter 1

Introduction

1.1 Background

Artificial neural networks (ANNs) are networks that are used for machine learning and are

inspired by biological neural structures (i.e. the brains of animals). ANNs attempt to

mimic these biological neural structures in how they function. For example, an ANN can

be used to approximate a function that is dependent upon a large set of generally unknown

inputs [26]. There exist many different types of neural network designs with each being

highly dependent upon how data is to be interpreted. For the case of a supervised learning

structure with perceptrons [26], a single layer perceptron interprets data linearly whereas

the multilayer perceptron (MLP) has the ability to arbitrarily classify a set of data with

nonlinear functions [1]. Multilayer perceptrons are advantageous structures because of their

ability to compute in parallel several different inputs, which are then passed through their

overall algorithm as quickly as possible.

Multilayer perceptrons are a type of artificial neural network that perform computations

on a set of data using simple units with weighted connections. The structure of a MLP, in

its most basic form, consists of an input layer, a hidden layer, and an output layer. The

input layer takes the set of data to be analyzed and passes it on to the hidden layer(s).

The hidden layer may be made up of one or more layers that take the outputs from the

previous layer, multiply them with a weight, and output this weighted value via a nonlinear

activation function. Each layer consists of one or more neurons that create the overall ANN

1



functionality. Two of the common nonlinear activation functions are the sigmoid (equation

1.2) and the hyperbolic tangent (equation 1.3) functions with the general form shown in

equation 1.1.

yi(x) = φ(w′
ix + bi) = φ(zi) (1.1)

where x is the vector of input values, φ() is the nonlinear training function, w′
i is the vector

containing the weight values, and bi is the bias for a given neuron.

yi(x) =
1

1 + exp(−zi)
(1.2)

yi(x) =
exp(zi)− exp(−zi)
exp(zi) + exp(−zi)

(1.3)

The output layer receives the final hidden layer’s output, multiplies that output with

another weight, and then again passes the new value through a non-linear function to produce

the final output. Figure 1.1 shows a MLP with two hidden layers. A distinct characteristic

of a MLP ANN is that every neuron will output to all of the neurons of the subsequent layer

[1].

Typically, the hidden and output layers are constructed of the same signal pathway:

inputs from previous layer being weighted, then summed with the other weighted inputs,

and finally passed through an activation function that will either output the final target

value or pass the output on to the next layer neurons. Figure 1.2 details a simple block

diagram of the arithmetic in a node within a MLP. In a MLP, the weights are adjusted by

training the overall ANN to have as little error as possible between its final outputs and

assumed final target values. Some standard training criteria consist of least squares error

and cross-entropy as well as other algorithms depending upon a designer’s constraints [1].

Through training of the MLP, the ANN provides outputs that are close to the theoretical

values that can be obtained mathematically. A standard MLP output can take the form of

the following:

2



Figure 1.1: Two Hidden Layer MLP Example.

yi(x
k) = φ(

n∑
j=1

wijx
k
j + bi) (1.4)

where φ() represents the nonlinear activation function, wij represents the training weight,

xj(k) represents the input value, and bi represents the bias for a given neuron so that a

neuron’s output behaves as expected and is not saturated towards a high or low state [1].

Multilayer perceptrons are a useful type of artificial neural network that has been

thoroughly developed for the past few decades in terms of complexity and capabilities. A

typical use for a MLP is the classification of a set of data that is not linearly separable [1].

The classification of the data allows a complex set of data with a high number of dimensions

to be broken down into a simpler set of data with fewer dimensions. The MLP is a versatile

construct but can also be implemented in such a fashion that the network is too complex or

consumes too much operational power to be useful in certain applications. A general MLP

structure with its base neuron elements can be seen in Figure 1.3.
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Figure 1.2: MLP Basic Neuron Block Diagram [1].

Figure 1.3: General MLP Structure.
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1.1.1 Motivation

The complexity and power consumption of a MLP are critical performance characteristics

that need to be optimized in order to produce the most efficient neural network possible

for a particular problem. The complexity of a MLP can be addressed in many ways. The

most popular method among designers currently is utilizing a field programmable gate array

(FPGA) to easily and efficiently change the architecture of the MLP seamlessly. While

this digital hardware based method provides the configurability that designers want, the

FPGA does not efficiently optimize power consumption at the transistor level and can lead

to a higher power use for the overall design. Another method to add configurability to a

MLP neural network is to manually design circuit blocks on an integrated circuit (IC). This

method can provide nearly the same performance characteristics as a FPGA but with greater

transparency and control over every device in the network [27].

While the configurability of a custom IC will be limited by the total number of blocks in

the overall design, the IC can boast better performance characteristics by leveraging focused

design techniques to limit travel time/distance for important signals between MLP nodes.

Overall, with these two methods in mind, configurability of a MLP ANN is a key design

parameter that allows the network as a whole to function in an optimal manner with the

ability to turn off and on sections of the ANN without penalty (and in most cases some

benefit) to the flow of data. Even further, the data analysis can greatly benefit from a

configurable design that can break a large data stream apart and operate simultaneously on

different sections of the data at the same time. This operability could greatly reduce the

overall computation time or increase the data transmission rate in the ANN.

After considering the configurability of a MLP, the overall power consumption of a

particular network needs to be ascertained. The goal of the ANN is to provide the highest

number of computations per second per Watt of power. The tradeoff in this case is that

generally the more power one can supply a MLP ANN the more computations per second

it should be able to perform. However, the downside of giving a MLP more power is that

you then limit the applications that the ANN would be useful in implementing since it now

requires a greater power and therefore a larger system built around it. Limiting the power
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gives a way for the MLP to be useful in applications away from constant power supplies.

Even with a constant power supply, a power limit is useful enhancing application mobility,

lowering environmental impact, or even cost to the end user.

With the idea of limiting power while optimizing performance, a MLP designer is required

to move away from digital structures and utilize analog constructs. Analog designs as a whole

have proven over time that they are far more capable of low power computations (e.g., [28]

and [29]). Analog allows the designer to control power dissipation at a transistor level while

also taking advantage of transistor characteristics to optimize performance for a particular

power level. Analog circuits are also capable of functioning with nearly the same efficiency

in data analysis as their digital counterparts. In terms of data analysis, digital circuits are

more efficient when a part of a larger digital system that will feed the ANN digital inputs and

expect digital outputs. On the other hand, an analog ANN can directly process signals from

the world without bulky, power consuming analog-to-digital (ADCs) in the IC. Another

power saving aspect of analog circuits is that summation and subtraction operations are

easily performed by a wire junction (current-mode circuits) whereas digital circuits require

multibit subtractors and adders [30].

As mentioned above, the designer can control individual transistor biases in analog

circuits such that a transistor will operate in weak inversion. The ability to control the

transistor’s operation is crucial in creating an ANN that has the basic functionality of a

MLP with the ability to consume as low power as possible. Weak inversion provides these

capabilities in two ways: exponential transfer characteristics and low power consumption

[3]. Exponential transfer characteristics are vital to the successful operation of a MLP. The

MLP’s neurons, or nodes, require an activation function after the weight adjustments. In

the case of MLPs, the activation function is generally a nonlinear operation and requires

special circuit designs in order to properly produce the desired nonlinear functions typically

seen [31]. As far as low power consumption of weak inversion circuits, this characteristic

is attractive to a designer, because low power operation opens up new application spaces

for MLPs. With these characteristics in mind, an analog low power MLP design is highly

desirable in that it has the greatest potential to provide the highest number of computations

per second for the lowest power consumption.
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1.2 Problem Statement

As mentioned in the previous section, MLP networks have the advantage of being constructed

with either a digital or analog “backbone”. With respect to the digital “backbone’, the

typical design procedure for a configurable MLP network is to utilize a FPGA and software

techniques to create an easily manipulated system. The prominent issues with using a FPGA

to build configurable MLPs exist in resource and power management. FPGAs are complex

systems with thousands upon thousands of devices that can be linked together to build almost

anything that can be put in code. Considering this advantage of FPGAs, the configurable

MLP network can easily be implemented. Now, this newly formed configurable network does

not achieve either of those goals considering the two prominent issues mentioned. In terms

of resource management, a designer could develop a MLP in a FPGA that utilizes 100%

of all of the resources and has outstanding performance. By following this route, the MLP

network will have a high power consumption and therefore a poor figure of merit. Inversely,

the designer could develop a MLP system on the FPGA that has good power management

techniques but does not use all the resources available. The resource management in this

case is drastically reduced resulting in large chunks of area of the FPGA to be unused and

wasted.

As for analog-based configurable MLPs, they are inherently built to have good power

management through their analog core components. However, the resource management

may be lacking in these designs. As shown in the next chapter, current analog configurable

MLP designs take one of two methodologies when approaching the configurability of the

network. Firstly, the analog network can shut off the unused portions of the overall system

leaving only minor leakage pathways to consume some power. Secondly, the analog network

could fold the unneeded nodes into the hidden or output layers as extras. The first design

choice results in some power savings but completely wastes resources in the analog system.

The second design choice does not save any more power and continues to use the unneeded

nodes leading to a failure of power and resource management.

Therefore, there exists a gap in design methodologies that can effectively manage power

and resources such that power can be optimized to provide an advantageous figure of merit
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while fully utilizing the available resources in a manner that can add greater capability to

the overall system.

1.3 Original Contributions

This work plans to include and demonstrate several contributions to the state of the art

for analog, low power MLP systems. The first contribution is a high speed data rate

while maintaining a small form factor for the base circuits within the system. An overall

configurable system architecture is designed, implemented, and tested in this work. Included

in the configurability is the ability to control the biasing structures for each individual cell

in the integrated circuit. The next demonstrated contribution will be a low power analog

system design so that the system is capable of mobile or power limited applications while

maintaining a relatively high throughput. The final contribution that will be demonstrated

is the scalable nature of the system such that it can be increased or decreased in size to

accommodate a particular set of design parameters for a neural network system.

1.4 Dissertation Overview

Chapter 2 of this dissertation presents a review of the literature as it pertains to the MLP as

a whole as well as the individual subcomponents that make up the structure of the system.

These subcomponents consist of multipliers, sigmoid functions, switches, and winner-take-

all circuitry. Chapter 2 also discusses the key differences between digital and analog MLP

systems. Chapter 3 details the individual subcomponent designs that are used in this

project. Chapter 4 describes key simulation results for each subcircuit along with the system

simulations in addition to the test setup used in obtaining the measurement results that are

also presented in this chapter. Chapter 5 provides conculsions from the measurement results

and design process, and also discusses avenues for future work that can be performed.
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Chapter 2

Literature Review

2.1 Multilayer Perceptron Review

As discussed in the previous section, multilayer perceptrons are versatile networks that are

useful in a wide range of applications from business to medical fields to pattern recognition

to driving [32]. Figure 2.1 shows an example application of a MLP in the field of autonomous

driving [2]. MLPs are typically constructed in two distinct ways by being composed of either

digital circuits (via FPGAs and coding or an IC consisting of digital circuits) or analog

circuits (IC consisting of analog-based arithmetic processes). Analog MLPs are well defined

and have a plethora of literature supporting their development for a designer to draw design

methodologies. The primary focus in this work will be on the analog MLP structure with

a focus on subthreshold (weak inversion) operation at the transistor level and configurable

circuits.
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Figure 2.1: ALVINN Autonomous Driving MLP Example [2].
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The analog MLP presented in [3] was designed by the authors in order to provide a

greater synaptic density while exploiting nonlinear synapses for use with an error back-

propagation algorithm. The authors utilized a 3-µm CMOS process to fabricate their MLP

design. The design took advantage of analog differential input pairs and current to voltage

conversion techniques to minimize the area and therefore increase the overall density on

the IC. Figure 2.2 depicts the authors’ block diagram scheme for how inputs enter their

system and propagate through their neurons being changed by the various computational

blocks along the way. However, the authors bias their transistor networks in strong inversion

leading to an overall power consumption of 25 mW.

The authors of [4] present an analog MLP architecture that was developed in AMS CMOS

0.35 µm with a supply voltage of 3.3 V. Their test device consisted of a single neuron layout

constructed of three multipliers, an adder, and a hyperbolic tangent cell. These structures

were implemented in an analog format to utilize differential current inputs being relayed by

current mirrors to the necessary evaluating circuitry. Figure 2.3 details the block schematic

of the ANN structure. The authors took advantage of analog inputs from measurement

devices in order to avoid digital-to-analog conversions on the frontend. The overall power

consumption of this design was approximately 49.5 mW.

Figure 2.2: Block Diagram of MLP Implemented in [3].
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Figure 2.3: ANN Block Schematic from [4].
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Diotalevi et al. present a generic MLP neural network geared towards low power and

low voltage circuitry as well as increased scalability for any future network designs [5].

The authors reported a power consumption of 3 µW as well as 30 MCPS/synapse (Mega-

Connections per second per synapse). The low power consumption was achieved utilizing

transistors in weak inversion with low bias currents (∼500 nA reported maximum). Again,

the MLP used differential currents to connect the input, hidden, and output nodes and

was fabricated in an AMS CMOS 0.8 µm process. Figure 2.4 shows the flow of the MLP.

The transconductors converted the input signals to differential currents while the synapse

contains the circuitry to convert the weight voltages to currents and multiply those with the

input currents. The neuron cells implement the nonlinear activation function for this MLP,

which is a hyperbolic tangent in this case.

Figure 2.4: MLP Utilizing Current Mode Analog with Differential Currents [5].
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Gatet et al. detail a different approach to designing an analog MLP in [33]. While

their goal is still to minimize power consumption and area, they also aim to achieve a

high bandwidth in order to allow for faster data processing. The authors report a power

consumption of 595 mW with a bandwidth of 240 MHz in a 0.6 µm CMOS process. The

higher power consumption is seen in the multiplier-adder cell the authors developed for

increased bandwidth as well as the 5 V power rail. They use the higher voltage to increase

the headroom in their multiplier-adder cells with a hyperbolic tangent circuit load to achieve

their desired bandwidth.

Bo et al. present an analog MLP designed in ATMEL CMOS 0.7 µm process that

has a reported simulated power consumption of 25 mW and an energy efficiency of 40

MCPS/mW [34]. The chip designed by Bo et al. focused more on implementing a self-

learning architecture in an analog design than limiting power consumption. Maliuk and

Makris describe an adaptive neural network design with core circuitry biased in weak

inversion [6]. The authors achieve their adaptive network through row and column control

circuitry adding complexity and power consumption to the overall network design. However,

they utilized a floating gate device [6] in a PMOS transistor to store the weights for their

learning algorithm on-chip. Figure 2.5 details the floating gate PMOS transistor. The voltage

provided by this storage cell is then applied to diode-connected MOSFETs providing a bias

voltage to subsequent current mirrors.

Bo et al. detail an integrated circuit that is capable of around 2.5 GCPS with an

overall power consumption of 200 mW [7]. The higher power consumption comes from

the large number of synapses used in the overall architecture (4810 synapses with ∼150,000

transistors). The authors further quantify their reported results with a processing delay of

2 µs and about 80 pJ of energy per connection in an ES2 CMOS 1.0 µm process. Figure

2.6 depicts the block diagram specific to this MLP design. Furthermore, the chip takes

advantage of transistors biased in weak inversion as well as a current mode approach similar

to previously discussed designs.
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Figure 2.5: Floating Gate PMOS Transistor Implemented in [6].

Figure 2.6: Block Diagram of MLP Constructed in [7].
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Instead of only developing a MLP for a specific application, Cairns and Tarassenko present

relevant issues with on-chip learning in analog MLPs [35]. They detail that overall an

analog MLP can achieve the same performance in terms of accuracy, but not necessarily

speed, as that of a software back-propagation technique. They conclude that an effective

learning strategy specific to hardware must be implemented. In addition to analyzing training

techniques, the authors also discuss weight perturbation techniques and how the need for

precise weight memory is vital to the overall operation of the neural network.

Silva et al. propose a reconfigurable MLP architecture that was implemented in a FPGA

in [8]. The authors present a unique design that allows hundreds of neurons to exist per layer

as well as a seemingly infinite number of layers depending on how hardware is synthesized in

the FPGA. Furthermore, the authors search for simple arithmetic circuits that would require

less physical area to perform functions on real numbers leading to the use of fractions to

represent these real numbers. All hardware implementations are created using digital circuits

on the FPGA that lead to a heavy number of resources being utilized. Though the overall

power consumption is not reported, it can be inferred from the number of resources used

that power would most likely be on the order of milli-Watts or greater. Figure 2.7 depicts

the amount of resources used to build a neuron circuit that is digitally based in a FPGA.

Though the digital circuits can handle higher frequencies of data, any power-based figure of

merit is weakened considerably by power consumption due to the digital design.

Su et al. present an adaptive analog MLP hardware implementation that uses bipolar

transistors instead of MOSFETs for all functions in [9]. Figure 2.8 shows two examples of the

bipolar transistor circuits used in this design. The authors state that a bipolar differential

pair can perfectly generate a hyperbolic tangent function. This function can be seen in one

of the outputs of Figure 2.8a and by:

IC1 =
I0
2

(
tanh

(
Vin
VT

)
+ 1

)
(2.1)
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Figure 2.7: Digital Example of a Neuron Circuit in a FPGA [8].

17



where IC1 is the collector current in the first transistor of the differential pair, I0 is the tail

current for the bipolar transistor differential pair, Vin is the differential input voltage, and VT

is the thermal voltage (0.025 V at room temperature). To further refine the tanh function,

Su et al. add an active current mirror load to the differential pair, which is seen in Figure

2.8b and creates a more refined hyperbolic tangent function given in Equation 2.2.

Idiff,out = I0 tanh

(
Vin
2VT

)
(2.2)

Furthermore, the authors propose that the bipolar transistors allow the neural network to

operate in the GigaHertz range while also providing some adaptive capabilities and better

cost efficiency. The adaptive capabilities consist of varying an input current through outside

controllers for differential control applications or nonlinear model systems. The authors

report an error around 5% but do not report the total power consumption or speed of

the overall neural network. Figure 2.9 details the block diagram for this design. The

block diagram shows that the authors took particular care in developing a system that

can operate in a bidirectional fashion by developing a system that can operate with negative

currents (absolute and sign blocks rectify the necessary signals) instead of focusing on power

consumption or configurability.

Figure 2.8: Differential Pair with No Load (a) and Active Current Mirror Load (b).
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Figure 2.9: Bipolar Transistor Block Diagram Built in [9].

The next MLP design reviewed is proposed by Talaska et al. presenting a neural network

that is not a MLP but is still useful in terms of power consumption and a figure of merit

(FOM) [36]. The presented neural network is a winner-take-all (WTA) and is developed for

distance calculation instead of classification. The WTA neuron presented has been developed

to consume as low as 55 µW in one form of distance calculation. The authors also report

a data rate up to 7 MHz. They use the data rate divided by the power consumption and

multiplied by either the number of channels or the total number of neurons to determine

the two FOMs they report. These FOMs are specifically developed for distance calculation

circuits and not, however, for a general MLP structure.

The final two designs reviewed consist of neural networks that are not MLP-based but do

offer highly comparative characteristics to what is proposed and achieved in this work. Park

et al. demonstrate a deep learning network that is developed for mobile/portable devices

while maintaining a high data throughput [37]. The authors implement a deep learning

network that operates at a frequency of 200 MHz, consuming 213.1 mW at peak usage, and

achieving a power efficiency of 1.93 TOPS/s/W. Tsai et al. detail a similar neural network

with low power and high speed designs for both machine learning and Internet of Things

applications [38]. The authors propose a network that achieves a maximum operation at 210
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Table 2.1: Reviewed Neural Network Designs.

Comp. Rate Power Syn. # Rate per Syn. Power per Syn. FOM
Diotalevi et al. 30.00 3.00 1 30.00 3.00 -

Gatet et al. 2400 595000 10 240 59500 0.004
Bo et al. 1000 25000 28 35.70 892.90 0.040
Bo et al. 2500 200000 4810 0.52 41.60 0.012

Park et al. 411300 213100 2056 200 103.65 1.930
Tsai et al. 860160 310000 4096 210 75.68 1.450

MHz with 310 mW of power with only 41.3 pJ of energy being consumed per neuron weight

in the system. These two works show recent state-of-the-art designs with a comparable FOM

that is seen in this work’s MLP system. Table 2.1 summarizes several of the neural network

designs reviewed in this section. Going from left to right, the units for each column is as

follows: computation rate in Mega-connections per second (MCPS), power in micro-Watts

(µW), synapse number in integers, rate per synapse in MCPS, power per synapse in µW,

and FOM in Tera-operations per second per Watt (TOPS/s/W).

2.2 Multiplier Review

One of the building blocks of the Multilayer Perceptron is a multiplier as seen in several of the

figures in the previous section. Multipliers are constructed in a variety of forms depending

upon the end-use applications and systems that integrate them. Generally, the multiplier

in the MLP system functions as an operation to multiply the input signals, from either the

intial inputs or the previous layer, with weight signals that determine the “importance” of

a signal pathway based upon the overall MLP function [1]. These multiplication operations

occur before the neuron in each layer, and each signal pathway has its own multiplier so that

each pathway can be weighted individually thus providing the variances in the MLP system

function.

By analyzing the analog MLP designs in the previous section, one can find that many

of the designs use a Gilbert cell or translinear principles in the implementation of their

multiplier circuit [4, 5, 33, 34, 7]. Gilbert developed the translinear principle decades ago
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and its use has spread throughout analog circuitry [39]. The basic translinear principle

states that any closed loop containing an equal number of devices oriented in both directions

(clockwise and counter-clockwise loops) creates a circuit where the product of currents in one

orientation equals the product of currents in the other orientation [10]. The first Gilbert cells

depicting this principle consist of bipolar transistors, whereas today the translinear principle

has been expanded to include MOSFETs in weak inversion [40].

Figure 2.10 shows a simple translinear multiplier/divider bipolar circuit developed by

Gilbert that uses bipolar devices. Equations 2.3 through 2.6 demonstrate the operation of

this circuit and how it implements the multiplication and division.

J1J2 = J3J4 (2.3)

Equation 2.3 is based off of the translinear principle equating two current loops of equal

pn junctions where J represents the current density of a bipolar transistor.

J4 = J1
J2
J3

(2.4)

Equation 2.4 is a manipulation of 2.3 to isolate a single device’s current density relative

to that of the other three devices.

I4 = I1
I2
I3

(2.5)

A1A2 = A3A4 (2.6)

Equation 2.5 represents removing the device sizing characteristics from the current and

is only true when equation 2.6 is true. Equation 2.6 states that the device sizing (in this

case the area of the bipolar devices) of the first two transistors must equal that of the second

two in order for the current multiplication or division in 2.5 to be valid. Gilbert states in

[10] that the devices need not all be the same size but rather only equal the same amount

of area when their area is multiplied with the area of their corresponding device.
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Figure 2.10: Transilinear Multiplier/Divider [10].

In [11], the Gilbert translinear principle is applied to obtain a multiplier that utilizes

the back gates of two differential pairs to create a differential subthreshold output current

for neural network applications. The authors proposed multiplier is shown in Figure 2.11

and uses only four transistors (along with additional bias circuitry) to implement both the

multiply functionality as well as the sigmoid function for the differential current output.

The downside of this topology is that the designer is required to have differential voltages

as input signals while receiving a differential output current. Therefore, the overall system

must then convert those current signals after a summing operation to voltages for the next

layer in the neural network. These conversions will slow down the speed of the overall system

even with the bonus of current signals being better suited to traveling along long traces to

each neuron in a layer. Finally, the circuit can only receive one set of inputs from both the

input paths and the weight paths which causes the overall system to be flooded with many

copies of this circuit in order to perform at a typical neural network standard.
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Figure 2.11: Proposed Four Quadrant Multiplier in [11].

The next multiplier design presented by Wilamowski details a circuit highly based upon

Gilbert’s original transilinear circuit but has been developed to accomodate all four quadrants

in multiplication and division [12]. The circuit, seen in Figure 2.12, presents the basic

translinear loop in MOSFETs M1 through M4 along with supplemental FETs that resemble

a stacked cascode structure. The author states that by utlizing these transistors in the

subthreshold region along with most of the FETs maintaing a zero gate-drain voltage the

channel length modulation is considerably reduced as well as the threshold shift being similar

for the important transilinear transistors. The major downside to this circuit structure is the

amount of bias currents required to implement a single multiplication operation. Also, the

circuit operation will be hampered as the voltage “headroom” (amount of voltage available

to sustain a transistor in a particular operation region) for each transistor level is reduced

due to smaller technology nodes requiring lower voltages. Even with the current mode

operation, these restrictations limit the circuit too greatly to be used in a dynamic neural

network system.
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Figure 2.12: Proposed Four Quadrant Multiplier in [12] with Bias Currents.
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Santos et al. propose a multiplier that utilizes the squaring properties of transistors

operating in saturation alongside others in triode (linear or between the subthreshold and the

strong inversion regions) [13]. Figure 2.13 details the two sections of the multiplier/divider

circuit which consist of a geometric mean subcircuit and a squarer/divider subcircuit. The

arithmetic of the overall multiplier/divider takes on the same form as the Gilbert multipler

through the following manipulations:

Igm =
√
IxIy (2.7)

Iout =
I2gm
Iw

=
IxIy
Iw

(2.8)

Equations 2.7 and 2.8 take Ix and Iy as the multiplier inputs and Iw as the weight input

for the neural signal path. These subcircuits take on the same structure except for minor

differences that transform the input and output of the geometric-mean subcircuit into its

counterpart (input to output, output to input) as well as change the impedances from low to

high (output to input transformation) or high to low (input to output transformation). As

previously discussed, this circuit falls short in its voltage management for the “headroom” for

each transistor in newer technology nodes. In addition, the multiplier/divider circuit must

operate in the saturation and triode regions which will consume more power and voltage

headroom to keep the transistors in the saturation region. The circuit also requires bias

control voltages to be created elsewhere. These deficiencies limit its capabilities in a low

power and high speed environment.

Baharmast et al. present another multiplier that utilizes the squaring characteristics of

transistors [14]. Seen in Figure 2.14, this circuit provides a much simpler design with a lower

transistor count and simplistic current mirroring to provide the multiplication operation.

Much like the previous design, this circuit uses saturated transistors to produce the overall

multiplication function described here:

Iout = Io1 + Io2 − (Io3 + Io4) =
IxIy
8IB

(2.9)
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Figure 2.13: Multiplier/Divider Circuit Proposed in [13].

Equation 2.9 is an application of Kirchoff’s current law at the output node and sums

the desired currents from the four legs of the circuit with Ix and Iy being input currents.

Though this circuit structure is simple in design, it will require additional support circuitry

to provide copies of the input currents so that reliable copies can be summed together at

the summed input as shown in Figure 2.14. Another shortcoming of this design is that there

exists a limited input range for the currents such that they must obey this relation:

|Iin| ≤ 4IB (2.10)

Where Iin is an input current and IB is the bias current for the circuit. This input range

limitation leads to a design that consumes more power and may not be easily translatable

to subthreshold or lower power designs. Along with the input range limitation, this

circuit design also has the potential for threshold voltage and transconductance paramter

mismatches.

The authors in [15] propose a multiplier/divider circuit that utilizes the basic translinear

loop methodology for a MOSFET. Figure 2.15 shows the multiplier design with differential

inputs and outputs that use two single quadrant translinear loops. The simplified approach of

this design will allow the circuit to fully utilize the current mode operation in terms of speed

and power dissipation. The authors design this circuit to operate in the subthreshold region

providing a low power capability for the multiplier. However, the major disadvantage of this
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Figure 2.14: Multiplier Circuit Using Two-Quadrant Squaring Proposed in [14].

design is the need for differential current signals that will require specialized circuitry either

on-chip at the beginning of the input signal pathway or off-chip in a commercial device.

The differential signals are better at maintaining signal integrity but double the number

of devices thus increasing the overall power for the multiplier. Along with the differential

signals, the authors used relatively large transistor dimensions for different sections of the

multiplier (a width of 20 µm for some transistors and a length of 10 µm for others). Lastly in

the simulation results, the authors demonstrate that the design is only capable of operating

effectively in the tens of kilo-Hertz frequency range rather than the faster speeds sought for

this project (Mega-Hertz range).

The final multiplier design reviewed demonstrates another method for using differential

and subthreshold currents to build a four-quadrant capable multiplier made up of two

translinear loops [16]. The proposed circuit, seen in Figure 2.16, has the differential input

IG and IW as well as a differential output in Isyn. The first tranlinear loop consists of

transistors M5, M6, M9, and M10 with the second being composed of transistors M6, M7,

M8, and M9. As discussed in the previous design, a pitfall of this circuit is its requirement
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Figure 2.15: Multiplier/Divider Utilizing Translinear Loops from [15].

of differential currents (although these signals provide some cancellation of harmonics and

reduced inteference and noise). Also as before, the authors chose large transistor dimensions

(width equal to 40 µm and length equal to 18 µm for some transistors) in order to achieve a

high linearity and −3dB bandwidth of approximately 1 MHz. Though the authors provide

good simulation results, they relate all the results back to ambiguous variables of x and w

(for inputs and weights, respectively) that are not readily defined in the literature. Therefore,

the more complex signal pathways and large transistor characteristics do not provide enough

advantages to be utilized in a complex high speed and low power neural network.

In summary, the reviewed multiplier designs all have their own distinct advantages and

disadvantages that must be analyzed properly in order to design a robust low power multiplier

that is functional at a frequency in the ten’s, if not hundred’s, of Mega-Hertz range. Further

multiplier design for this project will be discussed in more detail in the subsequent chapter.

2.3 Sigmoid Review

The second major building block of a Multilayer Perceptron is the activation function after

the summation of the weighted signal pathways. This activation function is generally in

the form of a sigmoid function (typically the logistic or hyperbolic-tangent functions).
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Figure 2.16: Four-Quandrant Multiplier with Differential Input and Output Currents [16].

Depending on the function used for activation, the function will categorize the received

information either from 0 to 1 (logistic function) or -1 to 1 (hyperbolic-tangent function).

This categorization will usually have a bias current or voltage that represents the analog

range that the activation function will operate. For example, a bias current of 200 nA for

a hyperbolic-tangent function will generally place the information in the range from −200

nA to 200 nA. The activation function will then either pass the information to the final

output of the neural network or send it along another signal pathway to be weighted again

for another layer’s activation function. This project focuses on the logistic function as the

chosen activation function for the MLP because of its need for only one positive power rail

and no negative power rail as the hyperbolic tangent function requires.

The core circuitry for the hyperbolic-tangent (tanh) function consists of three transistors,

a differential pair and a tail (bias) current [41]. The circuit is simply made up of three

MOSFETs and is similar to Figure 2.8 in functionality. The differential output current of

the MOSFET pair is quite similar to that of the Bipolar pair shown in equation 2.2 with
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some differences that stem from using FETs over Bipolar transistors. Analyzing the circuit

from Mead, the following equations are generated:

Isat = I0 exp(Vgκ− Vs) (2.11)

Applying the saturated drain current to the differential pair yields:

I1 = I0 exp(V1κ− V ) (2.12)

I2 = I0 exp(V2κ− V ) (2.13)

The drain currents added together must equal the tail bias current:

Ib = I1 + I2 = I0 exp(−V ) (exp(V1κ) + exp(V2κ)) (2.14)

Solving for exp(−V ) and substituting into equations 2.12 and 2.13 produces:

I1 = Ib
exp(V1κ)

exp(V1κ) + exp(V2κ)
(2.15)

I2 = Ib
exp(V2κ)

exp(V2κ) + exp(V1κ)
(2.16)

Taking the difference of equations 2.15 and 2.16 gives the final tanh function:

I2 − I1 = Ib
exp(V1κ)− exp(V2κ)

exp(V1κ) + exp(V2κ)
= Ib tanh

κ(V1 − V2)
2

(2.17)

For all of the above equations, κ is a constant that represents the rate of change of the

MOSFET surface potential related to the rate of change of the gate voltage [41]. Again,

the differences between equations 2.2 and 2.17 are minute and come down to the physics

associated with the two different types of transistors. In either case, it is now well-established

that a circuit including a differential pair will produce the desired sigmoid function.

The first of two sigmoid function designs as related to a neural network is presented

by Maliuk and Makris in [6]. The hyperbolic-tangent circuit can be seen in Figure 2.17.

As can be seen, the core of the neuron circuit consists of the aformentioned differential
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MOSFET pair. In this design, the authors utilized current-storage-cells to provide bias and

scaling currents for the differential pair and inputs, respectively. The circuit is completely

current mode using several current mirrors to move the input signals to the differential

pair. Transistors N5 and N6 are diode-connected (gate connected to drain of the transistor)

under their respective current mirrors to provide a voltage at the source of N1 and N4 to

be similar to the sources of N2 and N3, which are situated above the tail current transistor.

This structure allows the subthreshold signals to propagate more efficiently through the

current mirrors with as little mismatch as possible due to different drain-source voltages.

The scaling current is used to control the slope of the hyperbolic-tangent function as it

passes through its zero-point. The disadvantage of this design is the differential signals

used and the requirements that are involved with producing and propagating those signals

(pointed out in the previous section). Therefore, a single-ended version of this design could

be potentially used for high speed and low power neural networks.

Valle and Diotalevi propose the second hyperbolic-tangent design that also includes

programmable slope capabilities and subthreshold currents [17]. Figure 2.18 details the

intricacies of the neuron block (typically referring to the activation circuitry) and how it

connects to the overall neural network system. The programmable slope circuitry in this

design, as compared to the previous one, is more complex and detailed in terms of how it

interacts with the activation circuitry. As shown, the slope is controlled by the variable k

that is an integer and scales the bias current for the programmable section of the design. The

scaled bias current controls the tail current for a differential pair which will ultimately receive

the input differential signals and then output differential currents to the activation circuitry.

The hyperbolic-tangent activation circuit is similar to the previous design but better defines

how the current will be output through diode-connected PMOS devices. This circuit design

adds more complexity than may be necessary in order to add the slope programmability and

also suffers from the differential signal issues previously mentioned.

In summary, sigmoid or activation functions can be easily created using a differential pair

and tail current. The complexities come in how a design approaches different methods for

input signal pathways and bias circuitry. Overall, it is feasible to have a subthreshold design

that is capable of high throughput while still producing an adequate activation function.
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2.4 Winner-Take-All Review

The Winner-Take-All (WTA) block is a circuit that is positioned right before the final

output off of the chip and after the last neuron layer. The WTA circuit takes different

neuron outputs and then compares them with each other making sure that the highest

neuron output supercedes the others and is passed off-chip. For example, two neurons are

outputting to the WTA circuit with current levels of 250 nA and 150 nA, respectively. The

WTA block analyzes those two signals and determines that the 250 nA signal is the highest

and passes it to the final output while suppressing the 150 nA signal. A WTA circuit can

be designed to assess either voltages or currents and can output the highest value either in

an analog or digital format depending upon the overall system design specifications for the

integrated circuit.

Figure 2.17: Neuron Consisting of Hyperbolic-Tangent Activation Function [6].
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Figure 2.18: Neuron Block with Slope Programmable and Activation circuits [17].

The first WTA circuit reviewed is proposed by Lazzaro et al. and is a simple circuit

that uses a common node to allow the winning voltage to resolve [18]. Figure 2.19 details a

WTA circuit designed for two neuron current inputs. To add to this circuit, the design only

needs to extend by two transistors for each consecutive neuron input. This WTA circuit

is easily expandable and simple to implement in an overall system. The circuit is designed

to operate continuously only changing as the inputs (I1 and I2 in this case) increase or

decrease. Change in the inputs will alter the Vc node which is the winning response of

the circuit. The disadvantages of this design include the circuit being unable to resolve

high frequency signals and being unable to quickly resolve signals that are approximately

the same level. Both issues could lead the circuit to produce a “false” output if structures

off-chip are sampling the output periodically.
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Figure 2.19: Two Neuron Winner-Take-All Circuit [18].
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Figure 2.20: Winner-Take-All Block Diagram from [19].

The authors in [19] present a three-leveled WTA circuit that can be branched out to

accomodate any number of inputs as desired. The WTA block diagram is shown in 2.20

that consists of two pre-amplifier circuits to boost the input currents, a current-to-voltage

converter that then compares the two converted voltages, and an output block with two

differential pairs that take the converted voltages and then outputs a current corresponding

to the winning signal. This design is quite modular with the capability of stacking with

other copies of itself to create a “tree” structure for 2n inputs. The design is also capable

of analyzing subthreshold currents that are less than the 100 nA threshold. The downside

of this block structure is that it has added complexity from having three levels in a single

WTA block. The input signals are required to move through these levels potentially slowing

down the overall resolution time. The circuit also requires a synchronous reset signal in the

conversion and comparison block which is additional support circuitry and signals that need

to be generated for proper functionality of the WTA block.
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Figure 2.21: Winner-Take-All Circuit with Cells 1 and k [20].
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Figure 2.22: Voltage-In-Voltage-Out Winner-Take-All Circuit [21].

Fish et al. propose a WTA circuit that utilizes current inputs to produce voltage outputs

and is highly expandable through the use of a common node [20]. Seen in Figure 2.21, the

WTA circuit uses current mirrors to propagate the input current throught each cell as well

as current comparison at the common node. As one cell receives a higher input current, the

V xk node is pushed lower leading to a winning cell (if that cell has highest input current)

and a high output voltage. The circuit makes use of two feedback components (excitatory

and inhibitory through M8k and M9k, respectively). These feedback paths are essential to

the circuit resolving which cell wins the high output state. The benefits of the circuit include

a digital output value, short resolution time (tens of nanosecond range), and high current

precision (a few nano-Amps). The WTA circuit uses a reset signal much like the previous

design, which is disadvantageous as described previously. The design also has a relatively

high simulated power dissipation for subthreshold input currents (approximately 22.5 µW

per cell). The resolution delay and power usage do not make this circuit ideal for high speed

and low power neural network systems.
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Padash et al. propose a WTA circuit that is a voltage-in-voltage-out configuration with a

high frequency range of approximately 10 MHz [21]. The WTA circuit, shown in Figure 2.22,

takes an analog input voltage and produces a digital output voltage. The resolution of the

winning input voltage is settled through the two common nodes that connect all the WTA

cells together. The circuit operates by converting an input voltage to a current that is then

mirrored to produce another voltage, sent through a second comparator leg, and then the

signal drives a digital inverter. The high speed and low number of transistors, as compared

to some of the previous designs, make this WTA cell advantageous for higher speed neural

networks. However, the WTA cell requires four separate bias voltages in order to properly

function. Creating and maintaining these bias voltages requires several supplemental circuits

increasing the system’s overall power dissipation. Another disadvantage is the number of

conversions from voltage to current and then back to voltage may increase the error in

subthreshold neural network designs. If the accuracy of the WTA cell can be maintained at

higher speeds as well as at lower power, then this design may be useful for high speed and

low power neural network systems.

The authors of [22] have designed a WTA circuit that can be expanded through the use

of four subcircuits that have been developed to determine the minimum and maximum of the

desired number of input currents. Figures 2.23 and 2.24 detail the minimum and maximum

subcircuits using PMOS and NMOS transistors and a two input WTA circuit utilizing the

minimum and maximum subcircuits, respectively. This design boasts the ability to modularly

expand to any number of desired inputs to produce a single output winning current. On

the opposite side, the maximum PMOS and NMOS circuits make use of a latch that makes

the resolution time (approximately 350 ns) for the output higher as the two transistors will

fluctuate until the higher input current dominates. This WTA design requires its transistors

to be in the strong inversion region thus consuming more power due to the higher currents.

Therefore, this design may not be potentially useful for a low power, high speed neural

network.
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Figure 2.23: Minimum and Maximum Subcircuits for [22].

Figure 2.24: Two Input Winner-Take-All Cell Consisting of Min and Max Subcircuits [22].
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Yu et al. propose a two stage WTA cell with a digital output in [23]. The core of

the WTA cell consists of two stages that are identical to each other and are used to boost

small differences in input voltages (less than 10 mV) high enough for the digital inverter

to output the correct winning input signal. Each stage is made up of five transistors and

can be seen in Figure 2.25. The input transistor converts the voltage signal to a current

that is then amplified through the current mirror and sent on to the next stage for further

amplification. The bias transistors (M3,M4,M8,M9) supply the necessary bias currents for

the amplification. The circuit achieves a resolution time of 27 ns for small voltage differences

and less than 20 ns for large voltage differences (greater than 50 mV). The downside is the

circuit’s specification of the transistors being held in the strong inversion region, which will

lead to higher power dissipation. Though useful for small voltage differences, the use of

two stages does not allow a resolution time necessary for higher frequencies (100’s of Mega-

Hertz). Therefore, this design is not suitable for a neural network with low power and high

speed specifications.

In summary, the Winner-Take-All designs reviewed are the beginning point for a design

that can be capable of low power and high speed functionality in a neural network setting.

Figure 2.25: Cascade Winner-Take-All Circuit in [23].
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Further analysis in some designs could push their potential to be viable for the needs of the

proposed MLP.

2.5 Floating Gate Review

Floating Gate memory cells are an analog memory circuit that is composed of a voltage

node that is “floating” (is not tied down by any interconnect or transistors). The floating

gate is created by connecting the gates of transistors or MOSFET capacitors. This type

of memory is categorized as a non-volatile memory in that it is capable of retaining its

stored information for long periods of time without any power or signals being applied. The

floating gate memory node is only subject to leakage currents through the gate oxide, which

is minimal (typically on the order of femto- or pico-Amps). The cell is programmed using

tunnelling and injection currents through the gate oxide to increase and decrease the floating

gate voltage, respectively [24]. A floating gate structure was introduced previously in Figure

2.5 from [6].

Lu et al. present a deep machine learning system design that consumes a reported 11.4

µW of power after being trained and in recognition mode [24]. The reported work makes

use of weak inversion circuits and current mode analog designs to aid in achieving this low

power consumption. In addition to these design techniques, the authors utilized non-volatile

memory in the form of floating gate transistors to store the necessary circuit parameters.

The authors state that floating gate memory, when compared to a differential pair, provides

several advantages including a similar transfer function, smaller occupied area, and the

elimination of static bias currents. Figure 2.26 is the detailed schematic for the floating gate

memory used in this system. The floating gate memory utilizes three voltage rails to incur

either injection to add charge or tunneling to remove charge from the floating gate node.

For both cases, the pulse width applied to the injection and tunneling voltage rails controls

the movement of charge on the floating gate. Unlike the previous schematic in Figure 2.5,

this design utilizes a PMOS capacitor to implement the charge tunneling. This work reports

a peak energy efficiency of 1.04 TOPS/W (Tera-Operations per second per Watt) and is

fabricated in a 130 nm CMOS process.
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Figure 2.26: Floating Gate Transistor Memory Cell [24].

Wunderlich et al. present a field programmable mixed-signal array (FPMA) that utilizes

floating gate switches and memory for configurability [25]. The authors use the floating

gate structures to create several different types of interconnect nodes that can easily be

programmed via removing or adding charge to the floating gate transistor with Fowler-

Nordheim tunneling or hot channel electron injection, respectively. Through the floating

gate interconnect switches, the authors create a routing network that can easily direct a

signal down the proper pathway for the configured circuit in their FPMA. The FPMA is

implemented in a CMOS 0.35 µm process. The floating gate transistors are stated to have a

programmed voltage that has a higher dynamic range which leads to increased performance

in speed, power, and signal integrity while having reduced density when compared to other

conventional storage and switching devices. Figure 2.27 depicts the different types of floating

gate switches utilized in this work. Figure 2.27a is the standard floating gate cell whereas

Figure 2.27b is a floating gate cell setting the input voltage of an inverter. Figure 2.27c and

2.27d represent two abutting or two crossing signal lines being connected via a floating gate

switch, respectively. Figure 2.27e is a s-switch implemented with six floating gate transistors.

The s-switch allows an entering signal to be routed in a variety of useful manners, adding
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Figure 2.27: Floating Gate Switch Cells [25].

increased configurability. Therefore, the floating gate switches can be used to create a

programmable structure in a neural network system.

In summary, floating gate memory cells can be used in several fashions as either a voltage

storage cell, a voltage cell that converts to an output current, or a voltage cell that controls

a transistor acting as a switch. Also, floating gate cells are power efficient as they inherently

do not suffer from large leakage currents. The use of these cells is highly desirable for a

neural network system that has design specifications to be configurable and low power if the

complexity of the system does not hamper the programmability of the floating gates.

2.6 Summary

The reviewed literature provides a reasonable starting basis for designing the MLP system in

this work. With respect to other MLP and neural network designs, they do not achieve both

a high speed/low power design and a configurable architecture. The designs range greatly in

the number of neurons or synapses in their respective neural network that in turn increases
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the power usage seen by each design. Decreasing the power per neuron or synapse in addition

to adding configurability will greatly improve the overall system functionality. The reviewed

multiplier circuits detail that simplier circuits that are similar to that of Gilbert’s cell (seen

in Figure 2.10) will function appropriately at higher data rates as well as consume less

current (as there are less transistors for leakage paths), especially in the subthreshold region

of operation. The sigmoid circuit review takes a similar approach to that of the multiplier

in that subthreshold operation is beneficial to achieving the desired sigmoid function out of

MOSFET transistors as that of BJTs in a differential pair design. The WTA designs provide

a good basis for building a circuit that can operate with currents at high speeds with minimal

space utilized while providing accurate outputs. However, a current comparison (similar to

Figure 2.22) could be highly advantageous to create a thresholding circuit for inverters to

digitize. Lastly, floating gate switches are highly advantageous as nonvolatile memory/switch

choices but are also very complex to program if hundreds are desired in a system. Therefore,

simple single transistor switches are more desirable than their floating gate counterparts as

they offer simpler programming and less area usage.
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Chapter 3

MLP System Design and

Implementation

3.1 Multiplier Design

The multiplier is an important base element to a neuron in the MLP. The multiplier allows

weights to be integrated with the input signal propagating through the neural network. After

looking at the multiplier designs in Chapter 2, the past designs are used to provide a starting

design point for the multiplier used in this MLP neural network. In addition to the older

multiplier designs, the utilization of current signals suggests another design criteria for the

initial multiplier design to meet. Therefore, a starting design similar to Figure 2.10 is used

in the development of the multiplier for this system. It should be noted that there are no

width and length dimensions explicitly stated on any of the design figures that follow as the

minimum width (360 nanometer [nm]) and length (240 nm) are used for all transistors in

the system.

Figure 3.1 is the final design obtained to accomodate both current signals and voltage

headroom for the signal pathway to effectively propagate the desired input/current signals.

The core structure of this multiplier design (left circuit in Fig. 3.1) almost mimics the

Gilbert cell shown in Figure 2.10. The five core transistors operate similarly to the Gilbert

cell because of the MOSFET’s operation in the subthreshold region allowing an exponential

function in the drain current similar to Bipolar transistors. This similar functionality creates
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Figure 3.1: Multiplier Circuit Schematic.

the same output function seen in Equation 2.5. The addition of the cascode device in the I1

input allows the multiplier to operate faster while maintaining signal integrity as well as a

high impedance input for the current signals.

The rest of the circuits in Figure 3.1 represents two Minch cascode biasing schemes that

allow the weights to adjust the input signal. The Minch cascode circuit from [42] creates a low

voltage cascode structure that allows for weights in the subthreshold region. The additional

benefit from utilizing the Minch cascode is the ability for the circuit to operate effectively with

a low voltage ceiling (i.e., requires little voltage headroom). The Minch cascode circuit also

provides a more accurate current mirroring operation than other simplistic current mirror

designs. This effect allows for the multiplier weights to be more reliably reproduced as they

are programmed even with transistor mismatch and operation in the subthreshold region.

The key to the accuracy of the Minch cascode comes from the input bias current signal (Ib)

that helps stabilize the current mirror operation with the additional bias current. In addition

to a better mirrored current, the Minch cascode scheme allows the transistors to operate with

minimal voltage headroom allowing for voltages to swing effectively if necessary. Since the

weight signals are DC values and do not require high speed operation like the input signal

I1, the Minch cascode can easily be integrated into the Gilbert multiplier while maintaining

signal integrity.
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3.2 Sigmoid Design

The sigmoid circuit is the other important base element to the neuron in the MLP system.

The sigmoid creates a logistic function or hyperbolic tangent function output (Figure 3.2)

at the end of the neuron signal pathway that will either propagate onto another neuron or

to the winner-take-all block. For the MLP system, the logistic function is utilized since it

does not require a negatively biased circuit to operate as in the hyperbolic tangent function.

The sigmoid designs in Chapter 2 are used as a starting point for the sigmoid circuit used in

the MLP’s neurons. The utilization of current signals in the sigmoid circuit is again desired

and designed for during the development of the final circuit topology. The starting sigmoid

circuit design most closely resembles the design in Figure 2.17.

Figure 3.3 is the final design obtained that accomodates high frequency current signals

as well as outputs the desired logistic function. The sigmoid design is composed of several

current mirrors that relay the input, bias, and output signals to and from the differential

transistor pair at the core of the circuit. The basic functionality of the circuit is that when

the main input signal Ip is below the reference input signal In, the output signal Iout will

be near zero current. When Ip becomes much higher in magnitude than In, Iout will then

output a current that is near that of the bias current Ib for the sigmoid. This behavior is

typical of a logistic function at the positive and negative extremes on the horizontal axis.

The reference current In allows for the logistic function’s half point to be shifted further up

the horizontal axis. This functionality requires the circuit to have more input current in

order to reach the fully saturated bias current output. Performing a DC sweep on the input

Figure 3.2: Logistic Function (left) and Hyperbolic Tangent Function (right).
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Figure 3.3: Sigmoid Circuit Schematic.

signal Ip would create an output signal similar to that of the logistic function seen in Figure

3.2.

For this sigmod design, all of the input and output signals are designed such that the

circuit has a structure that interfaces easily with the multipliers before and after it. This

fitted structure requires that the input signal Ip and the output signal Iout are PMOS

current mirrors to source current into the NMOS devices at the input and output of the

multiplier in Figure 3.1. The reference current In utilizes a NMOS current mirror input as it

receives its input signal from DC bias circuits much like the bias current signal Ib. The bias

current Ib sinks current for the two input signals as well as the differential transistor pair

to ensure proper biasing throughout the core sigmoid circuitry and that the output signal

has a maximum value of the bias current. The functionality of the sigmoid circuit can only

be obtained by operating in the subthreshold region, which enables the output to take the

shape of the desired logistic function for proper signal propagation.

3.3 Thresholding Circuit Design

The final standalone circuit before the MLP system circuits is that of the thresholding

circuit (TC) that is based off of the winner-take-all (WTA) circuitry in Chapter 2. The
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combination of the TC and a 2-input OR gate produces a similar functionality to that of

the WTA circuitry. The TC receives neuron outputs and outputs a signal based upon the

highest signal level it receives at its input. The WTA circuits in Chapter 2 provide a great

deal of background information and provide designs to start the development process for

a high speed current capable TC. Figure 2.22 provides a good initial design of a current

capable TC circuit. A similar structure of two signals “fighting” against each other to create

an output signal based off of a comparison is desired for the MLP system outputs.

Figure 3.4 shows the block diagram for the two WTA structures that correspond to the

two MLP system outputs. Each “complete” WTA design consists of a multiplier circuit

(Figure 3.1) and a TC cell (Figure 3.5). The multiplier circuit sums the neuron current

outputs at its input terminal and then scales the summed currents in order to create a

better signal for comparison in the TC cell. The TC cell takes the multiplier output and

compares it to a reference current level. This comparison determines if the signal should

remain “high” or “low” by creating a voltage at the comparison node that is either just

Figure 3.4: Winner-Take-All Block Diagram.
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Figure 3.5: Thresholding Circuit Cell Schematic.

above the threshold voltages of the following inverters or just below their threshold voltages.

The use of the inverters allows the final output off-chip to be a digital voltage instead of an

analog current signal that then needs to be converted. The inverters have different minimum

widths (160 nm) and lengths (120 nm) than that of all the other transistors to provide faster

functionality as they create the digital output voltage as well as utilize less physical space.

The TC cell in Figure 3.5 contains three current inputs and one voltage output. The

main input signal Iin that comes from the multiplier (and the neurons before that) goes

into a PMOS Minch cascode current mirror in order to maintain signal levels and integrity

before the comparison node. The reference current Ib for current comparison is input into

a NMOS Minch cascode current mirror similar to those in the multiplier circuit mentioned

previously in this chapter. The Minch cascode structure requires a bias current Ib1 in order

to operate effectively. The reference and bias current inputs are taken from system circuits

and are DC values. The inputs Iin and Ib are mirrored and compared against each other

at the comparison node before the two inverters. As mentioned before, this node fluctuates
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based upon the input signal Iin around the inverter threshold voltages. The output signal

Vout is a digital voltage signal that is then passed on to an OR2 gate. The OR2 gate provides

another level of comparison with another signal chain ensuring that the MLP system output

follows the Winner-Take-All concept.

3.4 MLP System Design

The overall MLP system consists of the three aforementioned circuit blocks as well as

several support circuits. The support circuitry consists of numerous copies of biasing cells,

switching cells, and shift registers that provide power, connectivity, and configurability,

respectively. The whole system contains two separate MLP structures. The smaller, simpler

MLP structure is used for initial testing and basic programming tests to confirm functionality

of the chip and is shown in Figure 3.6. The larger, more complex MLP structure is the main

neural network design intended for low power and configurable use. The block diagram for

the main MLP is detailed in Figure 3.7 minus the bias and shift register support circuitry.

Both MLPs are designed to operate independent of each other and with the same capabilities.

Figure 3.6: Simple MLP Test Circuitry for Chip Functionality.
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Figure 3.7: MLP Block Diagram for Configurable Low Power System.
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Figure 3.8: 4-bit Shift Register made up of D-Type Flip-Flops.

The simple MLP architecture in Figure 3.6 is a more managable initial testing structure

as the programming to initialize the biasing for the neurons and winner-take-all block is

much less complex and easier to debug as it is only a single stream of data. The simple MLP

is a scaled down version of the main MLP structure containing many of the same biasing

cells but does not have any of the switch cells. The basic biasing scheme flows as follows:

first, the master bias current is sent on-chip; next, the master bias is mirrored to the bias

control circuitry that controls whether currents are sent to the neuron/WTA blocks; lastly,

the bias current is sent and mirrored into the bias cells based upon how many of the current

mirrors are programmed in each neuron/WTA block. The bias programming is controlled by

a string of shift registers that are made up of basic D-type Flip-Flops, which an example of a

4-bit shift register can be seen in Figure 3.8. Figure 3.9 shows the master bias input current

structure and one of the current mirrors that would be controlled to send current to a single

neuron or WTA block. Figure 3.10 details the bias input structure for the neuron as well as

a single current mirror for the biasing of the neuron or WTA block. The programming of the

neuron or WTA biasing determines the number of current mirrors in parallel for each bias

current input. Finally, each neuron block in the simple MLP only contains one multiplier

and one sigmoid circuit.
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Figure 3.9: Master Bias Input Cell with Single Current Mirror Output.
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Figure 3.10: Neuron/WTA Input Bias Cell with Single Current Mirror Output.
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The main MLP system in Figure 3.7 consists of twelve neurons, two WTA blocks for

the main system outputs (shown in Figure 3.4), S-switch matrices, and C-switch matrices.

Starting with the neurons, each contains four multipliers and a single sigmoid which is shown

in Figure 3.11. Normally, a neuron for a configurable MLP would have a much larger number

of multipliers per neuron as each neuron should be capable of receiving inputs from every

other neuron in the previous layer. The total inputs are limited to four per neuron as it

would be impractical and highly disadvantagous to circuit operation to have a large number

of multipliers in each neuron in addition to limiting the amount of interconnects and pads

required (as this design is limited by the number of pads and interconnects available due

the space constraints and process technology, respectively). The constraint on the inputs

maintains signal integrity by decreasing routing and switching characteristics that would be

needed for a higher number of multipliers as well as helps constrain the amount of chip area

required for the main MLP system as a whole. Much like the simple MLP’s neurons, the

main MLP’s neurons have several tens of current mirrors and shift registers for biasing and

configurability, respectively.

The next MLP structures that will be discussed are the two switch matrices. The S-

switch and C-switch matrices are developed from the floating gate switch cells in [25] and

Figure 3.11: Main MLP Neuron Block Diagram.
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take the form of the switches in Figure 2.27e and 2.27d, respectively. The main difference

being that the switches in the main MLP’s matrices are a single PMOS transistor whose

gate is controlled by the output of a shift register instead of a floating gate node. Floating

gate switches were initially considered for the switch matrices but resulted in too much

programming burden in addition to inconsistentcies in how each gate is initialized during

fabrication for the large number of switches needed for the MLP signal routing. The basic

C-switch matrix has eight vertical routes that can be connected to five horizontal routes (four

for neuron inputs and one for the output). Figure 3.12 shows these vertical and horizontal

routes with the C-switch (single transistor) linking them together when activated. The S-

switch matrix allows the ability to route a signal north, south, east, or west with as few

switches as possible and can be seen in Figure 3.13. Each S-switch construct contains six

transistors for the desired signal connections and a 3-bit address decoder to simplify the

number of shift registers required to program a single S-switch structure. Additionally, the

S-switch matrix allows routing through a layer of neurons to the next layer if desired.

Figure 3.12: C-Switch Matrix.
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Figure 3.13: S-Switch Matrix.

The main MLP system operates by routing one or more of the input signals to the first

layer of neurons. Next, those neurons will weigh their inputs at the multipliers, sum the

multiplier currents together before the sigmoid input, and then output a signal to the next

layer of neurons. This operation will continue until the desired number of layers is achieved

or all resources on the chip are used. The last layer of neurons will output to one or both

of the WTAs that will then amplify and compare the signal to a reference before outputting

the digital version of the final signal. The system requires four data streams for switch

programming, four data streams for neuron and WTA bias programming, and one data

stream for master bias control programming. The configurability of the main MLP system

allows the user to create a diverse range of basic MLP neural networks that are capable of

low power usage at higher frequences in the MHz range.

3.5 Summary

In summary, the entire MLP system is developed utilizing and improving upon the previous

works reviewed in Chapter 2. The multiplier circuit is designed for high speed current
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operation while maintaining a lower power state in the subthreshold region. The sigmoid

circuit is designed for the same type of speed and power operation as the multiplier and

creates the desired neural network function by applying the input signal to a logistic function.

Thus, these two structures create the basic neuron that is copied throughout the MLP system

along with the WTA blocks. The WTA block is designed to amplify an input signal through

a multiplier, then compare the signal to a set reference current, and then create a digital

voltage waveform from inverters and OR gates. Along with these vital structures, the MLP

has several hundred switches configured with two different types of matrices for different

switching operations. The switches are programmed through shift registers that are also

copied and used for configuring the bias cells for each neuron and WTA, as well as the bias

control circuitry. The final physical layout of the main MLP system can be seen in Figure

3.14 (area: 1 mm by 1 mm). Overall, the MLP system seems complex but consists of several

simple circuits that are copied and pieced together strategically to form a configurable low

power neural network.
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Figure 3.14: Main MLP System Physical Layout (Area: 1 mm by 1 mm).
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Chapter 4

MLP Simulation and Measurement

Results

4.1 Simulation Results

This section details the simulation results obtained from the Analog Design Environment

(ADE) within the Cadence design suite. The simulation results show the behavior of the

corresponding circuit under mostly ideal situations. Any deviations from ideal would be

resultant upon the addition of parasitic resistances or capacitances and would be explicitly

stated next to the non-ideal simulation results. Generally, the testbenches for these results

utilize ideal voltage and current sources to provide the proper biasing and waveforms to

test each circuit. The subsections are ordered similarly to Chapter 3 and refer to the final

designs discussed in each section of the previous chapter. Finally, all the simulation results

are performed with input signals in the ones of Mega-Hertz (MHz) range instead of the

much higher frequency range (100’s of MHz range) that the circuits are designed to operate

within in order to mimic the frequencies of the physical test board whose limitations will be

discussed in the next section. All simulations use a VDD of 1.2 V and a VSS of ground (0 V)

unless otherwise specified.
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4.1.1 Multiplier

The multiplier design, discussed previously and shown in Figure 3.1, is verified for correct

functionality using a testbench that provides three DC currents in addition to the input

current signal. For better reference, the multiplier design is shown here again in Figure 4.1.

The three DC current sources provide the bias current (Ib), the weight current (I2), and the

saturation current (I3) for this multiplier cell. The bias current has a value of 25 nano-Amps

(nA) while the weight and saturation currents both have an initial value of 100 nA for the

first simulation. The input current signal I1 is a pulse train consisting of ten pulses at a

frequency of 1 MHz with amplitudes of 100 nA for the on state and zero current for the off

state. The output current signal I4 is connected to a sigmoid input to provide the typical

load seen by this design. The first simulation run is shown in Figure 4.2.

Figure 4.2 consists of six waveforms representing four signals. Going from top to bottom,

the first two waveforms reflect the voltage levels at the input I1 and output I4 nodes as the

input current signal changes. The voltage for the input signal peaks at roughly 1.03 Volts

as this value represents the 100 nA amplitude. The minimum voltage level for the input

occurs when the current is zero and is represented by any value less than approximately 750

milli-Volts (mV). The second voltage waveform details the voltage levels as the output sinks

the final current value from the connected sigmoid circuit input (diode-connected PMOS

transistor for reference). For this voltage signal, the minimum value occurs when the output

Figure 4.1: Multiplier Circuit Schematic.
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Figure 4.2: First Multiplier Simulation Run.

current is a maximum. The bottom four waveforms detail the four current signals associated

with the multiplier.

The input signal I1 (third from the top of Figure 4.2) can be seen pulsing at 1 MHz

with a 100 nA amplitude as described previously. The next two current signals (I2 and I3,

respectively) do not fluctuate as they remain at 100 nA for this simulation. The final current

signal at the bottom of the figure is the output current I4 which mimics the input signal

with a frequency of 1 MHz but has an amplitude of approximately 116 nA. The output

amplitude difference is seen because of slight variations in well-modeled transistors in the

subthreshold region. Additionally, the output node has a single device between it and its

respective current source resulting in more voltage headroom for the output device whereas

the input node has two devices in series allowing for less headroom for each. The expected

output for this simulation run is a pulse train with an approximate current amplitude of 100

nA for the I4 signal, which is consistent with what is seen in Figure 4.2.

The next four figures (Figures 4.3 through 4.6) represent the multiplier’s behavior in

different bias conditions for the saturation current. The waveforms represent the same signals

as in Figure 4.2 and are in the same positioning as well for easy comparision. Figure 4.3

is the multiplier circuit with the saturation current I3 doubled to 200 nA that reduces
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Figure 4.3: Second Multiplier Simulation Run.

the output current amplitude to roughly 68 nA, which is close to the expected output

of 50 nA considering the voltage headroom differences previously mentioned. Figure 4.4

shows the multiplier operating with the saturation current I3 quadrupled (400 nA) with

respect to the first simulation run that reduces the output current amplitude further to

approximately 34 nA, which is again close to the expected 25 nA. Figure 4.5 demonstrates

multiplier functionality when the saturation current is halved to 50 nA with regards to

the first run producing an output current amplitude of around 181 nA, which shows the

expected functionality of almost doubling the output current. Lastly, Figure 4.6 details the

multiplier’s output current at an amplitude of 266 nA for the case of the saturation current

being 25 nA. This final simulation is expected to have an output current amplitude of 400

nA, but the limits on voltage headroom limit the multiplier’s functionality. These four test

cases are examples of the many different ways for the multiplier to weight its output current

amplitude in order to produce the desired signal.
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Figure 4.4: Third Multiplier Simulation Run.

Figure 4.5: Fourth Multiplier Simulation Run.
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Figure 4.6: Fifth Multiplier Simulation Run.

Figure 4.7: Multiplier Input Signal DC Sweep Simulation.
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The final simulation figure for the multiplier is a DC sweep of the input current signal I1

and can be seen in Figure 4.7. The simulation has the same six waveforms for the four current

signals in the same position in the figure as the previous simulation results. The purpose

of the DC sweep on the input signal is to show how the input signal’s current level affects

the output signal I4 current level as well as the voltage levels for both signals. Figure 4.7

shows that as the input current increases the output current does follow it almost linearly.

However, the output current’s percent difference decreases as the current increases. This

effect is due to the more and more gradual decrease in the output signal’s voltage level with

respect to current. Similarly, the input signal’s voltage level also increases more gradually as

the current increases. These effects are due to the transistors in the input and output nodes

requiring more voltage headroom to provide more current and are quite similar to the I-V

curves seen in electronics textbooks.

In conclusion, the five transient and single DC sweep simulations verify the multiplier’s

capability to function efficiently and sufficiently accurate while adding user controlled signal

weighting in the overall MLP system.

4.1.2 Sigmoid

The final sigmoid design is verified in a similar fashion much like the multiplier is in the

previous section. For reference and clarity, the sigmoid design from Chapter 3 is shown

again in Figure 4.8. The sigmoid circuit has four current signals with two being DC currents

and two being input/output signals. The testbench for the sigmoid consists of three current

sources for the three current inputs. The first two current inputs are DC signals for the bias

current Ib and the reference current In. The current values for the bias current and reference

current are 200 nA and 25 nA, respectively. The input current signal Ip is the same current

pulse train used for the multiplier. Reiterating, the pulse train has ten pulses at a frequency

of 1 MHz with an amplitude of 100 nA. The difference between the multiplier and sigmoid

pulse train current source is that the sigmoid one is a current sink rather than a current

source. Finally, the output current signal Iout will detail the logistic function output while

being loaded with the multiplier input signal node. This load represents the typical next

stage circuitry seen by the sigmoid design.
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Figure 4.9 shows the simulation results for the sigmoid verification. However, going from

top to bottom, this time the first four waveforms are the current signals and the last two

are the voltage levels for the input and output switching currents. The first signal is the

input current signal Ip and has the frequency and amplitude characteristics described in the

previous paragraph. The next two signals are the reference current and the bias current with

their levels being at 25 nA and 200 nA, respectively. The third signal from the bottom and

last current signal is the output current Iout which has a matching frequency of the input’s

of 1 MHz and has an amplitude of approximately 94 nA. The two reasons why this current

does not reach the maximum theoretical value of the bias current are that again there is

not enough voltage headroom with the multiplier input node as a load and the input signal

has not reached the saturation point in the sigmoid’s logistic function (which will become

apparent later on in this section). Finally, the last two waveforms depict the voltage levels for

the on and off states of the input and output current signals, respectively. This simulation is

expected to produce an output current pulse train with some degradation due to the sigmoid

nature of the circuit at the edges of the pulse, which is consistent with what is seen in Figure

4.9.

The next simulation results are obtained from performing a DC sweep on the input

current signal Ip while maintaining the same current levels for the reference and bias currents.

Figure 4.8: Sigmoid Circuit Schematic.
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This DC simulation is expected to show a sigmoid-like waveform for the output current as

the input is swept linearly. The results are depicted in Figure 4.10 and have the same order

and positioning as the waveforms in Figure 4.9. The input current is swept from 0 to 500 nA

and only the bottom three signal waveforms alter with the sweep. The second signal from

the bottom is the voltage level for the swept input current. This voltage details a diode-

connected transistor’s voltage increase as more current is sourced from it and is similar to

the curves seen in the DC sweep for the multiplier. The signals third from the bottom and

at the bottom depict the behavior of the output current signal and output voltage signal,

respectively. Both waveforms take the shape of a logistic function which is the overall goal

of the sigmoid circuit. As mentioned earlier, the current level for a 100 nA input signal is

below the saturation point of the logistic curve and is only at about 94 nA. The curve shows

that it would take an input signal around 400 nA to be securely in the saturated section of

the logistic function.

In conclusion, the sigmoid design is verified through a transient and DC sweep

simulations. The results demonstrate functionality at the desired frequency with the ability

to adjust the output current levels depending upon the input current Ip and the bias current

Figure 4.9: Sigmoid Simulation Run.
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Ib as well as the reference current In. All three adjustable currents give greater user control

at the MLP system level.

4.1.3 Thresholding Circuit

The thresholding circuit (TC) final design is tested using the same methods as the previous

two circuits and has its circuit shown again for reference in Figure 4.11. This figure is only

the TC cell but keep in mind that there is a multiplier cell that is inline prior to every TC

cell. In addition to the multiplier cell, the TC cell has six biasing currents as well as the

input current signal and an output voltage signal. Three of the biasing currents are Minch

cascode bias currents much like Ib1 in Figure 4.11 with all having current values of 25 nA.

The other three biasing currents are the weight current (Iw on the simulation), the saturation

current (Is on the simulation), and the TC reference current (Ib on Figure 4.11). The input

current signal Iin on the schematic is the intermediate current signal that is output from the

inline multiplier used for scaling the current signal. After the current comparison via the

two current mirror networks, the output voltage Vout is buffered through the two inverters

and either goes to the 2-input OR gate or off-chip for analysis.

Figure 4.10: Sigmoid Input Signal DC Sweep Simulation.
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Figure 4.11: Thresholding Circuit Cell Schematic.

Figure 4.12 details the transient functionality of the WTA block (with the inline

multiplier). The expected output waveform is a digital voltage pulse train from 0 to 1.2 V

corresponding to the input current “high” and “low” states. The simulation figure consists

of seven waveforms that make up the five important current signals and the output voltage.

Starting with the topmost current signal (third waveform from the top), this signal is a 1

MHz pulse train current source with an amplitude of 100 nA and ten pulses. The next three

current waveforms moving downward are the weight current, the saturation current, and the

reference current which all have a current value of 100 nA. The bottommost waveform is the

intermediate current signal from the output of the multiplier to the input of the TC cell.

This signal, labeled Iin, mimics the input current signal in terms of the 1 MHz frequency

and has a slightly scaled amplitude of 110 nA (due to voltage headroom differences between

output and input nodes in the multiplier that are discussed previously in this chapter). The

two topmost waveforms are both voltage signals which consist of the voltage created by the

input current signal at the multiplier’s input node (topmost) and the final output voltage
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Figure 4.12: Thresholding Circuit Simulation Run.

signal that is the desired output for WTA block (second from the top). The output signal

Vout depicts the correct functionality of the TC cell as the waveform has the 1 MHz frequency

from the input current signal as well as has been succesfully converted to a digital output

voltage to easy analysis or observation off-chip.

The final two simulation figures for the WTA block demonstrate the relationship between

the output voltage Vout and the input current Iin. The expected behavior of these simulations

is that the output signal should switch from a “high” to “low” state or vice-versa depending

upon the simulation when the threshold at the switching node is passed. Figure 4.13 shows

how performing a DC sweep on the input current signal changes the output voltage. In

this figure, the waveforms maintain the same order and positioning as in Figure 4.12. The

main relationship to point out from this simulation is that the input current signal only

requires 40 nA to change the output voltage when compared against a 100 nA reference

current. Before analyzing this relationship further, a look at Figure 4.14 can reinforce the

outcome seen in Figure 4.13. This second DC sweep simulation is performed by sweeping

the reference current in the WTA cell. The sweep details that for a 100 nA constant input

current signal a reference current of 270 nA is required to flip the output voltage from high to

low. This relationship requiring more pull-down current than pull-up current in the current
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comparison between the current mirrors is because of the circuit’s design. In the current

mirror in Figure 4.11 that reflects the Minch bias current from the NMOS to PMOS devices,

the same voltage headroom is not maintained creating a much higher Minch bias current in

the PMOS devices allowing them to operate better with less current than the NMOS devices.

This behavior does not negatively affect the circuit and can be accounted for by increasing

the reference current to counteract the input signal as needed.

In conclusion, the thresholding circuitry operates as expected and is verified through the

simulations performed. Again, the TC results show the ability of the circuit to operate at the

desired frequency range while maintaining a proper digital output voltage. The TC circuit

is the final crucial component in the MLP system producing the final output of the whole

system.

Figure 4.13: Thresholding Circuit Simulation Sweeping the Input Current Signal.
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Figure 4.14: Thresholding Circuit Simulation Sweeping the Reference Current Signal.
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4.1.4 MLP System

The final simulation to analyze is the main MLP system. The simulation is performed with

the MLP programmed to one of its many configurations. For reference, the main MLP

system block diagram is shown again in Figure 4.15. This simulation configuration utlizes

25% of the total assets in the main MLP system at the lowest programmed biasing and can

been seen in Figure 4.16. For this simulation, the bias currents for the neurons and WTA

have to be programmed using voltage sources and clock signals. Additionally, the switches

connecting the inputs and outputs of the neurons together with other circuit structures have

to be programmed in conjuction with the bias programming. This programming takes the

majority of the simulation time and causes the simulation to be time consuming because of

the transferral of data between the hundreds of shift registers. In addition, the simulation

took into account the parasitics for the routing and layout of the physical integrated circuit.

With these reasons in mind and the fact that the simulation took 8 days to finish, only one

configuration is considered in terms of simulation results.

The MLP parasitic system simulation is shown in Figure 4.17 and only has four waveforms

in it. The expected output is a digital voltage waveform that mimics the state of the input

pulse train. Overall, the information from the simulation is simple and easy to parse with

the complexity coming from programming the system to achieve correct functionality. The

bitstreams used for programming the main MLP system can be found in Appendix A. The

first waveform in Figure 4.17 is the current utilized by the system during operation from

its single voltage rail. This current will be analyzed in the measurement results section

to determine each configuration’s figure of merit (FOM). For this section, it is used as a

guideline to determine how successful the physical circuit will be. The second waveform is

the voltage input signal that will produce the appropriate input current signal when applied

to the multiplier in the first neuron. The 1.2 V amplitude produces an input current signal

in the 100’s of nA range. The third waveform is the digital output voltage for the system’s

first output when loaded with 12 pF capacitor which is similar to that of an oscilloscope

probe. The last waveform is the digital output voltage for the system’s second output and

is a constant low as there is no signal routed to this output. The propagation delay times
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demonstrate the ability of the MLP system to produce the correct output after the input

stimulus. The 637 ns value comes after the system has maintained a low setting which

discharges the parasitic capacitors and inductors for longer whereas the 502 ns value comes

after a quicker transition in which those parasitics are not allowed to discharge as much.

Consequently for this load and programming, these delay values show that the maximum

frequency that could be achieved with a successful output signal is around 15 to 20 MHz.

The expected output is that the digital output voltage signal (third waveform) mimics the

input voltage signal (second waveform) after some propagation delay caused by the system,

which is what is seen in Figure 4.17.

In conclusion, the MLP system simulation details the entire system functioning as a

neural network with all the neuron and system support circuitry working correctly. Even

though the system appears to have high propagation delays, those values are only for a single

configuration at the lowest bias settings for every circuit. Therefore, the ability to program

different configurations and increase bias settings creates a system that can adapt to higher

frequency demands to provide a proper output signal.
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Figure 4.15: MLP Block Diagram for Configurable Low Power System.
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Figure 4.16: MLP Configuration for System Simulation.
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Figure 4.17: MLP Parasitic System Simulation.

4.2 Measurement Results

This section details the measurement results obtained from physically testing the manufac-

tured integrated circuit on the printed circuit board (PCB). The PCB is shown in Figure

4.18 and contains circuits to test the different elements of the MLP system. The test

board is divided into six sections: power circuits (red), microcontroller and supplemental

circuitry (yellow), input signal circuits for four main inputs (purple), input signal circuits

for simple MLP system (orange), input circuits for test structures (black), and socket for

integrated circuit (white). These six sections allow every circuit to be thoroughly tested and

analyzed. All power rails for the integrated circuit are kept at 1.2 V whereas the rails for

the microcontroller are held at 3.3 V. The bitstreams and input signals are generated by

the microcontroller, and the code for the microcontroller can be found in Appendix A. The

measurement sections mirror that of the simulation sections except that there are no WTA

test structures on the integrated circuit. A buffer circuit is used to obtain a cleaner output

signal unless otherwise specified as the output structures of the chip are not strong enough

to drive the 12 pF capacitive load of the oscilloscope probe at higher frequencies. In general,
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the PCB is capable of testing the main MLP system and other circuits at frequencies up to

the ones of MHz. The limitations that cause this barrier are that the microcontroller unit

can only produce reliable signals in this frequency range in addition to the added parasitic

inductances and capacitances from the PCB traces. With these limitations in mind, the

MLP system is still highly capable of reaching the desired figure of merit which will be

shown in the MLP system later.
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Figure 4.18: PCB Test Board for MLP Chip (Red = Power, Purple/Black/Orange = Input Signal Generation, Yellow =
Microcontroller Unit, White = IC Socket).
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4.2.1 Multiplier

The multiplier’s measurement test setup is similar to its simulation testbench. The

measurement setup uses the input circuits for test structures section of the PCB to generate

voltage input signals. When those signals are applied to the multiplier circuit, they create

currents that are similar to those in the simulation testbench. The multiplier takes the

input signal from off-chip, weights/scales the signal according to how it is programmed, and

then outputs the signal. The output is loaded with the sigmoid test structure for better

comparison. Unfortunately, the output is also loaded with the 12 pF oscilloscope probe

causing a large RC time constant on the output waveform. This time constant hampers

the ability to measure the multiplier at higher frequencies. To work around this issue, the

propagation delays at the rising and falling edges are measured.

Figure 4.19: Multiplier Measurement Result (Loaded with Sigmoid Input at 5 kHz).
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Figure 4.19 depicts the input and output signals for the multiplier testing. The yellow

waveform is the input voltage signal used to create the desired currents within the multiplier.

The maximum value for this waveform is approximately 1.1 V with the minimum being

roughly 200 mV. The frequency for this particular measurement is about 5 kHz. The green

waveform is the output voltage waveform and ranges from roughly 520 mV to 720 mV during

the switching operation. The multiplier is programmed to the lowest bias settings for this

measurement which equates to an approximate doubling of the input signal. Figures 4.20

and 4.21 detail the propagation delays for the rising and falling edges, respectively. The

delay for the rising edge is approximately 30 ns while the delay for the falling edge is about

9 ns. These delays are to be expected as the multiplier circuit only has five transistors in

the signal pathway and only weights/scales the signal as programmed.

Figure 4.20: Multiplier Measurement for Rising Edge Propagation Delay.
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Figure 4.21: Multiplier Measurement for Falling Edge Propagation Delay.

Therefore, the manufactured multiplier circuit behaves in a similar fashion to that in the

simulation. Only one programming is used to simplify the results as the multiplier is not

the main basis of this discussion. The relatively fast propagation delays provide a bearing

that the circuit has the potential of operating at much higher frequencies than desired for

this MLP system.

4.2.2 Sigmoid

The measurement setup for the sigmoid design is again similar to its simulation counterpart.

Like the multiplier, the test setup for the sigmoid utilizes the input circuits for the test

structures section of the PCB to generate the required voltage input signals. The voltage

input signal creates a current draw at the input node of the sigmoid circuitry. Once the

current is generated by the diode-connected transistor at the input node, it can be transferred
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to the differential transistor pair at the core of the sigmoid block. After that occurs, the

sigmoid behaves in the same fashion as it did previously in the simulation section by applying

a logistic function to input signal. The output node is loaded by the multiplier test structure

in addition to the 12 pF oscilloscope probe. This loading causes another RC time constant

to appear in the output signal of the sigmoid. Like the multiplier, the sigmoid will work

around this issue by analyzing the rising and falling edge propagation delays.

Figure 4.22 details the input and output measurements for the sigmoid test structure. The

yellow waveform is the input voltage signal to the sigmoid and has the same characteristics

as the multiplier measurements (∼5 kHz frequency with a max. of 1.1 V and a min. of 200

mV). The green waveform is the output voltage generated as the sigmoid current sources into

the multiplier load and charges the capacitive load. The output waveform fluctuates from

760 mV to roughly 1.1 V as the sigmoid moves from an off state to an on state, respectively.

Figure 4.22: Sigmoid Measurement Result (Loaded with Multiplier at 5 KHz).
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The sigmoid is programmed at the lowest bias settings for this measurement result which

relates to a reference current of 25 nA and bias current of 200 nA. Figures 4.23 and 4.24

depict the propagation delays for the rising and falling edges, respectively. The rising edge

propagation delay is roughly 11 ns while the falling edge propagation delay is about 9 ns

for the sigmoid measurement. These delays are again to be expected because of the current

mode operation of the sigmoid circuit and the higher current available to charge the load.

In conclusion, the physical sigmoid circuit operates nearly the same as the simulation

results. Like the mutliplier results, only one programming is performed to simplify the

results as the sigmoid needs only operate as expected for the main MLP system to function

properly.

Figure 4.23: Sigmoid Measurement for Rising Edge Propagation Delay.
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Figure 4.24: Sigmoid Measurement for Falling Edge Propagation Delay.

4.2.3 MLP System

The final measurement section discusses the results for several different configurations for

the main MLP system as well as a brief noise analysis on the first configuration. The

measurement results utilize one or more inputs from the main input signal generating circuit

section after the integrated circuit is programmed via the microcontroller. The programming

consists of activating switches for the best routing scheme for each configuration and

activating the bias cells in order to operate the MLP at the highest possible frequency

while still maintaining an accurate output signal. For all of the configurations, the MLP is

programmed as a classifier to verify the programming and signal accuracy. Each configuration

is judged on its ability to meet the figure of merit of 1 Tera-operations per second per Watt

(TOPS/s/W) which is defined by Equation 4.1. Operations consist of either a sum or

multiply operation within each activated neuron. In addition to the verfication results for
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the configuration, the propagation delays for one of the rising and falling edges of the pulse

train will be analyzed. All of the configuration will have input voltage signals that have a

minimum at 200 mV and a maximum in the range of 900 mV to 1.1 V depending upon the

load on the microcontroller’s IO ports (lower for higher number of inputs to chip). Lastly,

the input signal is operating at the worst case situation which is alternating between high

and low states.

FOM =
(operations)(frequency)

Power
(4.1)

Figure 4.16 from the simulation section depicts the first configuration analyzed for

measurement results. Figure 4.25 details the input voltage waveform in yellow and the

output voltage waveform in green for this first configuration. The frequency for the input

signal data is 4.06 MHz which is reflected in the output waveform which goes from a low

state at zero to a high state at 1.2 V. The measured on state current for this configuration is

14 µA with the off state current being 7µA. These currents averaged over the 8 on states and

8 off states of the signal and multiplied with the voltage give an average power of 12.6 µW.

This configuration has 6 total operations (2 per neuron with 3 neurons). Therefore, the FOM

is 1.93 TOPS/s/W for this configuration and input signal. Figures 4.26 and 4.27 show the

propagation delay for the rising and falling edges, respectively. The rising edge propagation

delay is 338 ns while the falling edge is 489 ns. The large delays come from the thresholding

circuitry as it requires large currents to change the voltage signal at the comparison node as

well as the numerous parasitics encountered from the routing and switches.

The remainder of the configuration figures are placed in Appendix B as not to overwhelm

the result sections with excessive figures. However, their results will be summarized in

Table 4.1 showing the important configuration characteristics similar to the discussion in

the previous paragraph. All frequencies, currents, power, and FOM in the table are in

MHz, µA, µW, and TOPS/s/W respectively. Table 4.2 details each configuration’s rising

and falling edge propagation delay in ns. After the first configuration, the configuration

number will match its corresponding figure captions in the appendix section. Table 4.3

details a comparison of this work against reviewed literature. The table is broken into
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Figure 4.25: First MLP System Configuration Measurement (No Load at 4.07 MHz).

several comparing features of the different MLP structures with the units for each feature

being: for the computation rate in Mega-connections per second (MCPS), power in micro-

Watts (µW), synapses (number of multipliers), rate per synapse (MCPS), power per synapse

(µW), and FOM (TOPS/s/W). The biggest takeaways from Table 4.3 are that the power

per synapse is the lowest for this work as well as achieving the highest FOM compared to

the prior art. While the computation rate per synapse is not the best, this can be improved

upon by either scaling up the number of available synapses and/or increasing the overall

data rate of the system.
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Figure 4.26: First MLP System Configuration Measurement for Rising Edge Propagation
Delay.

Table 4.1: Summary of Measurement Results for Different MLP System Configurations
(see text for units).

Config # Inputs Neurons Freq. On Current Off Current Power FOM
1 1 3 4.06 14 7 12.6 1.93
2 1 4 4.06 14.1 7.3 12.84 2.52
3 1 5 4.06 19.4 8.6 16.8 2.90
4 1 7 4.06 18.9 6.3 15.12 5.91
5 1 9 2.75 22.8 7.4 18.12 4.56
6 1 12 2.75 26.6 15.5 25.26 5.23
7 4 12 1.51 35.8 17 31.68 2.86
8 1 6 2.04 13.5 4 10.5 2.09
9 2 6 2.57 19 8.1 16.26 2.85
10 1 7 4.06 21.6 8.2 17.88 4.54
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Figure 4.27: First MLP System Configuration Measurement for Falling Edge Propagation
Delay.

Table 4.2: Summary of Propagation Delays for Different MLP System Configurations (see
text for units).

Config # Inputs Neurons Freq. Delay (Rising) Delay (Falling)
1 1 3 4.06 338 489
2 1 4 4.06 345 457
3 1 5 4.06 343 479
4 1 7 4.06 436 492
5 1 9 2.75 515 585
6 1 12 2.75 541 621
7 4 12 1.51 555 889
8 1 6 2.04 829 750
9 2 6 2.57 610 687
10 1 7 4.06 395 564
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Table 4.3: MLP Comparison with Prior Art (see text for units).

Comp. Rate Power Syn. # Rate per Syn. Power per Syn. FOM
Diotalevi et al. 30.00 3.00 1 30.00 3.00 -

Gatet et al. 2400 595000 10 240 59500 0.004
Bo et al. 1000 25000 28 35.70 892.90 0.040
Bo et al. 2500 200000 4810 0.52 41.60 0.012

Park et al. 411300 213100 2056 200 103.65 1.930
Tsai et al. 860160 310000 4096 210 75.68 1.450
This work 86.50 31.68 48 1.80 0.66 2.856
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The noise analysis for the configuration in Figure 4.16 is the last measurement performed

on the main MLP system. The noise is measured with the MLP set up as a simple classifier

with two classes (OFF being class 0 and ON being class 1). An input is connected to a current

source meter in order to provide the input current to measure input referred noise. When the

input is near the decision boundary for the MLP and the classification operation is performed,

the noise will cause the output to become uncertain. Assuming additive Guassian noise, the

relative frequency of the class 1 output will be shown to approach the cumulative density

function (CDF) of the normal distribution. The standard deviation σ of this distribution can

be extracted from the data and can be analyzed as the input referred rms noise of the system.

Two noise analysis runs are performed on this configuration and are shown in Figures 4.28

and 4.29. The measured input referred noise for the first run is 435.9 pArms with the second

run giving a similar result of 432.13 pArms. With a full-scale input of 100 nA (or greater),

the SNRs of the MLP system for this configuration for the first and second run are 47.21 dB

and 47.29 dB, respectively.

In conclusion, the MLP system has operated consistently and above the desired figure

of merit for the system. The configurablility of the system has been shown successfully

through the ten sample configurations analyzed. Additionally, the low power aspects of the

MLP system are prevalent in the FOMs above 1 TOPS/s/W. These higher FOM numbers

could be sacrificed slightly to improve the propagation delays of the rising and falling edges

as well as push the frequency of the system while still maintaining above 1 TOPS/s/W.
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Figure 4.28: First Noise Analysis Run on MLP System.
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Figure 4.29: Second Noise Analysis Run on MLP System.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and Original Contributions

The MLP system design is centered around the ability to be both a configurable and

low power analog network as analog multipliers and sigmoid circuits are already proven

concepts, which is shown in Chapter 2. The first criterion of configurability is successfully

demonstrated by the MLP system in Chapter 4 and Appendix B via the ten configuration

samples that produce the correct, expected outputs. The low power criterion is shown

through the application and calculation of a figure of merit that is greater than 1 Tera-

operations per second per Watt in each configuration. Unfortunately, the full potential of

the MLP system could not be tested because of the limitations, discussed in Chapter 4, that

hampered the input signal frequency range. However even with these limitations on the

data rate of the system, the MLP is still capable of operating at the original FOM which is

intended for frequencies in the range of 100’s of MHz. Therefore, the MLP system should

easily meet its original goals should it be redesigned. The system programming allows for a

wide range of applications from image analysis to signal processing to pattern recognition.

The MLP structure is well suited for this diverse range of applications if it is scaled up to

become more of a true neural network as right now it is limited by connections and the

number of inputs it can sustain.

The amount that the MLP system would have to be scaled up depends upon the nature of

the intended application. However for typical neural network applications, this MLP system
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would have to be improved to have at least 100 neurons if not 100’s to behave similarly to

that of other modern neural networks. In order to achieve this highly scaled up version, the

integrated circuit would have to be much larger and more compact as the physical layout

is not 100% optimized for saving space. The integrated circuit would eventually be limited

by the number of interconnect layers in the CMOS manufacturing technology being used.

However, the MLP system as of right now could be highly desirable for small-scale embedded

applications and biomedical applications. The rise of the Internet of Things has given way

for products to be more interconnected and “intelligent” as products move away from direct

consumer control. With that in mind, the MLP system could be implanted in home consumer

products such as thermostats, lights, refridgerators, and other products to take in sensor

data and output classified signals to a central hub that utilizes the data and regulates the

consumer’s home with minimal human interaction. For biodmedical applications, the MLP

could be paired with sensors that are either implanted or placed onto a patient to monitor

and output a signal when the patient experiences certain medical criteria (such as breathing

events in sleep apnea patients). The obstacles that stand in between the MLP and placement

in finalized products are the following: the input signal structures are burdensome and need

refining on-chip or otherwise, the MLP requires reprogramming with every loss of power

event, and the architecture needs optimization to improve overall functionality.

The original contributions of this work include several of the features touched upon in

the first paragraph. The first contribution is high speed and small form factor multiplier and

sigmoid circuits that are capable of operating at a frequency of at least 100 MHz which is

proven via the propagation delays for both circuits. Additionally, both circuits are designed

to utilize as little physical layout space on the integrated circuit as possible for the topologies

and fabrication technology chosen. The next contribution comes from the configurable nature

of the MLP system. The MLP has proven to be easily altered to take whichever desired

neural network shape is possible with its available resources. The biasing programming also

allows the input signals to be controlled however the user dictates. The third contribution

is the low power analog design of the entire system which grants the possibility of a mobile

MLP integrated circuit that consumes little power and has a high throughput. The last

contribution is a scalable system that grants the ability to easily scale up or down the size of
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the overall system to create enough available resources to perform any MLP neural network

task.

5.2 Future Work

This final section discusses the changes that could be made to the MLP network in order

to improve the system functionality. The first change would be a faster and more efficient

current comparison network in the thresholding circuit cell. The TC cell bogs down the

system’s data rate by providing the largest addition to the propagation delay as well as

consuming the most current in the system. The second change would be to create input

structures on-chip to convert the voltage input signals from the microcontroller to current

signals more readily and with less parasitics than the support circuitry off-chip. The bias

current mirrors that relay the master bias current throughout the chip could be improved

upon in order to have a more accurate bias current that is similar in all sections of the chip.

The output inverters on the OR gates or the TC cells should be expanded to have a greater

current drive capability (such as exponential horn technique [43]) in order to drive at least the

capacitive load of an oscilloscope probe. Another change could be better routing structures

so as to reduce the parasitics seen in the signal pathways and decrease propagation delay

times. Also, the test board parasitics should be analyzed and limited as best as possible to

increase the maximum data rate potential. The final and most important change would be

to choose a higher frequency capable microcontroller unit in order to successfully operate

the MLP system in the 100’s of MHz frequency range. In conclusion, these changes would

allow the MLP to operate at its maximum limits potentially achieving a greater figure of

merit.
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Appendix A

Code for Programming MLP System
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BIAS_STR
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0000000000000000 - 0000
0001001000100010 - 4448

Page 1

Figure A.1: Simulation Code for Bias Bitstream.
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N_STR0&1&2
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
0110111111111111 - FFF6
1111111111111111 - FFFF
1111111111011011 - DBFF
0110111111111111 - FFF6
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF

Page 1

Figure A.2: Simulation Code for All Neuron Bitstreams.
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SW_STR0
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111100011111111 - FF1F
1111111111111111 - FFFF
1111111011111111 - FF7F
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF

Page 1

Figure A.3: Simulation Code for the First Switch Bitstream.
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SW_STR1&2
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
0111111101111111 - FEFE
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF

Page 1

Figure A.4: Simulation Code for Second and Third Switch Bitstreams.
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SW_STR3
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111001111 - F3FF
1111111111101111 - F7FF
1111111111111111 - FFFF
1111111111111111 - FFFF

Page 1

Figure A.5: Simulation Code for the Fourth Switch Bitstream.
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WTA_STR
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111111111 - FFFF
1111111111110110 - 6FFF
1111011011011011 - DB6F
1101101111011011 - DBDB
0110111111111111 - FFF6
1111111111111111 - FFFF
1111111111111111 - FFFF

Page 1

Figure A.6: Simulation Code for Winner-Take-All Bitstream.
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Figure A.7: Page 1 of Microcontroller Code for Measurements.
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Figure A.8: Page 2 of Microcontroller Code for Measurements.
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Figure A.9: Page 3 of Microcontroller Code for Measurements.
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Figure A.10: Page 4 of Microcontroller Code for Measurements.
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Figure A.11: Page 5 of Microcontroller Code for Measurements.
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Figure A.12: Page 6 of Microcontroller Code for Measurements.
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Figure A.13: Page 7 of Microcontroller Code for Measurements.
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Figure A.14: Page 8 of Microcontroller Code for Measurements.
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Figure A.15: Page 9 of Microcontroller Code for Measurements.
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Figure A.16: Page 10 of Microcontroller Code for Measurements.
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Figure A.17: Page 11 of Microcontroller Code for Measurements.
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Appendix B

MLP System Measurement Results

Figures
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Figure B.1: Second MLP Configuration for Measurement Results.
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Figure B.2: Second MLP System Configuration Measurement.
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Figure B.3: Second MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.4: Second MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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Figure B.5: Third MLP Configuration for Measurement Results.
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Figure B.6: Third MLP System Configuration Measurement.
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Figure B.7: Third MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.8: Third MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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Figure B.9: Fourth MLP Configuration for Measurement Results.
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Figure B.10: Fourth MLP System Configuration Measurement.
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Figure B.11: Fourth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.12: Fourth MLP System Configuration Measurement for Falling Edge
Propagation Delay.
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Figure B.13: Fifth MLP Configuration for Measurement Results.
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Figure B.14: Fifth MLP System Configuration Measurement.
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Figure B.15: Fifth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.16: Fifth MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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Figure B.17: Sixth MLP Configuration for Measurement Results.
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Figure B.18: Sixth MLP System Configuration Measurement.
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Figure B.19: Sixth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.20: Sixth MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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Figure B.21: Seventh MLP Configuration for Measurement Results.
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Figure B.22: Seventh MLP System Configuration Measurement.
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Figure B.23: Seventh MLP System Configuration Measurement for Rising Edge
Propagation Delay.
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Figure B.24: Seventh MLP System Configuration Measurement for Falling Edge
Propagation Delay.
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Figure B.25: Eighth MLP Configuration for Measurement Results.
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Figure B.26: Eighth MLP System Configuration Measurement.
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Figure B.27: Eighth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.28: Eighth MLP System Configuration Measurement for Falling Edge
Propagation Delay.
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Figure B.29: Ninth MLP Configuration for Measurement Results.
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Figure B.30: Ninth MLP System Configuration Measurement.
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Figure B.31: Ninth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.32: Ninth MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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Figure B.33: Tenth MLP Configuration for Measurement Results.
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Figure B.34: Tenth MLP System Configuration Measurement.
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Figure B.35: Tenth MLP System Configuration Measurement for Rising Edge Propagation
Delay.
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Figure B.36: Tenth MLP System Configuration Measurement for Falling Edge Propagation
Delay.
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