1,358 research outputs found
Gauge color codes in two dimensions
We present a family of quantum error-correcting codes that support a
universal set of transversal logic gates using only local operations on a
two-dimensional array of physical qubits. The construction is a subsystem
version of color codes where gauge fixing through local measurements
dynamically determines which gates are transversal. Although the operations are
local, the underlying code is not topological in structure, which is how the
construction circumvents no-go constraints imposed by the Bravyi-K\"onig and
Pastawski-Yoshida theorems. We provide strong evidence that the encoding has no
error threshold in the conventional sense, though it is still possible to have
logical gates with error probability much lower than that of physical gates.Comment: 15 pages, 9 figure
Quantum Separability and Entanglement Detection via Entanglement-Witness Search and Global Optimization
We focus on determining the separability of an unknown bipartite quantum
state  by invoking a sufficiently large subset of all possible
entanglement witnesses given the expected value of each element of a set of
mutually orthogonal observables. We review the concept of an entanglement
witness from the geometrical point of view and use this geometry to show that
the set of separable states is not a polytope and to characterize the class of
entanglement witnesses (observables) that detect entangled states on opposite
sides of the set of separable states. All this serves to motivate a classical
algorithm which, given the expected values of a subset of an orthogonal basis
of observables of an otherwise unknown quantum state, searches for an
entanglement witness in the span of the subset of observables. The idea of such
an algorithm, which is an efficient reduction of the quantum separability
problem to a global optimization problem, was introduced in PRA 70 060303(R),
where it was shown to be an improvement on the naive approach for the quantum
separability problem (exhaustive search for a decomposition of the given state
into a convex combination of separable states). The last section of the paper
discusses in more generality such algorithms, which, in our case, assume a
subroutine that computes the global maximum of a real function of several
variables. Despite this, we anticipate that such algorithms will perform
sufficiently well on small instances that they will render a feasible test for
separability in some cases of interest (e.g. in 3-by-3 dimensional systems)
09421 Abstracts Collection -- Algebraic Methods in Computational Complexity
From 11.10. to 16.10.2009, the Dagstuhl Seminar 09421 ``Algebraic Methods in Computational Complexity \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Delay-Coordinates Embeddings as a Data Mining Tool for Denoising Speech Signals
In this paper we utilize techniques from the theory of non-linear dynamical
systems to define a notion of embedding threshold estimators. More specifically
we use delay-coordinates embeddings of sets of coefficients of the measured
signal (in some chosen frame) as a data mining tool to separate structures that
are likely to be generated by signals belonging to some predetermined data set.
We describe a particular variation of the embedding threshold estimator
implemented in a windowed Fourier frame, and we apply it to speech signals
heavily corrupted with the addition of several types of white noise. Our
experimental work seems to suggest that, after training on the data sets of
interest,these estimators perform well for a variety of white noise processes
and noise intensity levels. The method is compared, for the case of Gaussian
white noise, to a block thresholding estimator
- …
