2,145 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Energy savings using an adaptive base station-to-relay station switching paradigm

    Get PDF
    Applying a Base Station (BS) sleep approach during low traffic periods has recently been advocated as a strategy for reducing energy consumption in cellular networks. The complete switching off of certain BS however, can lead to coverage holes and severe performance degradation in terms of off-cell user throughput, greater transmit power dissipation in both the up and downlinks, and more complex interference management. This paper presents a novel cellular network energy saving model in which certain BS rather being turned off are switched to Relay Station (RS) mode during low traffic periods. The switched RS and other shared RS deployed at the cross border of each cell are responsible for upholding the same quality of service (QoS) provision as when all BS are active. A centralised adaptive switching threshold algorithm is also introduced to undertake the switching decision, instead of using a fixed threshold. Simulation results confirm the new BS-RS Switching model using an adaptive threshold can reduce network energy consumption by more than half, as well as improving off-cell users’ throughput
    • …
    corecore