1,250 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Spectrum Sharing in Dynamic Spectrum Access Networks: WPE-II Written Report

    Get PDF
    A study by Federal Communication Commission shows that most of the spectrum in current wireless networks is unused most of the time, while some spectrum is heavily used. Recently dynamic spectrum access (DSA) has been proposed to solve this spectrum inefficiency problem, by allowing users to opportunistically access to unused spectrum. One important question in DSA is how to efficiently share spectrum among users so that spectrum utilization can be increased and wireless interference can be reduced. Spectrum sharing can be formalized as a graph coloring problem. In this report we focus on surveying spectrum sharing techniques in DSA networks and present four representative techniques in different taxonomy domains, including centralized, distributed with/without common control channel, and a real case study of DSA networks --- DARPA neXt Gen- eration (XG) radios. Their strengths and limitations are evaluated and compared in detail. Finally, we discuss the challenges in current spectrum sharing research and possible future directions

    A new connectivity strategy for wireless mesh networks using dynamic spectrum access

    Get PDF
    The introduction of Dynamic Spectrum Access (DSA) marked an important juncture in the evolution of wireless networks. DSA is a spectrum assignment paradigm where devices are able to make real-time adjustment to their spectrum usage and adapt to changes in their spectral environment to meet performance objectives. DSA allows spectrum to be used more efficiently and may be considered as a viable approach to the ever increasing demand for spectrum in urban areas and the need for coverage extension to unconnected communities. While DSA can be applied to any spectrum band, the initial focus has been in the Ultra-High Frequency (UHF) band traditionally used for television broadcast because the band is lightly occupied and also happens to be ideal spectrum for sparsely populated rural areas. Wireless access in general is said to offer the most hope in extending connectivity to rural and unconnected peri-urban communities. Wireless Mesh Networks (WMN) in particular offer several attractive characteristics such as multi-hopping, ad-hoc networking, capabilities of self-organising and self-healing, hence the focus on WMNs. Motivated by the desire to leverage DSA for mesh networking, this research revisits the aspect of connectivity in WMNs with DSA. The advantages of DSA when combined with mesh networking not only build on the benefits, but also creates additional challenges. The study seeks to address the connectivity challenge across three key dimensions, namely network formation, link metric and multi-link utilisation. To start with, one of the conundrums faced in WMNs with DSA is that the current 802.11s mesh standard provides limited support for DSA, while DSA related standards such as 802.22 provide limited support for mesh networking. This gap in standardisation complicates the integration of DSA in WMNs as several issues are left outside the scope of the applicable standard. This dissertation highlights the inadequacy of the current MAC protocol in ensuring TVWS regulation compliance in multi-hop environments and proposes a logical link MAC sub-layer procedure to fill the gap. A network is considered compliant in this context if each node operates on a channel that it is allowed to use as determined for example, by the spectrum database. Using a combination of prototypical experiments, simulation and numerical analysis, it is shown that the proposed protocol ensures network formation is accomplished in a manner that is compliant with TVWS regulation. Having tackled the compliance problem at the mesh formation level, the next logical step was to explore performance improvement avenues. Considering the importance of routing in WMNs, the study evaluates link characterisation to determine suitable metric for routing purposes. Along this dimension, the research makes two main contributions. Firstly, A-link-metric (Augmented Link Metric) approach for WMN with DSA is proposed. A-link-metric reinforces existing metrics to factor in characteristics of a DSA channel, which is essential to improve the routing protocol's ranking of links for optimal path selection. Secondly, in response to the question of “which one is the suitable metric?”, the Dynamic Path Metric Selection (DPMeS) concept is introduced. The principal idea is to mechanise the routing protocol such that it assesses the network via a distributed probing mechanism and dynamically binds the routing metric. Using DPMeS, a routing metric is selected to match the network type and prevailing conditions, which is vital as each routing metric thrives or recedes in performance depending on the scenario. DPMeS is aimed at unifying the years worth of prior studies on routing metrics in WMNs. Simulation results indicate that A-link-metric achieves up to 83.4 % and 34.6 % performance improvement in terms of throughput and end-to-end delay respectively compared to the corresponding base metric (i.e. non-augmented variant). With DPMeS, the routing protocol is expected to yield better performance consistently compared to the fixed metric approach whose performance fluctuates amid changes in network setup and conditions. By and large, DSA-enabled WMN nodes will require access to some fixed spectrum to fall back on when opportunistic spectrum is unavailable. In the absence of fully functional integrated-chip cognitive radios to enable DSA, the immediate feasible solution for the interim is single hardware platforms fitted with multiple transceivers. This configuration results in multi-band multi-radio node capability that lends itself to a variety of link options in terms of transmit/receive radio functionality. The dissertation reports on the experimental performance evaluation of radios operating in the 5 GHz and UHF-TVWS bands for hybrid back-haul links. It is found that individual radios perform differently depending on the operating parameter settings, namely channel, channel-width and transmission power subject to prevailing environmental (both spectral and topographical) conditions. When aggregated, if the radios' data-rates are approximately equal, there is a throughput and round-trip time performance improvement of 44.5 - 61.8 % and 7.5 - 41.9 % respectively. For hybrid links comprising radios with significantly unequal data-rates, this study proposes an adaptive round-robin (ARR) based algorithm for efficient multilink utilisation. Numerical analysis indicate that ARR provides 75 % throughput improvement. These results indicate that network optimisation overall requires both time and frequency division duplexing. Based on the experimental test results, this dissertation presents a three-layered routing framework for multi-link utilisation. The top layer represents the nodes' logical interface to the WMN while the bottom layer corresponds to the underlying physical wireless network interface cards (WNIC). The middle layer is an abstract and reductive representation of the possible and available transmission, and reception options between node pairs, which depends on the number and type of WNICs. Drawing on the experimental results and insight gained, the study builds criteria towards a mechanism for auto selection of the optimal link option. Overall, this study is anticipated to serve as a springboard to stimulate the adoption and integration of DSA in WMNs, and further development in multi-link utilisation strategies to increase capacity. Ultimately, it is hoped that this contribution will collectively contribute effort towards attaining the global goal of extending connectivity to the unconnected

    A reliable and energy efficient cognitive radio multichannel MAC protocol for ad-hoc networks

    Get PDF
    A thesis submitted in partial ful llment for the degree of Doctor of Philosophy in the Department of Computer Science and Technology, University of BedfordshireRecent research has shown that several spectrum bands are mostly underutilised. To resolve the issue of underutilisation of spectrum bands across the networks, the concept of Cognitive Radio (CR) technology was envisaged. The CR technology allows Secondary Users (SUs) to acquire opportunistic access to large parts of the underutilised spectrum bands on wireless networks. In CR networks, SUs may scan and identify the vacant channels in the wireless spectrum bands and then dynamically tune their receivers to identify vacant channels and transmitters, and commence communication among themselves without causing interference to Primary/Licensed Users (PUs). Despite the developments in the eld of CR technology, recent research shows that still there are many challenges unaddressed in the eld. Thus, there is a need to reduce additional handshaking over control and data channels, to minimise large sized control frames and to introduce reliable channel selection process and maintenance of SUs' communication when PUs return to a licensed channel. A fundamental challenge a ecting this technology is the identi cation of reliable Data Channels (DCHs) for SUs communication among available channels and the continuation of communication when the PU returns. This doctoral research investigates in detail how to resolve issues related to the protocol design for Cognitive Radio Networks (CRNs) on Medium Access Layers (MAC) for Ad-Hoc networks. As a result, a novel Reliable and Energy e cient Cognitive Radio multi-channel MAC protocol (RECR-MAC) for Ad-Hoc networks is proposed to overcome the shortcomings mentioned. After discussing the background, operation and architecture of CR technology, this research proposes numerous platforms and testbeds for the deployment of personal and commercial applications of the CRNs. Side by side, optimised control frames and a reduced number of handshakes over the CCH are suggested to extend the transmitting time for data communication. In addition, the reliable channel selection process is introduced instead of random selection of DCHs for successful data communication among the SUs. In RECR-MAC, the objective of every SU is to select reliable DCHs, thereby ensuring high connectivity and exchanging the successful data frames across the cognitive network. Moreover, the selection criteria of the DCHs are based on multiple factors, such as an initial selection based on the maximum free time recorded by the SUs over the DCH channel ranking, which is proportional to the number of positive/negative acknowledgements, and the past history of DCHs. If more than two DCHs have an equal value during the second, third and following iterations, then the DCHs are selected based upon the maximum free time. The priorities of the DCHs are then assigned based on Reliable Data Channels, that is, RDCH 1, RDCH 2, RDCH 3, and RDCH 4 respectively (where RDCH 1 and RDCH 2 have the highest priority, DRCH 3 and RDCH 4 have the next priority, and so on). The impacts of channel selection process and Backup Data Channel (BDC) over the proposed RECR-MAC protocol are analysed in combination with comparative benchmark CR-MAC protocols based on the timing diagrams proposed. Finally, the RECR-MAC protocol is validated by using a MATLAB simulator with PU impact over the DCHs, both with and without BDC, and by comparing results, such as communication time, transmitting energy and throughput, with benchmark CR-MAC protocols
    • …
    corecore