1 research outputs found

    INTRODUCING AN OPTIMAL QCA CROSSBAR SWITCH FOR BASELINE NETWORK

    Get PDF
    Crossbar switch is the basic component in multi-stage interconnection networks. Therefore, this study was conducted to investigate performance of a crossbar switch with two multiplexers. The presented crossbar switch was simulated using quantum-dot cellular automata (QCA) technology and QCA Designer software, and was studied and optimized in terms of cell number, occupied area, number of clocks, and energy consumption. Using the provided crossbar switch, the baseline network was designed to be optimal in terms of cell number and occupied area. Also, the number of input states was investigated and simulated to verify accuracy of the baseline network. The proposed crossbar switch uses 62 QCA cells and the occupied area by the switch is equal to 0.06µm2 and its latency equals 4 clock zones, which is more efficient than the other designs. In this paper, using the presented crossbar switch, the baseline network was designed with 1713 cells, and occupied area of 2.89µm2
    corecore