We focus on determining the separability of an unknown bipartite quantum
state ρ by invoking a sufficiently large subset of all possible
entanglement witnesses given the expected value of each element of a set of
mutually orthogonal observables. We review the concept of an entanglement
witness from the geometrical point of view and use this geometry to show that
the set of separable states is not a polytope and to characterize the class of
entanglement witnesses (observables) that detect entangled states on opposite
sides of the set of separable states. All this serves to motivate a classical
algorithm which, given the expected values of a subset of an orthogonal basis
of observables of an otherwise unknown quantum state, searches for an
entanglement witness in the span of the subset of observables. The idea of such
an algorithm, which is an efficient reduction of the quantum separability
problem to a global optimization problem, was introduced in PRA 70 060303(R),
where it was shown to be an improvement on the naive approach for the quantum
separability problem (exhaustive search for a decomposition of the given state
into a convex combination of separable states). The last section of the paper
discusses in more generality such algorithms, which, in our case, assume a
subroutine that computes the global maximum of a real function of several
variables. Despite this, we anticipate that such algorithms will perform
sufficiently well on small instances that they will render a feasible test for
separability in some cases of interest (e.g. in 3-by-3 dimensional systems)