3 research outputs found

    THE COMPARATIVE STUDY ON EXPECTED TOTAL QUALITY COST BETWEEN TRADITIONAL SINGLE SAMPLING PLAN AND ECONOMICAL DESIGN

    Get PDF
    In the quality inspection practice of the consumer electronics industry, MIL-STD-105E sampling table is viewed as the basis for sampling plans. This traditional quality inspection plan determine the sample size and reject rule based on the size of lot, consumer�s and producer's risk and average quality level (AQL). Traditional sampling plan does not consider internal and external quality costs. However, quality costs were considered in many previous researches, but the comparison between traditional and economical design of single sampling plan is rare from now. This paper discusses the sampling test before the receiving inspection which is vendor simulated buyers. Includes the costs of inspection, rework, replacement, and external failure cost are considered. We compare the quality economical design with traditional single sampling plan under the total quality cost. This paper can be regarded as a reference for future studies and practical applications

    An Optimal Plan of Zero-Defect Single-Sampling by Attributes for Incoming Inspections in Assembly Lines

    No full text
    This paper proposes a nonlinear integer program for determining an optimal plan of zero-defect, single-sampling by attributes for incoming inspections in assembly lines. Individual parts coming to an assembly line differ in the non-conforming (NC) risk, NC severity, lot size, and inspection cost-effectiveness. The proposed optimization model is able to determine the inspection sample size for each of the parts in a resource constrained condition where a product’s NC risk is not a linear combination of NC risks of the individual parts. This paper develops a three-step solution procedure that effectively reduces the solution time for larger size problems commonly seen in assembly lines. The proposed optimization model provides insightful implications for quality management. For example, it reveals the principle of sample size decisions for heterogeneous, dependent parts waiting for incoming inspections; as well as provides a tool for quantifying the expected return from investing additional inspection resources. The optimization model builds a foundation for extensions to advanced inspection sampling plans

    Optimal Configuration of Inspection and Rework Stations in a Multistage Flexible Flowline

    Get PDF
    Inspection and rework are two important issues of quality control. In this research, an N-stage flowline is considered to make decisions on these two issues. When defective items are detected at the inspection station the items are either scrapped or reworked. A reworkable item may be repaired at the regular defect-creating workstation or at a dedicated off-line rework station. Two problems (end-of-line and multistage inspections) are considered here to deal with this situation. The end-of-line inspection (ELI) problem considers an inspection station located at the end of the line while the multistage inspection (MSI) problem deals with multiple in-line inspection stations that partition the flowline into multiple flexible lines. Models for unit cost of production are developed for both problems. The ELI problem is formulated for determining the best decision among alternative policies for dealing with defective items. For an MSI problem a unit cost function is developed for determining the number and locations of in-line inspection stations along with the alternative decisions on each type of defects. Both of the problems are formulated as fractional mixed-integer nonlinear programming (f-MINLP) to minimize the unit cost of production. After several transformations the f-MINLP becomes a mixed-integer linear programming (MILP) problem. A construction heuristic, coined as Inspection Station Assignment (ISA) heuristic is developed to determine a sub-optimal location of inspection and rework stations in order to achieve minimum unit cost of production. A hybrid of Ant-Colony Optimization-based metaheuristic (ACOR) and ISA is devised to efficiently solve large instances of MSI problems. Numerical examples are presented to show the solution procedure of ELI problems with branch and bound (B&B) method. Empirical studies on a production line with large number of workstations are presented to show the quality and efficiency of the solution processes involved in both ELI and MSI problems. Computational results present that the hybrid heuristic ISA+ACOR shows better performance in terms of solution quality and efficiency. These approaches are applicable to many discrete product manufacturing systems including garments industry
    corecore