5 research outputs found

    An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension

    No full text
    A new solution for the problem of selecting poles of the two-parameter Kautz functions in Volterra models is proposed. In general, a large number of parameters are required to represent the Volterra kernels, although this difficulty can be overcome by describing each kernel using a basis of orthonormal functions, such as the Kautz basis. This representation has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a non-linear static mapping represented by the Volterra series. The resulting Wiener/Volterra model can be truncated into fewer terms if the Kautz functions are properly designed. The underlying problem is how to select the arbitrary complex poles that fully parametrize these functions. This problem has been approached in previous research by minimizing an upper bound for the error resulting from the truncation of the kernel expansion. The present paper goes even further in that each multidimensional kernel is decomposed into a set of independent Kautz bases, each of which is parametrized by an individual pair of conjugate Kautz poles intended to represent the dominant dynamic of the kernel along a particular dimension. An analytical solution for one of the Kautz parameters, valid for Volterra models of any order, is derived. A simulated example is presented to illustrate these theoretical results. The same approach is then used to model a real non-linear magnetic levitation system with oscillatory behaviour

    An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension

    No full text
    A new solution for the problem of selecting poles of the two-parameter Kautz functions in Volterra models is proposed. In general, a large number of parameters are required to represent the Volterra kernels, although this difficulty can be overcome by describing each kernel using a basis of orthonormal functions, such as the Kautz basis. This representation has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a non-linear static mapping represented by the Volterra series. The resulting Wiener/Volterra model can be truncated into fewer terms if the Kautz functions are properly designed. The underlying problem is how to select the arbitrary complex poles that fully parametrize these functions. This problem has been approached in previous research by minimizing an upper bound for the error resulting from the truncation of the kernel expansion. The present paper goes even further in that each multidimensional kernel is decomposed into a set of independent Kautz bases, each of which is parametrized by an individual pair of conjugate Kautz poles intended to represent the dominant dynamic of the kernel along a particular dimension. An analytical solution for one of the Kautz parameters, valid for Volterra models of any order, is derived. A simulated example is presented to illustrate these theoretical results. The same approach is then used to model a real non-linear magnetic levitation system with oscillatory behaviour.81696297

    Optimization Of Volterra Models With Asymmetrical Kernels Based On Generalized Orthonormal Functions

    No full text
    An improved approach to determine exact search directions for the optimization of Volterra models based on Generalized Orthonormal Bases of Functions (GOBF) is proposed. The proposed approach extends the work in [7], where a novel, exact technique for optimizing the GOBF parameters (poles) for Volterra models of any order was presented. The proposed extensions take place in two different ways: (i) the formulation here is derived in such a way that each multidimensional kernel of the model is decomposed into a set of independent orthonormal bases (rather than a single, common basis), each of which is parameterized by an individual set of poles intended for representing the dominant dynamic of the kernel along a particular dimension; and (ii) a novel, more computationally efficient method to analytically and recursively calculate the search directions (gradients) for the bases poles is derived. A simulated example is presented to illustrate the performance of the proposed approach. A comparison between the proposed method, which uses asymmetric kernels with multiple orthonormal bases, and the original method, which uses symmetric kernels with a single basis, is presented. © 2011 IEEE.10521058Mediterranean Control AssociationBillings, S.A., Identification of nonlinear systems - A survey (1980) IEE Proc. Pt D, 127 (6), pp. 272-285Boyd Stephen, Chua Leon, O., Fading memory and the problem of approximating nonlinear operators with volterra series (1985) IEEE transactions on circuits and systems, CAS-32 (11), pp. 1150-1161Bokor, J., Schipp, F., Approximate identification in Laguerre and Kautz bases (1998) Automatica, 34 (4), pp. 463-468. , PII S000510989700201XBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168Campello, R.J.G.B., Amaral, W.C., Favier, G., Optimal expansions of discrete-time Volterra models using Laguerre functions (2004) Automatica, 40, pp. 815-822Campello, R.J.G.B., Do Amaral, W.C., Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions (2006) Automatica, 42 (4), pp. 689-693. , DOI 10.1016/j.automatica.2005.12.003, PII S0005109806000069Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009) IEEE Transactions on Automatic Control, 54 (12), pp. 2757-2772Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions (2007) Automatica, 43 (6), pp. 1084-1091. , DOI 10.1016/j.automatica.2006.12.007, PII S0005109807000738Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., (2008) Exact Search Directions for Optimization of Linear and Nonlinear Models Based on Generalized Orthonormal Functions, , http://www.icmc.usp.br/, Technical report, Department of Computer Sciences, University of São Paulo (USP) campelloDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension (2008) International Journal of Control, 81 (6), pp. 962-975Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control Using Volterra Models, , Springer-VerlagDumont, G.A., Fu, Y., Non-linear adaptive control via laguerre expansion of volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7 (5), pp. 367-382Eykhoff, P., (1974) System Identification: Parameter and State Estimation, , John Wiley & Sons, New YorkHeuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Transactions on Automatic Control, 40 (3), pp. 451-465Heuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , SpringerKautz, W.H., Transient synthesis in time domains (1954) IRE Trans. on Circuit Theory, 1 (3), pp. 29-39Levenberg, K., A method for the solution of certain nonlinear problems in least squares (1944) Quartely of Applied Mathematics, 2 (2), pp. 164-168Marquardt, D.W., An algorithm for the least-squares estimation of nonlinear parameters (1963) SIAM Journal of Applied Mathematics, 11 (2), pp. 431-441Nelles, O., (2001) Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, , Springer- Verlag, BerlinNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42 (4), pp. 515-521. , PII S0018928697028080Oliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G.A., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-571. , DOI 10.1016/S0005-1098(99)00179-XRugh, W.J., (1981) Nonlinear Systems Theory - The Volterra/Wiener Approach, , The Johns Hopkins University Press, BaltimoreSchetzen, M., (1989) The Volterra and Wiener Theories of Nonlinear Systems, , Robert Krieger Publishing CompanyTakenaka, S., On the orthogonal functions and a new formula of interpolation (1925) Japanese Journal of Mathematics, 2, pp. 129-145Den Hof, P.M.J.V., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834Wahlberg, B., System identification using Kautz models (1994) IEEE Transactions on Automatic Control, 39 (6), pp. 1276-1282Wahlberg, B., Makila, P.M., On approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708. , DOI 10.1016/0005-1098(95)00198-0Wiener, N., (1942) Response of A Nonlinear Device to Noise, , Technical Report 129, Radiation Laboratory, M.I.T., AbrilWiener, N., (1966) Nonlinear Problems in Random Theory, , The MIT PressZiaei, K., Wang, D.W.L., Application of orthonormal basis functions for identification of flexible-link manipulators (2006) Control Engineering Practice, 14 (2), pp. 99-106. , DOI 10.1016/j.conengprac.2004.11.020, PII S096706610500036

    An Introduction To Models Based On Laguerre, Kautz And Other Related Orthonormal Functions - Part Ii: Non-linear Models

    No full text
    This paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. The first part of the paper approached issues related with linear models and models with uncertain parameters. Now, the mathematical foundations as well as their advantages and limitations are discussed within the contexts of non-linear system identification. The discussions comprise a broad bibliographical survey of the subject and a comparative analysis involving some specific model realisations, namely, Volterra, fuzzy, and neural models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these non-linear models are presented and illustrated by means of two case studies. Copyright © 2012 Inderscience Enterprises Ltd.161114Alataris, K., Berger, T.W., Marmarelis, V.Z., A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs (2000) Neural Networks, 13 (2), pp. 255-266. , DOI 10.1016/S0893-6080(99)00092-1, PII S0893608099000921Arto, V., Hannu, P., Halme, A., Modeling of chromatographic separation process with Wiener-MLP representation (2001) Journal of Process Control, 11 (5), pp. 443-458. , DOI 10.1016/S0959-1524(00)00053-6, PII S0959152400000536Babuška, R., (1998) Fuzzy Modeling for Control, , Kluwer Academic Publishers, Massachusetts, USABabuška, R., Verbruggen, H.B., Fuzzy set methods for local modelling and identification (1997) Multiple Model Approaches to Modelling and Control, , Murray-Smith, R. and Johansen, T.A. (Eds.) Taylor and Francis, London, Chap. 2Back, A.D., Tsoi, A.C., Nonlinear system identification using discrete Laguerre functions (1996) Journal of Systems Engineering, 6 (3), pp. 194-207Balestrino, A., Caiti, A., Zanobini, G., Identification of Wiener-type nonlinear systems by Laguerre filters and neural networks (1999) Proc. 14th IFAC World Congress, pp. 433-438. , Beijing/ChinaBillings, S.A., Identification of nonlinear systems - A survey (1980) IEE Proc. Pt D, 127 (6), pp. 272-285Boyd, S., Chua Leon, O., Fading memory and the problem of approximating nonlinear operators with volterra series (1985) IEEE transactions on circuits and systems, CAS-32 (11), pp. 1150-1161Broome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168Broomhead, D.S., Lowe, D., Multivariate functional interpolation and adaptive networks (1988) Complex Systems, 2 (3), pp. 321-355Campello, R.J.G.B., (2002) New Architectures and Methodologies for Modeling and Control of Complex Systems Combining Classical and Modern Tools, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil (in Portuguese)Campello, R.J.G.B., Amaral, W.C., Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control (2002) IEEE International Conference on Plasma Science, 2, pp. 1399-1404Campello, R.J.G.B., Oliveira, G.H.C., Modelos não lineares (2007) Enciclopédia de Automática, 3. , L.A. Aguirre, A.P. Alves da Silva, M.F.M. Campos and W.C. Amaral (Eds.) (Cap. 4), Edgard Blücher (in Portuguese)Campello, R.J.G.B., Meleiro, L.A.C., Amaral, W.C., Control of a bioprocess using orthonormal basis function fuzzy models (2004) IEEE International Conference on Fuzzy Systems, 2, pp. 801-806. , 2004 IEEE International Conference on Fuzzy Systems - ProceedingsCampello, R.J.G.B., Von Zuben, F.J., Amaral, W.C., Meleiro, L.A.C., Maciel Filho, R., Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control (2003) Chemical Engineering Science, 58 (18), pp. 4259-4270. , DOI 10.1016/S0009-2509(03)00309-9Chen, S., Billings, S., Grant, P., Recursive hybrid algorithm for non-linear system identification using radial basis function networks (1992) Int. J. Control, 55 (5), pp. 1051-1070Cho, K.B., Wang, B.H., Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction (1996) Fuzzy Sets and Systems, 83 (3), pp. 325-339Da Rosa, A., (2005) Expansion of discrete-time Volterra models using Kautz functions, , MSc thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas- SP, Brazil (in Portuguese)Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension (2008) International Journal of Control, 81 (6), pp. 962-975Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009) IEEE Transactions on Automatic Control, 54 (12), pp. 2757-2772Doyle Iii, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model-based control using second-order Volterra models (1995) Automatica, 31 (5), pp. 697-714Doyle Iii, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control Using Volterra Models, , Springer-Verlag, London, UKDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7 (5), pp. 367-382(1999) Manual for Model 730 - Magnetic Levitation System, , Educational Control Products (ECP), California, USAEspinosa, J., Vandewalle, J., Wertz, V., (2004) Fuzzy Logic, Identification and Predictive Control, , Springer-Verlag, London, UKEykhoff, P., (1974) System Identification: Parameter and State Estimation, , John Wiley & Sons, UKFu, Y., Dumont, G.A., Optimum time scale for discrete Laguerre network (1993) IEEE Transactions on Automatic Control, 38 (6), pp. 934-938. , DOI 10.1109/9.222305Gustafson, D.E., Kessel, W.C., Fuzzy clustering with a fuzzy covariance matrix (1979) Proc. IEEE CDC, pp. 761-766. , San Diego, CAHaykin, S., (1999) Neural Networks: A Comprehensive Foundation, , 2nd ed., Prentice Hall, Upper Saddle River, NJ, USAHeuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Trans. on Automatic Control, 40 (3), pp. 451-465Heuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , Springer-Verlag, London, UKHunt, K.J., Haas, R., Murray-Smith, R., Extending the functional equivalence of radial basis function networks and fuzzy inference systems (1996) IEEE Transactions on Neural Networks, 7 (3), pp. 776-781. , PII S1045922796012398Kosko, B., (1992) Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, , Prentice Hall, Upper Saddle River, NJ, USAKosko, B., (1997) Fuzzy Engineering, , Prentice Hall, Upper Saddle River, NJ, USALeontaritis, I., Billings, S.A., Input-output parametric models for nonlinear systems - Parts i and II (1985) Int. Journal of Control, 41 (6), pp. 303-344Ljung, L., (1999) System Identification: Theory for the User, , 2nd ed., Prentice Hall, Upper Saddle River, NJ, USAMacHado, J.B., Design of OBF-TS fuzzy models based on multiple clustering validity criteria (2007) Proc. IEEE Int. Conf. on Tools with Artificial Intelligence, (2), pp. 336-339. , Patras/GreeceMäkilä, P.M., Approximation of stable systems by Laguerre filters (1990) Automatica, 26 (2), pp. 333-345Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301. , DOI 10.1016/0005-1098(96)00086-6, PII S0005109896000866Medeiros, A.V., Amaral, W.C., Campello, R.J.G.B., GA optimization of generalized OBF-TS fuzzy models with global and local estimation approaches (2006) Proc. 15th IEEE Internat. Conference on Fuzzy Systems, pp. 8494-8501. , Vancouver/CanadaNarendra, K., Parthasarathy, K., Identification and control of dynamical systems using neural networks (1990) IEEE Trans. Neural Networks, 1 (1), pp. 4-26Nelles, O., (2001) Nonlinear System Identification, , Springer-Verlag, London, UKNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42 (4), pp. 515-521. , PII S0018928697028080Oliveira, G.H.C., Amaral, W.C., Latawiec, K., CRHPC using Volterra models and orthonormal basis functions: An application to CSTR plants (2003) Proc. IEEE Conference on Control Applications, pp. 718-723. , Istanbul/TurkeyOliveira, G.H.C., Campello, R.J.G.B., Amaral, W.C., Fuzzy models within orthonormal basis function framework (1999) Proc. 8th IEEE Internat. Conference on Fuzzy Systems, pp. 957-962. , Seoul/KoreaOliveira, G.H.C., Da Rosa, A., Campello, R.J.G.B., MacHado, J.M., Amaral, W.C., An introduction to models based on Laguerre, Kautz and other related orthonormal functions - Part I: Linear and uncertain models (2011) International Journal of Modelling, Identification and Control, 14 (1-2)Passino, K.M., Yurkovich, S., (1997) Fuzzy Control, , Addison-Wesley Longman Inc., USAPearson, R.K., (1999) Discrete-Time Dynamic Models, , Oxford University Press, New York, USAPottmann, M., Seborg, D., Identification of non-linear process using reciprocal multiquadric functions (1992) Journal of Process Control, 2 (4), pp. 189-203Rugh, W.J., (1981) Nonlinear System Theory: The Volterra/Wiener Approach, , The Johns Hopkins University Press, Baltimore, USARumelhart, D., McClelland, J., (1986) Parallel Distributed Processing, 1. , PDP Research Group MIT Press, Cambridge, MA, USASaraswati, S., Chand, S., Neural network models for multi-step ahead prediction of air-fuel ratio in SI engines (2009) International Journal of Modelling, Identification and Control, 7 (3), pp. 263-274Schetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , Krieger Publishing Company, Malabar, Florida, USASentoni, G., Agamennoni, O., Desages, A., Romagnoli, J., Approximate models for nonlinear process control (1996) AIChE Journal, 42 (8), pp. 2240-2250Sentoni, G.B., Biegler, L.T., Guiver, J.B., Zhao, H., State-space nonlinear process modeling: Identification and universality (1998) AIChE Journal, 44 (10), pp. 2229-2239Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A., Nonlinear black-box modeling in system identification: A unified overview (1995) Automatica, 31 (12), pp. 1691-1724Su, H.-T., McAvoy, T., Integration of multilayer perceptron networks and linear dynamic models: A Hammerstein modeling approach (1993) Ind. Eng. Chem. Res., 32 (9), pp. 1927-1936Sugeno, M., Kang, G.T., Fuzzy modelling and control of multilayer incinerator (1986) Fuzzy Sets and Systems, 18 (3), pp. 329-346Sugeno, M., Kang, G.T., Structure identification of fuzzy model (1988) Fuzzy Sets and Systems, 28 (1), pp. 15-33Sugeno, M., Tanaka, K., Successive identification of a fuzzy model and its applications to prediction of a complex system (1991) Fuzzy Sets and Systems, 42 (3), pp. 315-334Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control (1985) IEEE Trans. Systems, Man and Cybernetics, SMC-15, pp. 116-132Takenaka, S., On the orthogonal functions and a new formula of interpolation (1925) Japanese Journal of Mathematics, 2, pp. 129-145Van Den Hof, P.M.J., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834Abrahantes Vazquez, M.A., Agamennoni, O.E., Approximate models for nonlinear dynamical systems and their generalization properties (2001) Mathematical and Computer Modelling, 33 (8-9), pp. 965-986. , DOI 10.1016/S0895-7177(00)00293-4, PII S0895717700002934Wang, L.-X., Mendel, J.M., Fuzzy basis functions, universal approximation and orthogonal least squares learning (1992) IEEE Trans. Neural Networks, 3 (5), pp. 807-814Wiener, N., (1958) Nonlinear Problems in Random Theory, , MIT Press, Cambridge, MA, USAYager, R.R., Filev, D.P., (1994) Essentials of Fuzzy Modeling and Control, , John Wiley & Sons, USAZeng, X.-J., Singh, M.G., Approximation theory of fuzzy systems - SISO case (1994) IEEE Trans. Fuzzy Systems, 2 (2), pp. 162-176Zeng, X.-J., Singh, M.G., Approximation theory of fuzzy systems - MIMO case (1995) IEEE Trans. Fuzzy Systems, 3 (2), pp. 219-235Ziaei, K., Wang, D.W.L., Application of orthonormal basis functions for identification of flexible-link manipulators (2006) Control Engineering Practice, 14 (2), pp. 99-106. , DOI 10.1016/j.conengprac.2004.11.020, PII S096706610500036

    An Introduction To Models Based On Laguerre, Kautz And Other Related Orthonormal Functions - Part I: Linear And Uncertain Models

    No full text
    This paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. In this first part, the mathematical foundations of these models as well as their advantages and limitations are discussed within the context of linear and robust system identification. The second part approaches the issues related with non-linear models. The discussions comprise a broad bibliographical survey of the subjects involving linear models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these models are presented and illustrated by means of a case study involving a polymerisation process. Copyright © 2011 Inderscience Enterprises Ltd.1401/02/15121132Aguirre, L.A., Correa, M.V., Cassini, C., Nonlinearities in NARX polynomial models: Representation and estimation (2002) IEE Proc. Control Theory and Applications, 149, pp. 343-348Akcay, H., At, N., Membership set identification with periodic inputs and orthonormal regressors (2006) Signal Processing, 86 (12), pp. 3778-3786. , DOI 10.1016/j.sigpro.2006.03.025, PII S016516840600123X, Multimodal Human-Computer InterfacesAkcay, H., Ninness, B., Rational basis functions for robust identification from frequency and time-domain measurements (1998) Automatica, 34 (9), pp. 1101-1117. , PII S0005109898000521Allgower, F., Zheng, A., (2000) Nonlinear Model Predictive Control, , Birkhauser Verlag, Basel, SwitzerlandAraújo, H.X., Oliveira, G.H.C., An LMI approach for output feedback robust predictive control using orthonormal basis functions (2009) Proc. 48th Conference on Decision and Control, , Shanghai, ChinaBalbis, L., Ordys, A.W., Grimble, M.J., Pang, Y., Tutorial introduction to the modelling and control of hybrid systems (2006) International Journal of Modelling, Identification and Control, 2 (4), pp. 259-272Belt, H.J.W., Den Brinker, A.C., Optimality condition for truncated generalized Laguerre networks (1995) International Journal of Circuit Theory and Applications, 23 (3), pp. 227-235Biagiola, S.I., Figueroa, J.L., Wiener and Hammerstein uncertain models identification (2009) Mathematics and Computers in Simulation, 79 (11), pp. 3296-3313Bodin, P., Villemoes, L.F., Wahlberg, B., Selection of best orthonormal rational basis (2000) SIAM Journal of Control and Optimization, 38 (4), pp. 995-1032Broome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168Camacho, E.F., Bordons, C., (1999) Model Predictive Control, , Springer- Verlag, London, UKCampello, R.J.G.B., Amaral, W.C., Favier, G., Optimal Laguerre series expansion of discrete Volterra models (2001) Proc. European Control Conference, pp. 372-377. , Porto, PortugalCampello, R.J.G.B., Do Amaral, W.C., Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions (2006) Automatica, 42 (4), pp. 689-693. , DOI 10.1016/j.automatica.2005.12.003, PII S0005109806000069Campello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions (2004) Automatica, 40 (5), pp. 815-822Clarke, D.W., (1994) Advances in Model Based Predictive Control, , Oxford University Press, New York, USAClowes, G.J., Choice of time-scaling factor for linear system approximation using orthonormal Laguerre functions (1965) IEEE Transactions on Automatic Control, 10 (4), pp. 487-489Da Rosa, A., (2009) Identification of Nonlinear Systems Using Volterra Models Based on Kautz Functions and Generalized Orthonormal Functions, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in PortugueseDa Rosa, A., Campello, R.J.G.B., Amaral, W.C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions (2007) Automatica, 43 (6), pp. 1084-1091. , DOI 10.1016/j.automatica.2006.12.007, PII S0005109807000738Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension (2008) International Journal of Control, 81 (6), pp. 962-975Da Rosa, A., Campello, R.J.G.B., Amaral, W.C., Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009) IEEE Transactions on Automatic Control, 54 (12), pp. 2757-2772Da Silva, I.N., (1995) Robust Parametric Estimation Using Artificial Neural Networks, , MSc thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in PortugueseDen Brinker, A.C., Sarroukh, B.E., Pole optimisation in adaptive laguerre filtering (2004) Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 649-652. , Montreal, CanadaDen Brinker, A.C., Optimality conditions for truncated kautz series (1996) IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43 (2), pp. 117-122. , PII S105771309601511XDoyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model-based control using second-order Volterra models (1995) Automatica, 31 (5), pp. 697-714Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control using Volterra Models, , Springer- Verlag, London, UKDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7 (5), pp. 367-382Favier, G., Arruda, L.V.R., Review and comparison of ellipsoidal bounding algorithms (1996) Bounding Approaches to System Identification, pp. 43-68. , Milanese, M. (Ed.), Plenum Press, New YorkFavier, G., Kibangou, A.Y., Campello, R.J.G.B., Nonlinear system modelling by means of orthonormal basis functions (2003) Proc. 2nd IEEE Int. Conference on Signal, Systems, Decision and Information Technology, , Sousse, TunisiaFigueroa, J.L., Biagiola, S.I., Agamennoni, O.E., An approach for identification of uncertain Wiener systems (2008) Mathematical and Computer Modelling, 48 (1-2), pp. 305-315. , DOI 10.1016/j.mcm.2007.09.012, PII S0895717707003214Fu, Y., Dumont, G.A., Optimum time scale for discrete Laguerre network (1993) IEEE Transactions on Automatic Control, 38 (6), pp. 934-938. , DOI 10.1109/9.222305Garcia Carlos, E., Prett David, M., Morari Manfred, Model predictive control: Theory and practice - A survey (1989) Automatica, 25 (3), pp. 335-348. , DOI 10.1016/0005-1098(89)90002-2Hacioglu, R., Williamson, G.A., Reduced complexity Volterra models for nonlinear system identification (2001) Eurasip Journal on Applied Signal Processing, 2001 (4), pp. 257-265. , DOI 10.1155/S1110865701000324Henson, M.A., Nonlinear model predictive control: Current status and future directions (1998) Computers and Chemical Engineering, 23 (2), pp. 187-202. , DOI 10.1016/S0098-1354(98)00260-9, PII S0098135498002609Heuberger, P.S.C., Van Den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Trans. on Automatic Control, 40 (3), pp. 451-465Heuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , Springer- Verlag, London, UKKautz, W.H., Transient synthesis in the time domain (1954) IRE Transactions on Circuit Theory, 1 (3), pp. 29-39Kibangou, A.Y., Favier, G., Hassani, M.M., Generalized orthonormal basis selection for expanding quadratic Volterra filters (2003) Proc. 13th IFAC Symposium on System Identification, pp. 1119-1124. , Rotterdam, The NetherlandsKibangou, A.Y., Favier, G., Hassani, M.M., Selection of generalized orthonormal bases for second-order Volterra filters (2005) Signal Processing, 85 (12), pp. 2371-2385. , DOI 10.1016/j.sigpro.2005.02.020, PII S0165168405001258Ljung, L., (1999) System Identification: Theory for the User, , 2nd ed. Prentice HallMäkilä, P.M., Approximation of stable systems by Laguerre filters (1990) Automatica, 26 (2), pp. 333-345Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301. , DOI 10.1016/0005-1098(96)00086-6, PII S0005109896000866Masnadi-Shirazi Mohammad, A., Ahmed, N., Optimum Laguerre networks for a class of discrete-time systems (1991) IEEE Transactions on Signal Processing, 39 (9), pp. 2104-2108. , DOI 10.1109/78.134447Milanese Mario, Belforte Gustavo, Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators (1982) IEEE Transactions on Automatic Control, AC-27 (2), pp. 408-414Mo, S.H., Norton, J.P., Fast and robust algorithm to compute exact polytope parameter bounds (1990) Mathematics and Computers in Simulation, 32 (5-6), pp. 481-493. , DOI 10.1016/0378-4754(90)90004-3Moreira, V.D., (2006) Robust Model Based Predictive Control of Uncertain Hybrid Systems Integrating Constraints, Logic, and Dynamics Based on Orthonormal Series Function, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in PortugueseNelles, O., (2001) Nonlinear System Identification, , Springer- Verlag, London, UKNgia, L.S.H., Separable nonlinear least-squares methods for efficient off-line and on-line modeling of systems using Kautz and Laguerre filters (2001) IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48 (6), pp. 562-579. , DOI 10.1109/82.943327, PII S1057713001075000Ninness, B., Gustafsson, F., Orthonormal bases for system identification (1995) Proc. 3rd European Control Conference, 1, pp. 13-18. , Rome, ItalyNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Transactions on Automatic Control, 42 (4), pp. 515-521. , PII S0018928697028080Ninness, B., Hjalmarsson, H., Gustafsson, F., The fundamental role of general orthonormal bases in system identification (1999) IEEE Transactions on Automatic Control, 44 (7), pp. 1384-1406Silva Oliveira, E.T.A.M., Optimality conditions for truncated Laguerre networks (1994) IEEE Trans. Signal Processing, 42 (9), pp. 2528-2530Silva Oliveira, E.T.A.M., On the determination of the optimal pole position of Laguerre filters (1995) IEEE Trans. Signal Processing, 43 (9), pp. 2079-2087Silva Oliveira, E.T.A.M., Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles (1995) IEEE Trans. Automatic Control, 40 (2), pp. 342-346Oliveira, G.H.C., (1997) Predictive Control for Processes with Structured Uncertainty Based on Orthonormal Series Function, , PhD thesis, School of Electrical and Computer Engineering of the State University of Campinas (FEEC/UNICAMP), Campinas-SP, Brazil, in PortugueseOliveira, G.H.C., Amaral, W.C., Latawiec, K., CRHPC using Volterra models and orthonormal basis functions: an application to CSTR plants (2003) Proc. IEEE Conference on Control Applications, pp. 718-723. , Istanbul, TurkeyOliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-572Oliveira, G.H.C., Da Rosa, A., Campello, R.J.G.B., Machado, J.M., Amaral, W.C., An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part II: Nonlinear models International Journal of Modelling, Identification and Control, , forthcomingOliveira, G.H.C., Favier, G., Dumont, G., Amaral, W.C., Uncertainties identification using Laguerre models with application to paper machine headbox (1998) Proc. of IEEE/IMACS Multiconference on Computational Engineering in Systems Applications - CESA, Symposium on Control Optimization and Supervision, 1, pp. 329-334. , TunisiaPatwardhan, S.C., Shah, S.L., From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers (2005) Journal of Process Control, 15 (7), pp. 819-835. , DOI 10.1016/j.jprocont.2004.08.006, PII S0959152405000211Schetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , Krieger Publishing Company, Malabar, Florida, USASjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A., Nonlinear black-box modeling in system identification: A unified overview (1995) Automatica, 31 (12), pp. 1691-1724Soeterboek, R., (1992) Predictive Control: A Unified Approach, , Prentice Hall, Upper Saddle River, NJ, USATakenaka, S., On the orthogonal functions and a new formula of interpolation (1925) Japanese Journal of Mathematics, 2, pp. 129-145Tanguy, N., Morvan, R., Vilbe, P., Calvez, L.C., Online optimization of the time scale in adaptive Laguerre-based filters (2000) IEEE Transactions on Signal Processing, 48 (4), pp. 1184-1187. , DOI 10.1109/78.827551Tanguy, N., Morvan, R., Vilbe, P., Calvez, L.-C., Pertinent choice of parameters for discrete Kautz approximation (2002) IEEE Transactions on Automatic Control, 47 (5), pp. 783-787. , DOI 10.1109/TAC.2002.1000273, PII S0018928602047633Tanguy, N., Vilbé, P., Calvez, L.C., Optimum choice of free parameter in orthonormal approximations (1995) IEEE Trans. on Automatic Control, 40 (10), pp. 1811-1813Van Den Bosch, P.P.J., Van Der Klauw, A.C., (1994) Modeling Identification and Simulation of Dynamical System, , CRC Press Inc., Boca Raton, Florida, USAVan Den Hof, P.M.J., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834Wahlberg, B., System identification using Laguerre models (1991) IEEE Trans. on Automatic Control, 36 (5), pp. 551-562Wahlberg, B., System identification using Kautz models (1994) IEEE Trans. on Automatic Control, 39 (6), pp. 1276-1282Wahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Trans. on Automatic Control, 37 (7), pp. 900-912Wahlberg, B., Makila, P.M., On approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automatica, 32 (5), pp. 693-708. , DOI 10.1016/0005-1098(95)00198-0Walter, E., Piet-Lahanier, H., Estimation of parameter bounds from bounded-error data: A survey (1990) Mathematics and Computers in Simulation, 32 (5-6), pp. 449-468Wiener, N., (1958) Nonlinear Problems in Random, , Theory, MIT Press, Cambridge, MA, USAZervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) Int. J. Control, 48 (6), pp. 2333-2359Zhu, Y., System identification for process control: Recent experience and outlook (2006) International Journal of Modelling, Identification and Control, 6 (2), pp. 89-103Ziaei, K., Wang, D.W.L., Application of orthonormal basis functions for identification of flexible-link manipulators (2006) Control Engineering Practice, 14 (2), pp. 99-106. , DOI 10.1016/j.conengprac.2004.11.020, PII S096706610500036
    corecore