2,266 research outputs found

    Real-time dynamic spectrum management for multi-user multi-carrier communication systems

    Full text link
    Dynamic spectrum management is recognized as a key technique to tackle interference in multi-user multi-carrier communication systems and networks. However existing dynamic spectrum management algorithms may not be suitable when the available computation time and compute power are limited, i.e., when a very fast responsiveness is required. In this paper, we present a new paradigm, theory and algorithm for real-time dynamic spectrum management (RT-DSM) under tight real-time constraints. Specifically, a RT-DSM algorithm can be stopped at any point in time while guaranteeing a feasible and improved solution. This is enabled by the introduction of a novel difference-of-variables (DoV) transformation and problem reformulation, for which a primal coordinate ascent approach is proposed with exact line search via a logarithmicly scaled grid search. The concrete proposed algorithm is referred to as iterative power difference balancing (IPDB). Simulations for different realistic wireline and wireless interference limited systems demonstrate its good performance, low complexity and wide applicability under different configurations.Comment: 14 pages, 9 figures. This work has been submitted to the IEEE for possible publicatio

    Spectrum optimization in multi-user multi-carrier systems with iterative convex and nonconvex approximation methods

    Full text link
    Several practical multi-user multi-carrier communication systems are characterized by a multi-carrier interference channel system model where the interference is treated as noise. For these systems, spectrum optimization is a promising means to mitigate interference. This however corresponds to a challenging nonconvex optimization problem. Existing iterative convex approximation (ICA) methods consist in solving a series of improving convex approximations and are typically implemented in a per-user iterative approach. However they do not take this typical iterative implementation into account in their design. This paper proposes a novel class of iterative approximation methods that focuses explicitly on the per-user iterative implementation, which allows to relax the problem significantly, dropping joint convexity and even convexity requirements for the approximations. A systematic design framework is proposed to construct instances of this novel class, where several new iterative approximation methods are developed with improved per-user convex and nonconvex approximations that are both tighter and simpler to solve (in closed-form). As a result, these novel methods display a much faster convergence speed and require a significantly lower computational cost. Furthermore, a majority of the proposed methods can tackle the issue of getting stuck in bad locally optimal solutions, and hence improve solution quality compared to existing ICA methods.Comment: 33 pages, 7 figures. This work has been submitted for possible publicatio

    Game theoretic aspects of distributed spectral coordination with application to DSL networks

    Full text link
    In this paper we use game theoretic techniques to study the value of cooperation in distributed spectrum management problems. We show that the celebrated iterative water-filling algorithm is subject to the prisoner's dilemma and therefore can lead to severe degradation of the achievable rate region in an interference channel environment. We also provide thorough analysis of a simple two bands near-far situation where we are able to provide closed form tight bounds on the rate region of both fixed margin iterative water filling (FM-IWF) and dynamic frequency division multiplexing (DFDM) methods. This is the only case where such analytic expressions are known and all previous studies included only simulated results of the rate region. We then propose an alternative algorithm that alleviates some of the drawbacks of the IWF algorithm in near-far scenarios relevant to DSL access networks. We also provide experimental analysis based on measured DSL channels of both algorithms as well as the centralized optimum spectrum management

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Full text link
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015, Selected Areas in Communications: Access Networks and Systems, 6-10 December, 201
    • …
    corecore