2,595 research outputs found

    Matching

    Get PDF

    Maximum weight cycle packing in directed graphs, with application to kidney exchange programs

    Get PDF
    Centralized matching programs have been established in several countries to organize kidney exchanges between incompatible patient-donor pairs. At the heart of these programs are algorithms to solve kidney exchange problems, which can be modelled as cycle packing problems in a directed graph, involving cycles of length 2, 3, or even longer. Usually, the goal is to maximize the number of transplants, but sometimes the total benefit is maximized by considering the differences between suitable kidneys. These problems correspond to computing cycle packings of maximum size or maximum weight in directed graphs. Here we prove the APX-completeness of the problem of finding a maximum size exchange involving only 2-cycles and 3-cycles. We also present an approximation algorithm and an exact algorithm for the problem of finding a maximum weight exchange involving cycles of bounded length. The exact algorithm has been used to provide optimal solutions to real kidney exchange problems arising from the National Matching Scheme for Paired Donation run by NHS Blood and Transplant, and we describe practical experience based on this collaboration

    Belief propagation for optimal edge cover in the random complete graph

    Full text link
    We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and W\"{a}stlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the ζ(2)\zeta(2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.Comment: Published in at http://dx.doi.org/10.1214/13-AAP981 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal assignment problem on record linkage

    Get PDF
    We present an application of the Hungarian Method, an optimal assignment graph theory algorithm, to record linkage in order to improve the disclosure risk assessment. We should note that Hungarian Method has O(n^3) complexity; three different methods are presented to reduce its computational cost
    corecore