
Informatics Engineering Final Project

Optimal Assignment Problem on
Record Linkage

Pablo Rodŕıguez Fernández

Director: Jordi Nin Guerrero

June 4, 2013

Universitat Politècnica de Catalunya (UPC)

Barcelona School of Informatics (FIB)

Department of Computer Architecture (AC)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41809362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ever tried. Ever failed.
No matter. Try again.
Fail again. Fail better.

Samuel Beckett
(1906-1989)

Agräıments

De vegades ens oblidem dels privilegis que tenim. Si alguna cosa hem d’aprendre dels
temps que corren i les dificultats que hi trobem, com a mı́nim ha de ser la humilitat
i la capacitat de valorar el que tenim i el sacrifici que han de fer i han fet molts per
ser on som ara. No vull desaprofitar aquesta ocasió per tractar de reconèixer aquest
sacrifici i esforç que molts han fet per a que jo pugui presentar-vos aquest projecte de fi
de carrera.

En primer lloc, haig d’agrair tot l’esforç i sacrifici dels meus pares, que han treballat
molts anys per a que jo hagi pogut estudiar allò que m’agrada.

En segon lloc, a en Jordi Nin, el meu tutor del projecte, que m’ha ajudat i guiat en tot
aquest procés, i ha tingut una gran paciència amb mi i amb la meva particular forma de
treballar.

No seria just no esmenar també a aquells professors que al llarg de tota la meva vida
acadèmica m’han ensenyat i ho han fet posant-hi tota la seva energia i passió, contagiant-
la i fent que sigui molt més fàcil i agradable arribar fins aqúı. Alguns d’ells són en
Pep, l’Álex Borrás, en Miquel Gallart, en Joan Marqués, en Miquel Vallonesta, en
Sergi Ramos, la Dolors, l’Albert Ghanime, en José Lúıs Galisteo, en José Cabré i
molts, molts altres. A tots vosaltres, moltes gràcies; us guardo un gran record dins
el cor.

D’altra banda, també haig d’agrair a molts dels companys que m’han acompanyat
aquests últims anys, els quals m’han ajudat molt més del que ells es puguin pen-
sar.

Finalment, d’acord amb la teoria del caos, un petit canvi pot acabar provocant un de
gran després d’un llarg procés; per aquest motiu, crec que es just acabar donant les
gràcies a tots aquells que, directa o indirectament, els hagi conegut o no, han aportat el
seu petit gra de sorra per fer que jo sigui avui amb vosaltres, presentant el projecte que
dona fi a aquest cúmul d’esforç i treball fet durant tants anys.

I a tu, Carla, gràcies per ser-hi; sense tu, tot això no tindria tant de sentit.

5

Abstract

Many legislations require statistical agencies to publish data without revealing confiden-
tial information about data owners. Statistical Disclosure Control (SDC) is the discipline
in charge of ensure data owners privacy and data utility in statistical surveys. Hence,
main goal of SDC methods is to minimize disclosure risk maintaining at the same time
an acceptable information loss level. In practice, disclosure risk is usually measured
using Record Linkage algorithms, which are database integration methods able to relate
different database entries belonging to the same individual. Since most of record linkage
algorithms currently used are heuristic for performance reasons, disclosure risk is usually
underestimated.

In this project, we present an application of the Hungarian Method, an optimal assign-
ment graph theory algorithm, to record linkage in order to improve the disclosure risk
assessment. However, we should note that Hungarian Method has O(n3) complexity, be-
cause of this, three different methods are presented in order to reduce its computational
cost.

Contents

1 Introduction 13
1.1 Motivations and objectives . 13
1.2 Structure of the Document . 14

2 Preliminaries 15
2.1 Clustering . 15
2.2 Hadoop . 16

2.2.1 How Hadoop Works . 17
2.3 Optimal Assignment Problem . 19

2.3.1 Hungarian Method . 20
2.3.2 Example . 21

3 State of the art of Statistical Disclosure Control 27
3.1 Protection Methods . 27

3.1.1 Noise Addition . 28
3.1.2 Rank Swapping . 29
3.1.3 Microaggregation . 29

3.2 Record Linkage . 30
3.2.1 Distance Based Record Linkage 31
3.2.2 Probabilistic Record Linkage . 32

3.3 Information Loss and Disclosure Risk . 32

4 Hungarian Method for Disclosure Risk Assessment 35
4.1 Hungarian Method as a New Privacy Measure 35
4.2 Implementation Details . 37
4.3 Experiments . 38

4.3.1 Datasets . 38
4.3.2 Experimental Parameters . 39
4.3.3 Computation Environment . 39

4.4 Results . 39
4.4.1 Distance Based Record Linkage 39
4.4.2 Hungarian Method . 40
4.4.3 Method Comparison . 41

5 Hungarian Method for Large Data 43
5.1 Clustering Method for Data Partitioning 43

9

5.2 Blocking Method for Data Partitioning 44
5.3 Hadoop Hungarian Method . 46

6 Project Analysis 49
6.1 Planning . 49
6.2 Cost Analysis . 50

7 Conclusions and Future Work 51
7.1 Conclusions . 51
7.2 Personal Conclusions . 52
7.3 Future Work . 53

Bibliography 55

10

List of Tables

3.1 Example of Noise Addition method with σ = 25 29
3.2 Example of Rank Swapping with p = 2 29
3.3 Example of basic Microaggregation with k = 2 30
3.4 Example of Univariate Microaggregation with k = 2 30
3.5 Example of DBRL . 31

4.1 Description of the datasets used. 38
4.2 Results of applying DBRL to datasets 40
4.3 Results of applying Hungarian Method to datasets 40
4.4 Comparison between Hungarian Method and DBRL 41

5.1 Results of applying Hungarian Method to clustered data 44
5.2 Results of applying Hungarian Method to blocking data 45
5.3 Comparison between Blocking Method and DBRL 46
5.4 Time spent applying Hungarian Method to blocking data 46
5.5 Results of applying the Hadoop algorithm to datasets 47

6.1 Planning of the project . 49
6.2 Cost of the project . 50
6.3 Cost of the project in a company . 50

List of Figures

2.1 Example of k-means . 16
2.2 Example of hierarchical clustering . 17
2.3 Hadoop launch job process . 18
2.5 Weighted bipartite graph . 22

3.1 Protection process . 28
3.2 Re-identification process . 31

11

1 Introduction

Everyday a huge amount of data is gathered from statistical surveys; to be useful, these
data must be treated statistically and properly published by Statistical Agencies. When
those data are confidential information of citizens, they must be protected to prevent
third parties to disclosure private knowledge about data owners.

Statistical Disclosure Control (SDC) [14] and Privacy-Preserving Data Mining (PPDM) [1]
have been studied extensively in order to manage this matter. A large number of al-
gorithmic techniques and theoretical models have been designed for privacy-preserving
data releasing.

Anonymization methods attempt to solve the privacy problem in statistical surveys.
However, when they are applied, a new important challenge arises: the disclosure risk
evaluation of these methods. Roughly speaking, disclosure risk evaluates the privacy of
data owners against possible malicious uses that third parties could do with the infor-
mation released. Traditionally, disclosure risk is empirically evaluated as the number of
individuals whose identity is revealed when a database is released.

To do that, record linkage methods are applied between the original and the anonymized
released database. Since record linkage methods are not optimal, disclosure risk is sys-
tematically underestimated having a negative impact on the security of anonymization
methods.

1.1 Motivations and objectives

Since social networks irruption like Facebook, Orkut, Tuenti, Twitter, etc., people are
increasingly dumping information about themselves; information that, in a first look,
may be not sensitive. However, this amount of new information can be combined with the
data released by statistical agencies to obtain sensitive information about citizens [18].
Moreover, if disclosure risk of released databases is underestimated, it signifies a serious
security risk for data owners. In order to minimize this problem, in this project we
will propose and study the use of optimal assignment algorithms for disclosure risk
assessment.

13

Optimal assignment algorithms have been largely studied; nevertheless, as far as we
know, this is the first attempt to introduce them into disclosure risk evaluation. The
main drawback of optimal assignment algorithms is their high computational complex-
ity. For this reason, in this project we will provide an efficient implementation of the
Hungarian Algorithm [11], a well-known assignment method; we will introduce some
data management tricks, as data clustering or blocking, to reduce its execution time on
very large databases; and, finally, we will deliver an implementation in Hadoop frame-
work, which provides map-reduce methodology, largely used in environments where great
amount of data need to be processed.

1.2 Structure of the Document

This document is structured in three parts, which are described as follows.

In the first part, composed by chapters 2 and 3, we expose the basis of the project.
First, we describe the protection scenario and the assessment process. Next, we depict
main work which this project is based on.

Second part, which contains chapters 4 and 5, describing our contributions and show
our results. Chapter 4 does a preliminary comparison between standard record linkage
algorithms and the proposed one. Later, in Chapter 5, three methods are proposed in
order to ease the large data processing.

Finally, the third part is the closure of this project. It includes Chapter 6, which
are related to the project elaboration and its cost, and Chapter 7, which is com-
posed by a short summary of the work done, the conclusions and the suggested future
work.

14

2 Preliminaries

In this section, we present the main techniques or methods used in this project and some
related work about them.

First, we introduce the main clustering definitions and its main classification. Next, we
explain Hadoop and Map-Recude and how they work. Finally, we describe one of the
cores of this project, the Optimal Assignment Problem, and how it is solved.

2.1 Clustering

Clustering is the task of relating similar elements in a dataset to build groups and create
general representations (centroids). It is widely used in many fields as data mining,
machine learning, image analysis, etc.

Since clustering is a very general concept, there are a great variety of algorithms that
apply clustering, focusing, for example, on possible centroids, density, data structures,
etc.

In this project, we apply clustering in order to divide datasets into big clusters with
those records which are closer, making it more probable that they will reveal correct
links.

Clustering algorithms are divided into two different categories: space partitioning, also
called top-down methods, and hierarchical methods, known as bottom-up methods as
well. Now, we review two well-known clustering algorithms which illustrate these two
categories: k-means (a space partitioning method) and the agglomerative hierarchical
clustering.

k-means algorithm [21]. It is one of the most commonly used clustering techniques.
It is an algorithm to cluster n objects into k partitions (k < n). K-means starts by
partitioning randomly the input objects into k initial sets. Then, it calculates the cen-
troid of each set. Following, it constructs a new partition by associating each object

15

with the closest centroid. Finally, the centroids are recalculated for the new clusters.
This algorithm is repeated until it convergences, i.e. there is no changes in its cen-
troids. Figure 2.1 shows an example of k-means over a dataset of 100 gaussian random
pairs.

Figure 2.1: Example of clustering using k-means algorithm with k = 5

Agglomerative hierarchical clustering [15]. This method builds a hierarchy tree,
called dendrogram, from the individual elements by progressively merging clusters. Note
that, at the beginning each element is considered as an independent cluster. The algo-
rithm starts computing a distance matrix among all the elements to be clustered, where
the distance in the (i, j) position corresponds to the distance between the i-th and j-th
elements. Then, when clustering progresses, the corresponding rows and columns have to
be also merged. This algorithm does not explicitly builds a number of clusters, instead,
we must decide the number of clusters and where we split them within the dendrogram.
An example, over the same dataset as Figure 2.1, is illustrated by Figure 2.2, which
suggests to cut at height 3 or 4.

2.2 Hadoop

Hadoop is a Java framework that implements Map-Reduce, a distributed cloud-computing
model. It is widely used by many companies such as Yahoo, Facebook, Last.fm, among

16

Figure 2.2: Example of dendrogram after applying hierarchical clustering

others1 [29], and it can be download from the Apache Foundation2.

Map-Reduce methodology proposes to divide a big dataset into smaller parts to be
processed at different nodes in a data center; this step is called a map operation. Then
data is processed in parallel and results are finally combined using a reduce operation
to deliver the user the final aggregated result. However, as we will see later on following
chapters, although many tasks are expressible in this model, some algorithms cannot
be efficiently implemented with map-reduce because they need to perform many central
computations with the complete dataset.

One of the key aspects of a distributed environment is the data access and modifications,
specially in an environment which has been called Big Data, where Map-Reduces is
mainly addressed. Because of that, Hadoop provides a Distributed FileSystem, HDFS,
based on the Google FileSystem (GFS) [10]. This filesystem has been designed to run on
cheap hardware, with huge files which are more appended than modified, on a distributed
environment and to optimize bandwidth. Files in it are split on large blocks (64 MB),
whose are replicated and transferred to nodes which executes the tasks queued, called
tasktrackers. All these operations are managed by a jobtracker server and a HDFS
server, as we explain later on.

2.2.1 How Hadoop Works

Here, we need to deeper describe how Hadoop works in order to easily understand the
results depicted in Chapter 5.

1A complete list can be found at http://wiki.apache.org/hadoop/PoweredBy.
2Hadoop website is at http://hadoop.apache.org.

17

http://wiki.apache.org/hadoop/PoweredBy
http://hadoop.apache.org

First, we must enumerate the different elements that compose a Hadoop execution:

• The client, which submits the job.

• The jobtracker, which coordinates the execution.

• The tasktrackers, which run the tasks that the job has been split into.

• The distributed filesystem, typically HDFS, which is used for sharing job files
between the other elements.

tasktracker node

TaskTracker

child JVM

Child

MapTask
or

ReduceTask

10: run

9: launch

jobtracker node

5: initialize jobJobTracker

client node

1: run job

client JVM

MapReduce
program JobClient

2: get new job ID

4: submit job

7: heartbeat
(return task)

Shared
FileSystem

(e.g., HDFS)

8: retrieve
job resources

6: retrieve
input splits

3: copy
job resource

Figure 2.3: Hadoop launch job process

Then, when the client launches a job, Hadoop follows several steps, illustrated in Fig-
ure 2.3 extracted from [29], in order to execute it:

18

1. Client calls submitJob() function.

2. Get a job ID from jobtracker.

3. Checks the output directory of the job, computes the input splits and copies the
resources needed to run the job, like JAR or configuration files to the jobtracker.

4. Tells the jobtracker that the job is ready for execution.

5. Jobtracker enqueue the job, which will be initialized by the job scheduler.

6. Retrieves input splits and builds the list of tasks to execute, with a mapper for
every input split and a number of reduces determined by the client or the default
configuration.

7. When Jobtracker receives a heartbeat of a Tasktracker and it indicates that it is
ready for the next task, Jobtracker allocates a task for it using the return value of
the heartbeat.

8. Once that the tasktracker has been assigned a task, it copies the job JAR to its
local filesystem.

9. Launches a new Java Virtual Machine (JVM) to isolate the job execution of task-
tracker.

10. Finally, this last JVM runs the task.

Process followed by Hadoop to allocate a job

2.3 Optimal Assignment Problem

Traditionally, Optimal Assignment Problem has been related to the transportation prob-
lem [24]. It has been studied since 1931 [17], getting new perspective in 1950s with linear
programming techniques. Since then, have appeared many algorithms to solve different
versions of the same problem on different scenarios.

The main idea behind this problem is to assign a certain number of agents (or workers)
to some tasks, maximizing a benefit or minimizing a cost. It is formally defined as
follows [5]:

Definition 1 (Optimal Assignment Problem) Given a weighted complete bipartite
graph G = (X ∪ Y,X × Y), where edge xy, from node x ∈ X to node y ∈ Y , has weight
w(xy), the goal is find a matching M from X to Y with maximum weight.

19

This problem can be solved in O(n3) applying the Hungarian Method described in the
following section.

2.3.1 Hungarian Method

Hungarian (also known as Khun-Munkres) Method, was presented in 1955 by Harold
W. Kuhn and was proved as polynomial algorithm by James Munkres in 1957 [24].
Its original complexity was O(n4), but Jack Edmonds and Richard Karp presented a
version with complexity O(n3) in 1972 [9]. We will start from this latter version for our
implementations.

In order to explain the version of the algorithm that we used [5, 11], first we should
define some concepts:

Definition 2 (Feasible vertex labeling) Given a weighted complete bipartite graph
G = (X ∪ Y,X × Y), where edge xy has weight w(xy), a feasible vertex labeling in G is
a real-valued function l on X ∪ Y such that ∀x ∈ X, ∀y ∈ Y, l(x) + l(y) ≥ w(xy).

A trivial example of feasible labeling is ∀x ∈ X, ∀y ∈ Y, l(y) = 0, l(x) = maxy∈Y (w(xy)).

Definition 3 (Equality subgraph) Given a graph G, and a feasible labeling l, an
equality subgraph Gl is that which contains only those edges where l(x) + l(y) = w(xy).

Definition 4 (Neighbourhood) Given an equality subgraph Gl, the neighbour of a
vertex u is defined as N(u) = {v : (u, v) ∈ Gl}.

Definition 5 (Alternating path) Given an equality subgraph Gl and a matching M
of Gl, an alternating path is a path which its edges alternates between M and Gl −M .

If an alternating path starts and ends with a free vertex, it is called augmenting path.

Definition 6 (Alternating tree) Given an equality subgraph Gl and a matching M
of Gl, an alternating tree is a tree which its root is a free vertex and every path within
it is an alternating path.

Considering the previous definitions, the Hungarian algorithm works as follows:

20

1. Generate initial labeling l and matching M in Gl.

2. If M is perfect, then the algorithm is over. Otherwise, pick a free vertex u ∈ X,
set it as root of alternating tree and set S = {u}, T = ∅.

3. If N(S) == T update labels.

4. Pick v ∈ N(S)− T, v ∈ Y
• If v is free, v − u is an augmenting path; augment M and go to step 2.

• Else, name z the vertex matched with v, augment the alternating tree, set
S = S ∪ {z}, T = T ∪ {v} and go to step 3.

Now, we will describe two key aspects of the Hungarian Method.

Update labels

Updating labels forceN(S) 6= T , augmentingGl size. Therefore, given

m = minx∈S,y/∈T{l(x) + l(y)− w(xy)}
update labels as

l′(v) =

l(v)−m if v ∈ S
l(v) +m if v ∈ T
l(v) otherwise

Implementation details

In order to keep time complexity equal toO(n3), ∀y /∈ T we keep track of

slacky = minx∈S{l(x) + l(y)− w(xy)}

Keeping this information able us to update labels with linear complexity, being m =
miny∈T slacky. Then, we update slack as ∀y /∈ T, slacky = slacky−m.

2.3.2 Example

In this section, given the graph described on Figure 2.5, we will show an example of
applying the Hungarian Method in order to solve the Optimal Assignment Problem as
follows:

21

A B C D
1 2 5 3 4
2 7 7 7 5
3 6 8 5 8
4 6 6 1 3

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

Figure 2.5: Description of the weighted complete bipartite graph used as example.

1. First, do an initial labeling, and then, initial matching is M = {(2, A), (3, B)}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 0
3 6 8 5 8 0
4 6 6 1 3 0
L 7 8 7 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

7

8 7

8

0

0 0

0

2. Pick up free vertex and set S = {C}, T = ∅, then N(S) = {2}; also set free vertex
as root of alternating tree:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 0
3 6 8 5 8 0
4 6 6 1 3 0
L 7 8 7 8 L

C

3. N(S) == T? No.

4. Pick up vertex 2, but it is not free, so we add it to set T = {2} and vertex which is
connected to set S = {C,A}. We update N(S) = {2} and alternating tree; then,

22

we go to step 3:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 0
3 6 8 5 8 0
4 6 6 1 3 0
L 7 8 7 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

7

8 7

8

0

0 0

0

2

A

C

3. N(S) == T? Yes. Update labels with m = 1, so N(S) = {2, 3, 4}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 0
4 6 6 1 3 0
L 6 8 6 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

8 6

8

0

1 0

0

4. Pick up vertex 3, which is not free, so we add them to sets, S = {C,A,B},
T = {2, 3}, then N(S) remains equal:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 0
4 6 6 1 3 0
L 6 8 6 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

8 6

8

0

1 0

0 2

3

A

B

C

3. N(S) == T? No.

4. Pick up vertex 4, which is free, so C − 4 is an augmenting path, being M =

23

{(2, C), (3, B), (4, A)}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 0
4 6 6 1 3 0
L 6 8 6 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

8 6

8

0

1 0

0 2

34

A

B

C

2. Pick up free vertex D, getting sets S = {D}, T = ∅, N(S) = {3}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 0
4 6 6 1 3 0
L 6 8 6 8 L

D

3. N(S) == T? No.

4. Pick up vertex 3, which is not free, and set S = {D,B}, T = {3}, N(S) = {3}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 0
4 6 6 1 3 0
L 6 8 6 8 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

8 6

8

0

1 0

0

3

B

D

3. N(S) == T? Yes. Update labels with m = 2, so N(S) = {2, 3, 4}:

24

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 2
4 6 6 1 3 0
L 6 6 6 6 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

6 6

6

0

1 2

0

4. Pick up vertex 2, which is not free, setting set S = {D,B,C}, T = {3, 2}, N(S) =
{2, 3, 4}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 2
4 6 6 1 3 0
L 6 6 6 6 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

6 6

6

0

1 2

0

2

3

B

C

D

3. N(S) == T? No.

4. Pick up vertex 4, which is not free, setting set S = {D,B,C,A}, T = {3, 2, 4},
N(S) = {2, 3, 4}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 1
3 6 8 5 8 2
4 6 6 1 3 0
L 6 6 6 6 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

6

6 6

6

0

1 2

0

2

3

4

A

B

C

D

3. N(S) == T? Yes. Update labels with m = 1, so N(S) = {1, 2, 3, 4}:

25

A B C D L
1 2 5 3 4 0
2 7 7 7 5 2
3 6 8 5 8 3
4 6 6 1 3 1
L 5 5 5 5 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

5

5 5

5

0

2 3

1

4. Pick up free vertex 1, thus D−1 is an augmenting path, being M = {(1, B), (2, C),
(3, D), (4, A)}:

A B C D L
1 2 5 3 4 0
2 7 7 7 5 2
3 6 8 5 8 3
4 6 6 1 3 1
L 5 5 5 5 L

2 3

41

A

B C

D

7

2 4

6 5 8

5 3
1

6
7

7

5

8
6

3

5

5 5

5

0

2 3

1

2

3

41

A

B

C

D

2. M is a perfect matching, so we are done.

26

3 State of the art of Statistical
Disclosure Control

As we introduced before, Statistical Disclosure Control (SDC) is the discipline con-
cerned with the protection and anonymization of statistical data that has to be pub-
lished. This discipline has developed methods to protect confidential data and pro-
tocols to follow when it is released. A SDC protocol can be found on U.S. Census
Bureau [27].

In this chapter, we will discuss the background needed in this project, visiting some con-
cepts in SDC scenario which will help the reader to contextualize it.

3.1 Protection Methods

A dataset consists of some rows, called records, and columns, called attributes. Each
record contains the values of the attributes of an individual. Attributes can be classified
in three categories:

• Identifiers. Attributes whose value uniquely identify an individual, like a Social
Security number.

• Quasi-identifiers. Attributes which, combined with others, identify an individ-
ual, like name, age and address.

• Confidential. Attributes which contain sensitive information of an individual,
like worship.

Assuming we want to release confidential data for statistics purposes, e.g. distribution of
worships in a country, we must drop identifiers and, instead of dropping quasi-identifiers,
they are protected, because dropping them will reduce the statistical utility of the data
drastically; confidential data, which is what we want to release, is left intact. After
that, we evaluate disclosure risk, and then, if it is lower enough, release it. Figure 3.1
illustrate the process.

27

Figure 3.1: Protection process: drop identifiers and protect quasi-identifiers. After dis-
closure risk evaluation, release protected data.

Protection methods can be classified, in three disjoint categories, depending on how it
affects the data:

• Perturbative. Data is distorted, introducing noise and making harder the re-
identification process. This includes distortions like modifying values, swapping
them between records or aggregating them, among others. However, because of
that distortion, these methods must ensure that statistical information is pre-
served.

• Non-preturbative. These methods do not distort data, still they do partial
suppressions or generalizations, converting combinations of values which identify
individuals into more general ones.

• Synthetic Data Generators. These methods build new datasets from original
data. Such synthesized datasets are generated constrained by the computed model.

In order to offer a deeper understanding of protection methods, three of them are detailed
at following sections.

3.1.1 Noise Addition

Noise addition protection method [16] is a simple method which adds gaussian noise
based on the attribute standard deviation vector and σ provided. This method is the
one we have used in this project.

28

Noise addition proceeds computing the standard deviation for each attribute; then,
a random gaussian value is multiplied by the attribute standard deviation and the σ
provided, divided by 100, for each original record, adding the result to it; this is x′ = x+
random·std·σ

100
. Table 3.1 shows an example of applying noise method.

a1 a2 a3 a′1 a′2 a3
8 9 1 8.575 7.681 1
6 7 10 6.402 8.266 10
10 3 4 10.640 4.217 4
7 1 2 7.235 1.753 2

Table 3.1: Example of Noise Addition method with σ = 25

We should note that, in case standard deviation is quite low, i.e. less than 0.0001, it is
set as 1, in order to ensure that some noise is added.

3.1.2 Rank Swapping

Rank swapping [23] was initially proposed as a protection method addressed to categori-
cal attributes, but it is also considered as a good numerical protection method [25].

This method works sorting values of the attribute to be protected, and then, given a
number p, every record at position i, within this attribute, is swapped with record at l
chosen randomly from position range i < l ≤ i + p. After that, the sorting is undone,
returning the swapped values to their original position. Table 3.2 shows an example of
rank swapping.

a1 a2 a3 a′1 a′2 a3
8 9 1 6 7 1
6 7 10 10 9 10
10 3 4 7 1 4
7 1 2 8 3 2

Table 3.2: Example of Rank Swapping with p = 2

3.1.3 Microaggregation

The main idea behind microaggregation is to build small clusters (see Section 2.1) of at
least k records and substitute their values by the cluster centroid. We show an example

29

a1 a2 a3 a′1 a′2 a3
8 9 1 7 8 1
6 7 10 7 8 10
10 3 4 8.5 2 4
7 1 2 8.5 2 2

Table 3.3: Example of basic Microaggregation with k = 2

of basic microaggregation in Table 3.3. On it, we can notice that, after apply microag-
gregation, the probability of identifying the value of the third attribute for the known
quasi-identifier (10, 3) is 1

k
= 0.5; this is called k-anonymity [6].

However, when the number of attributes is large, the information loss increases. This is
due to that distance between original records and centroids is larger.

To solve this drawback, attributes are split in blocks and microaggregation is applied
to them separately. Unfortunately, this not preserves the k-anonymity, because records
which are assigned to the same cluster in a block, may not be assigned to the same in
the other blocks, increasing the disclosure risk (see Section 3.3). When the size of blocks
is one attribute, this method is known as Univariate Microaggregation; an example is
shown in Table 3.4.

a1 a2 a3 a′1 a′2 a3
8 9 1 9 8 1
6 7 10 6.5 8 10
10 3 4 9 2 4
7 1 2 6.5 2 2

Table 3.4: Example of Univariate Microaggregation with k = 2

In any case, in order to maintain the statistical utility, the sum of square distances
between centroids and original records must be minimum. Nonetheless, while optimal
univariate microaggregation has polynomial approaches, optimal multivariate microag-
gregation is a NP-hard problem; because of this, several heuristic microaggregation
methods has been proposed [25].

3.2 Record Linkage

Record Linkage methods were initially created for data cleaning and integration, hence,
it can be used to link protected quasi-identifiers with the original ones obtained from an-
other data source. This re-identification process is illustrated in Figure 3.2.

30

Figure 3.2: Re-identification process: compare common quasi-identifiers to link both
datasets and to identify confidential data owners.

Record linkage methods can be divided into two different families: Distance Based and
Probabilistic record linkage.

3.2.1 Distance Based Record Linkage

In this family, a certain distance between the original and protected records is com-
puted; then, the pair of records whose distance is minimum is considered the correct
link. An example of applying Distance Based Record Linkage (DBRL) is presented in
Table 3.5.

r′1 r′2 r′3 r′4
r1 0.200 1.131 1.079 0.977
r2 1.217 0.178 1.345 1.499
r3 0.954 1.523 0.195 0.598
r4 0.990 1.663 0.899 0.105

Table 3.5: Example of DBRL using dataset from Table 3.1 with the Euclidean distance

Distance selection is one of the most important aspect of this method. For instance,
in the experiments carried out in this project, we have used the Euclidean distance
because all the considered datasets have numerical attributes. For categorical or tex-
tual attributes other distances, as Edit [19] distance, can be used. This freedom in the
distance selection offers us a great flexibility, because it is possible to change the dis-
tance function, combine more than a single distance or even weight attributes at our
criterion.

31

3.2.2 Probabilistic Record Linkage

Probabilistic Record Linkage (PRL) works classifying a pair of records as Linked Pair
(LP) or Non-linked Pair (NP) based on a score index.

For each pair (a, b), when a is a record of the original dataset and b of the protected
dataset, we define coincidence vector γ(a, b) = (γ1(a, b), ..., γn(a, b)), where γi(a, b) is
defined as 1 if attr(a) == attr(b) or 0 otherwise. Score index is computed based on this
coincidence vector [3, 25].

Then, using Expectation-Maximization (EM) algorithm, attributes are weighted and
scores estimated. Finally, thresholds to classify as LP or NP are computed based on
the given percentage of tolerated false positive and false negatives. Since EM algorithm
has a high computational cost, in our experiments we will only use DBRL. This is not
a very important issue because in [8] it was proven that DBRL outperforms PRL when
the considered datasets are numerical.

3.3 Information Loss and Disclosure Risk

The main goal of any protection method is to minimize disclosure risk and information
loss. Disclosure risk measures the capacity of a third part to obtain some information
of the original dataset from the protected one, while information loss measures the
reduction of the statistical utility respect to the original.

Unfortunately, both measures are complementaries; when one increases, the other de-
creases. Because of that, it is necessary to achieve a good trade off between each other
in order to ensure enough protection level while dataset continue being statistically
useful, optimizing such trade off. This can be measured by the score measure [7] as
follows.

On the one hand, Information Loss (IL) is measured averaging the difference between
several statistical measures of original and protected data. These are the mean absolute
error between protected and original records (IL1), the mean variation between the
mean (IL2) and the variance vectors (IL3) of attributes and the mean difference of
covariance (IL4) and correlation matrices (IL5). Hence, the final IL measure is computed
as

IL = 100(0.2IL1 + 0.2IL2 + 0.2IL3 + 0.2IL4 + 0.2IL5)

32

On the other hand, Disclosure Risk (DR) measures two different scenarios: i) the objec-
tive of the third part is to link protected data to some other one, identifying protected
records, and ii) to get approximated values of the original data.

This project is focused in the first scenario, where the disclosure risk is computed using
Distance-based Linkage Disclosure (DLD) and Probabilistic Linkage Disclosure (PLD).
In both, record linkage is applied using DBRL and PRL, respectively, making the as-
sumption that a third part or intruder knows one to half of the total attributes of the
data for each computation, obtaining an averaged percentage of links as a final result.
However, in this project we propose a worse scenario, making the assumption that such
third part knows all the attributes of the data.

In the second scenario, Interval Disclosure (ID) risk is defined, which is the average
percentage of the original values falling into a defined interval around the masked
value.

Therefore, Dislcosure Risk measure is computed as

DR = (0.5DLD+PLD
2

+ 0.5ID)

Finally, we obtain a score, as

score = 0.5IL+ 0.5DR

33

4 Hungarian Method for Disclosure
Risk Assessment

As we introduced in Chapter 1, current record linkage methods underestimate the dis-
closure risk of released data; because of that, we have implemented Hungarian Method as
described in Section 2.3.1 and we have used as disclosure risk linkage measure.

4.1 Hungarian Method as a New Privacy Measure

The current privacy definition is based on the assumption that the intruder knows some
quasi-identifiers of some records extracted from and external dataset. Then, the goal of
such intruder is to relate any record x ∈ X with its corresponding record x′ ∈ X ′ in
such a way x and x′ belong to the same individual in order to infer from such link the
corresponding sensitive information of that individual.

In this particular setting an adversary can rule out many links, since he is able to compute
several distances among X and X ′ records. Specifically, since the attacker knows that
the true linkage between the records in X and X ′ is a bijection, he may rule out links
that are not part of any such bijection. However, this simple idea is not considered in
the DBRL measure.

Definition 7 Let 〈X ′〉 be a release of the dataset X. The corresponding full-connected
bipartite graph G = GX,〈X′〉 is a graph on the set of nodes V := X ∪X ′, where the set of
edges E consists of all pairs (B−V ,B−V ′) where B−V ∈ X, B−V ′ ∈ C ′.

A perfect matching in G is a set of N edges that cover all 2N nodes of G. Namely, it is
a set of edges of the form {(B−V n, B−V ′π(n)) : 1 ≤ n ≤ N}, where π is a permutation
on {1, . . . , N}. Clearly, G has at least one perfect matching, which is the one that
corresponds to the identity permutation and describes the true linkage of all records —
{(B−V n, B−V ′n) : 1 ≤ n ≤ N}. Indeed, since G is a full-connected bipartite graph, all
of those N pairs of nodes are edges in G (as implied by Definition 7), and that set of
edges is indeed a perfect matching in G.

35

Definition 8 An edge in G is called perfectly-matchable if there exists a perfect matching
in G that includes it. The subgraph of G that consists of all perfectly-matchable edges in
G is denoted Gpm.

All true links, (B−V n, B−V ′n), 1 ≤ n ≤ N , are clearly perfectly-matchable, since the
collection of all those N edges is a perfect matching. The edges in the subgraph Gpm

represent all possible links between records in X and X ′. We note that this set of edges
cannot be further reduced, since every edge in Gpm belongs to some perfect matching
in G, and each such perfect matching describes a “possible world”, namely, a possible
linkage between the records of X and those of X ′.

Given a bipartite graph G = (V,E) that has at least one perfect matching Ω, then with
the knowledge of Ω it is possible to find all perfectly-matchable edges in G in time that
is linear in |V |+ |E| (see [26]). If no such perfect matching is known upfront, it is needed
first to find one (a procedure that has runtime of O(|V |1/2|E|), see [13]) and then proceed
to find all perfectly-matchable edges in additional linear time.

There are several attack strategies that the strong adversary may attempt to launch,
given the reduced bipartite graphGpm. Two of them are the following:

1. Link any record B−V ∈ X with any of its neighboring records from X ′ in Gpm

with equal probabilities.

2. Find inGpm a minimal-cost perfect matching (where the weight of an edge (B−V ,B−V ′)
is d(B−V ,B−V ′)) and link any record B−V ∈ X with its neighboring record in
that perfect matching.

In the first strategy, the probability of correctly linking a recordB−V ∈ X is 1/ deg(B−V),
where deg(B−V) is the degree of the node B−V in Gpm. Indeed, each of the neigh-
boring nodes to B−V in Gpm represents a record B−V ′ ∈ X ′ that could be its true
image (and the true image is one of those nodes). Assuming that the adversary se-
lects one of them uniformly at random, the probability of correctly linking a record
B−V ∈ X is 1/ deg(B−V). Hence, the average probability of a successful linkage
is

PG(X, 〈X ′〉) =
1

N

N∑
n=1

1

deg(B−V n)
,

where deg(B−V n) is the degree ofB−V n in the bipartite graphGpm.

We would like to note that a more sophisticated adversary would select a neighbor B−V ′
of B−V in probability that is proportional to the number of perfect matchings in Gpm

that include the edge (B−V ,B−V ′). However, that attack is infeasible since counting
the number of perfect matchings in a bipartite graph is equivalent to computing the

36

permanent of a {0, 1}-matrix, a problem which is in #P-complete [28], and is hard not
only in the worst case, but also in the average case [20].

In the second strategy, the adversary finds a perfect matching in Gpm of a minimal
cost.

Definition 9 The cost of a perfect matching Ω = {(B−V n, B−V ′π(n)) : 1 ≤ n ≤ N} in

Gpm is C(Ω) :=
∑N

n=1 d(B−V n, B−V ′π(n)).

Let Ωo be a min-cost perfect matching in Gpm. Then if the adversary uses it to link
records from X and X ′, its average success probability is the percentage of true links in
Ωo:

P o
G(T, 〈T ′,∆〉) =

|Ωo ∩ {(B−V n, B−V ′n) : 1 ≤ n ≤ N}|
N

.

4.2 Implementation Details

In this section we describe the main implementation details of the hungarian algo-
rithm we have used to evaluate the two different attacks described in the previous
section.

The Hungarian hethod has been coded as a single class header, which implements the
algorithm, to make easy its use in other experiments. Hungarian Method class is con-
structed with the matrix distance as a parameter; then, it is executed with the execute()
call and the results are gathered with get results() function. However, because distance
is sent as a matrix, it requires O(n2) bytes to store it, depending on type used (char,
integer, float, etc.) to represent distances; given our experimental setting (see Section
4.3.3), we cannot afford an execution over 110,000 records if we use chars, or 55,000
records if we use integers, that typically use 4 bytes, if we want to use just RAM. This
issue will be deeply discussed in the following chapter.

Algorithm 1 Execution of Hungarian Method

M ← readMatrix()
H ← HungarianAlgorithm(M)
H.execute()
R← H.get results()
print results R

37

Algorithm 2 execution() method of HungarianAlgorithm

Require: HungarianAlgorithm initialized with M as squared data matrix
if M has to be minimized then

step0()
end if
step1()
while not perfect matching do

step2()
while not augmenting path do

if N == T then
step3()

end if
step4()

end while
end while

Ensure: R contains a perfect matching

4.3 Experiments

Now, we provide a complete description of the experimental environment and datasets
we have used, as well as the experimental results about both disclosure risk measures
described in Section 4.1.

4.3.1 Datasets

Used datasets were obtained from U.S. Census Bureau [25]; these datasets have 13 at-
tributes and 1,080, 13,500 and 149,642 records. A summary of the datasets is shown in
Table 4.1. Along this project, we will use the ID instead of the name of the dataset.

Name ID Attributes Records
Census C 13 1,080

Large Census LC 13 13,500
Very Large Census VLC 13 149,642

Table 4.1: Description of the datasets used.

38

4.3.2 Experimental Parameters

We have applied the Noise Addition protection method described in Section 3.1.1, with
different σ values, concretely σ = {5, 15, 25}.

All distances in the following experiments are computed using the Euclidean distance.
Attributes are normalized to N(µ, σ), with µ = 0 and σ equal to the the maximum of
both original and protected records for each attribute; this is, given ∀x ∈ X as an original
record and ∀x′ ∈ X ′ as protected one, every value v of each attribute i is normalized
as

N(vi) =
vi

maxi(xi, x′i)

4.3.3 Computation Environment

We were granted access to the Computer Architecture Computing Laboratory (LCAC)1

at the UPC, where we have executed all the experiments. LCAC Computers have a CPU
Intel Xeon 5148 at 2.33 GHz, with 12 GB of RAM. The operating system installed is
Ubuntu 11.10, with kernel Linux 3.0.0 x86 64. Finally, the Hadoop framework installed
is 0.20.203.0 version.

4.4 Results

In this section, we show the empirical disclosure risk values we have obtained, either
using DBRL and Hungarian Method for three datasets.

4.4.1 Distance Based Record Linkage

In order to compare the results obtained with Hungarian Method with DBRL, first we
have executed both on to the same datasets.

Despite explained at Section 4.3.2, in this case, and only in this case, distance is nor-
malized according to the maximum protected record (NPR).

We would like to highlight in Table 4.2 that, as it was expected, when σ increases the
number of correct link decreases. For instance, in the LC datasets with σ equal to 5

1http://www.ac.upc.edu/serveis-tic/altas-prestaciones

39

http://www.ac.upc.edu/serveis-tic/altas-prestaciones

Dataset Records σ NPR Time (s)

C 1,080
5 1,080 2.81
15 972 6.82
25 680 10.20

LC 13,500
5 11,789 122.21
15 4,455 124.97
25 1,896 120.20

VLC 149,642
5 51,773 15,278.48
15 18,305 15,593.45
25 8,096 15,428.30

Table 4.2: Results of applying DBRL to datasets

DBRL obtains almost 11,800 correct links, while it only obtains near 1,900 with σ equal
to 25.

4.4.2 Hungarian Method

Hungarian Method maximizes or minimizes a given score; in our case as we have intro-
duced it in Section 4.1, we minimize the distance between records of X and X ′ in order
to obtain a min-cost perfect matching in Gpm.

Dataset Records σ Correct links Time (s)

C 1,080
5 1,080 0.42
15 1,061 0.42
25 902 0.45

LC 13,500
5 12,435 73.70
15 5,492 279.73
25 2,667 241.43

Table 4.3: Results of applying Hungarian Method to datasets

As it is depicted in Table 4.3, we can observe an important execution time difference
within the same dataset protected with different σ parameters; this effect it is mainly
produced by the fact that it is more difficult to do a match when the noise added
increases. In the case of doing a very good initial greedy assignment, as in the case
of small σ cases, it avoids updating labels and constructing lots of alternating trees,
reducing, in this way, the number of operations the algorithm must perform when σ
increases.

We have not executed experiments with VLC because it has about 150,000 records,
significantly over the number of records we can allocate in RAM, as already explained

40

in this chapter; moreover, being the proportion between VLC and LC about 11, time
scales 113, hence if we take mean time of LC executions, execute VLC would take almost
3 days for each different σ.

4.4.3 Method Comparison

Dataset Records σ
HM-

DBRL
links

HM-
DBRL

links (%)

HM-
DBRL

time (s)

HM-
DBRL

time (%)

C 1,080
5 0 0.00 -2.39 -84.95
15 89 +9.19 -6.40 -93.82
25 222 +32.63 -9.74 -95.56

LC 13,500
5 647 +5.49 -48.51 -39.70
15 1,037 +23.27 154.76 +123.83
25 771 +40.66 119.23 +97.57

Table 4.4: Comparison between Hungarian Method (HM) and Distance Based Record
Linkage (DBRL)

Comparing tables 4.2 and 4.3, the first we perceive is the difference in the execution time.
In Census dataset, the difference is not very significant, taking account DBRL code is
written in Java and it requires allocate first JVM, while Hungarian Method is written
in C++. Nevertheless, in LC the difference becomes more significant, being clear that
Hungarian Method generally requires more time to be executed.

It is noticeable that all Hungarian Method executions have better results compared to
DBRL, using the same σ. A clear example is the case of LC with σ = 25, which increases
the number of links in 771, a 40.66% better than DBRL.

Table 4.4 summarizes these two observations. It depicts the differences in the execution
time and obtained links between DBRL and HM in an absolute and relative manner.
If we observe in detail those results, we can say that Hungarian Method outperforms
DBRL at the cost of having a larger execution time. For example, LC with σ = 15, which
has an improvement of 23.57% in the number of links, implies increasing the execution
time in a 123.83%. However, as the attacker can spent as much as time he has then, it
is not a real problem for him.

41

5 Hungarian Method for Large Data

As we have already seen, Hungarian algorithm is highly time consuming (O(n3)) com-
pared to DBRL (O(n2)). Therefore, a feasible strategy to face this problem and reduce
its execution time is to split the dataset into smaller parts, i.e. to split the bipartite graph
into sub-components not greater than an arbitrary size. As a result, splitting the data in
components of size t, we get n/t sub-components, which takes O(t3) each execution; fi-
nally, in order to solve the complete matching problem in all partitions takes O(nt2) time.
This approach will be deeper discussed in Sections 5.1 and 5.2.

Another way to address this problem is to parallelize the data access and processing,
which represents the n2 of O(n3). This is, indeed, a very similar approach to actually
splitting the data. This strategy is discussed in Section 5.3.

5.1 Clustering Method for Data Partitioning

Clustering, as explained in Section 2.1, is a method that groups records within simi-
lar characteristics; this permits us to split and distribute the data in several groups.
Our approach is to apply the Hungarian Method to all these groups which are similar
separately to link pair of records belonging to the same individual.

Roughly speaking, the algorithm proceeds as follows: first, we apply a top-down cluster-
ing algorithm by means of creating a kd-tree [2] data structure with the original records,
which produce partitions of close records not greater than a given size. This is possible
splitting the space at a midpoint of tree structure. We call T to this set of partitions.
After that, we fix the centroids of T as the initial clusters centroids for a k-means algo-
rithm, then, we create a new set of partitions T ′ with the protected records obtaining
the bipartite sub-components to apply the Hungarian algorithm. However, proportion
between t and t′ ∈ T ′ may not be 1, i.e. not all the partitions t′ will have the same
size that its corresponding partition t. For this reason, we balance them moving records
from l′ ∈ T ′ to s′ ∈ T ′, for l′ and s′ being the partitions of closer records to l, s ∈ T ,
|l′| > |l|, |s′| < |s| and being s the closer partition after l to the record which is moved.
Later, we apply Hungarian Method to balanced partitions t and t′ of original and pro-
tected records, respectively. Finally, we merge results, setting as link between t and t′

43

the most probable, according to those results.

We have used the ANN library [22] for the kd-tree clustering. However, this library is
designed to search nearest neighbours, not to provide partitions; because of that, we
modified it to get the partitions generated internally.

In order to distribute the execution, we got every partition and executed it in a single
node of the LCAC (see Section 4.3.3) at the same time.

Dataset Records
Block
Size

σ Links

LC 13,500 4,500
5 14
15 17
25 17

VLC 149,642 15,000
5 24
15 5
25 3

Table 5.1: Results of applying Hungarian Method to clustered data

Despite this clustering strategy, results obtained were discouraging, with negligible num-
ber of correct links, as we can see in Table 5.1 with LC and σ = 25. Because of these
poor results, we have been forced to change our approach, proposing a simpler but more
effective method described in Section 5.2.

One possible cause of these bad results is the curse of dimensionality [4]. This issue
arises in the presence of a metric space with a high dimensionality, which provokes that
elements in such space seem sparse and different, augmenting the variance and making
much more challenging the clustering task.

Another reason behind these results is that, in the first place, we compute a distance
between the partition centroid and the records in order to connect them, adding some
kind of extra noise; and second, extra records are moved to another partition which its
centroid is farther than the previous one, computing a new distance with a new centroid.
Because of this, we are distorting even more the possible correct links between records,
worsening the obtained results.

5.2 Blocking Method for Data Partitioning

Blocking [12] is another method which can help us to split the data into smaller parti-
tions. In blocking, data is sorted and then it is split in blocks. Our approach is to sort

44

the dataset by one of its attributes, minimizing the curse of dimensionality problem
presented on the clustering method.

Constructing blocks taking care of just one data attribute introduces a great bias; in
order to counteract this effect, we propose to construct different blocks for each of the
attributes in the data. Then, final matching is done aggregating the obtained linkage
results for each blocking configuration. However, to do that implies to multiply the exe-
cution time by the number of attributes; despite of this, as executions are independent,
it is very easy to parallelize.

Votes emitted by different blocking configurations may produce ties. To solve this draw-
back we have tested three different voting systems:

• Basic Vote (BV). Ties are broken giving the preference vote to the minor index

• Best Score (BSV). Ties are broken considering the best score, i.e the minimum
distance

• Weighted Vote (WV). Ties are broken as in Best Score, but vote is wheighted by
the score

However, observing the results depicted in Table 5.2, we cannot observe a great difference
among different voting criteria.

Dataset Records
Block
Size

σ
Basic
Vote

Best
Score
Vote

Weighted
Vote

LC 13,500 4,500
5 11,853 11,831 11,777
15 5,687 5,683 5,674
25 2,742 2,739 2,739

VLC 149,642 15,000
5 42,020 42,341 41,705
15 21,692 21,800 21,731
25 10,463 10,622 9,688

Table 5.2: Results of applying Hungarian Method to blocking data

We also observe that in case of σ = 5, results are close to those produced by the DBRL
approach; moreover, VLC are worse. Nevertheless, we get better results with greater σ,
as perceived in Table 5.3, getting about 18.50%−31.69% more correct links with σ ≥ 15
in VLC.

We should also note that, according to time spent as described in Table 5.4, this method
has a large time variance. Some configurations are executed very fast whilst some of
them need much more time to finish.

45

Dataset σ BV BV (%) BSV BSV (%) WV WV (%)

LC
5 64 +0.54 42 +0.36 -12 -0.10
15 1,232 +27.65 1,228 +27.56 1,219 +27.36
25 846 +44.62 843 +44.46 843 +44.46

VLC
5 -9,753 -18.84 -9,432 -18.22 -10,068 -19.45
15 3,387 +18.50 3,495 +19.09 3,426 +18.72
25 2,367 +29.24 2,566 +31.69 1,592 +19.66

Table 5.3: Comparison between Blocking Method and DBRL

Dataset Records
Block
Size

Blocks σ
Min.
time

Max.
time

Mean
time

LC 13,500 4,500 3
5 6.14 194.17 37.50
15 17.46 220.99 61.05
25 25.89 247.08 75.23

VLC 149,642 15,000 10
5 135.72 59,631.26 9,333.19
15 218.74 46,713.97 7,552.97
25 242.30 53,379.71 8,121.76

Table 5.4: Time, in seconds, spent applying Hungarian Method to one block of data.
Note that the number of blocks shown is the amount of blocks produced by
each attribute.

Hence, according to this results, it is possible to conclude that DBRL works pretty well
compared to this method with low σ, while blocking combined with Hungarian works
better when σ increases. Although the execution time penalty, the combination of the
Hungarian Method with blocking arises as a very interesting option for intruders with
access to any type of cloud computing environment. A possible option to reduce blocking
execution time is to select those attributes that provide more information using some
feature selection method, e.g. Principal Component Analysis.

5.3 Hadoop Hungarian Method

In previous sections, we discussed about possible methods to split data into smaller parts
in order to reduce the time and space complexity. Nonetheless, this approach has the
lack that data splitting sometimes introduce bias in the data, reducing in this way the
Hungarian Algorithm performace.

In this section we follow a different approach. Instead of splitting the data into smaller
partitions to process them in a moderated time inside a distributed environment, we split
data access and processing operations, executing them in a distributed computing envi-
ronment, and solving the global linkage problem on the entire data. To do that, we have

46

implemented the Hungarian Method as a Hadoop Java algorithm.

Hadoop works executing at least one map task and an optional reduce task each time;
this makes not possible to chain several map tasks, which would perfectly fit into the
Hungarian Method because each data matrix modification must consider all the data
to compute the new updated matrix cost value. Because of that, we have implemented
a map-reduce task for all operations related to data processing in the Hungarian algo-
rithm. The operations have been coded as mappers to access the matrix. They are the
following:

• getMax mapper: This mapper maps every value to the key max, which then is
reduced in order to get the max value of the whole matrix. Such maximum value
is passed to the mapMaxToMin.

• getSlack mapper: It maps nodes that have to be tracked in the slack vector
(see Section 2.3.1). It also maps, with a different key, the nodes which are in the
equality graph to keep track of potential neighbours in order to avoid to launch a
job each time it is required to generate the new neighbours.

• initializeLabeling mapper: This function maps every value of the matrix to a
key based on its row and column position; then, these keys are reduced by the
maximum, obtaining the initial labeling.

• mapCandidates: Maps every value (node) of the matrix belonging to the equality
graph, i.e. all candidates to be a record assignment. This mapper is used by the
initial matching operation.

• mapMaxToMin: This is a chain mapper which is used to transform the maxi-
mizing task of HM into a minimizing one.

Therefore, the actual Hadoop Hungarian algorithm is executed on a node, which sends
every operation as a different job that is enqueued in Hadoop; meanwhile the main node
waits for the Hadoop results and continues the algorithm.

Dataset Records σ Links Time (s)

C 1,080
5 1,079 41,100.84
15 1,045 52,155.69
25 820 380,915.49

Table 5.5: Results of applying the Hadoop algorithm to datasets

Unfortunately, the Hadoop approach is slower than the blocking distributed version
of the Hungarian Method as it is illustrated in Table 5.5. Hadoop implementation,
executed in the C dataset, has a time cost comparable to processing the most time

47

costly blocks of 15,000 records of VLC using the blocking technique in the case of σ =
{5, 15}; and it is even worse with σ = 25. Due to this, we decided do not execute more
experiments.

If we pay attention to Hadoop executions, the main reason behind those bad results is
the following one: if we observe every executed job, i.e. every data access operation,
it has an execution overhead around 30 seconds queueing the job, allocating a JVM
inside the node, transferring the job and data to it and starting the job. All this process
is detailed in Section 2.2.1. Arguably, those 30 seconds are worthy if the number of
operations performed in the node is larger enough, but this is not our case, because each
operation must be executed isolated from the other having access to the complete cost
matrix, therefore, we can conclude that Hadoop is not the most suitable framework for
this kind of algorithms.

48

6 Project Analysis

In this chapter we detail the planning and cost analysis of the project. Section 6.1 is
dedicated to the planning while Section 6.2 analyzes the cost of the project and how
much it would cost if it were done in a private company.

6.1 Planning

As any engineering project, it is required to have a planning. However, our initial
planning it has not been fulfilled; because of that, we provide both the initial (IP)
and the mended planning (MP) in Table 6.1, expressed in days. The obtaining of the
experimental results is not considered because it is distributed along all the project, but
mainly in the report elaboration phase.

Task IP MP
Documentation and implementation of
Hungarian Method

30 39

Documentation and implementation of
Hungarian Method in Hadoop

30 16

Clustering implementation 14 9
Report elaboration 14 29

Total 88 93

Table 6.1: Planning of the project

As observed, we have underestimated the documentation and implementation of the
Hungarian Method in C++ and the report elaboration, while Hadoop and clustering
implementation were overestimated. The reasons because we have needed more time in
the tasks that were underestimated are the following:

In the case of the Hungarian Method, we found several versions of the algorithm; this
brought us to try to implement a version that seemed complete and time efficient, but
it was not. After we realized that it was a dead end, we opted for the version which we
have finally used.

49

On the other hand, report elaboration has required more time due to the unknowing
of LATEX, the waiting for some experimental results and the continued improvement of
such report.

6.2 Cost Analysis

In order to analyze the cost, first, we should get the time spent on it, which is shown
in Table 6.1; we should note that we have dedicated about 6 hours per day. How-
ever, we must add the hours spent by our director as project manager, too. Then,
according to FIB recommendations1, our cost is 7.5 €/h, while cost of our director is
30 €/h. Analysing all these costs, Table 6.2 shows the cost of this project, which signifies
4,935 €.

Worker Cost/h Hours Cost
Student 7.5 558 4,185
Director 30 25 750
Total 8.46 583 4,935

Table 6.2: Cost of the project

If the project was done in a company, we would required an analyst, a programmer and a
project manager, whose cost would be 35, 20 and 45 €/h, respectively. Hence, according
to our estimation, as shown in Table 6.3, project would cost 16,095 €.

Worker Cost/h Hours Cost
Programmer 20 354 7,080

Analyst 35 129 4,515
Project Manager 45 100 4,500

Total 27.61 583 16,095

Table 6.3: Cost of the project in a company

In any case, we have not considered the cost of the software, basically because we have
used open source software, without cost. However, we are neither considering the cost
of the hardware used, which includes the workstation used by the student and the data
center provided by LCAC.

1http://www.fib.upc.edu/en/empresa/practiques/empresa.html

50

http://www.fib.upc.edu/en/empresa/practiques/empresa.html

7 Conclusions and Future Work

Along this final degree project, we have presented our work applying Hungarian Method
to the Record Linkage scenario. This includes the implementation of such method in
C++ and the development of different types of data splitting and distribution; in particu-
lar, we have implemented a clustering and a blocking method and a Hadoop version of the
Hungarian Method. We have also showed our experimental results applying them. Now,
we expose our conclusions and we point out some future work.

7.1 Conclusions

The main conclusion we extracted from this project is that Hungarian Method is a
potential improvement for the disclosure risk assessment. Table 4.4 and 5.3 show that
Hungarian Method is always better than Distance Based Record Linkage with σ ≥ 15,
with an improvement in number of correct links up to 44%, and so is it with σ = 5, with
the only exception of VLC.

Despite the cubic complexity of Hungarian algorithm, we saw that it is possible to
process large quantities of data applying some clustering methods, as exposed on Sec-
tion 5.2. However, although we already know that splitting data introduces a bias,
we saw that if we do not take account the high dimensionality of the records and
we introduce more noise, this has a crucial impact on the results, as seen in Sec-
tion 5.1.

On the other hand, still it is a largely used and promisingly technology, parallelizing
the Hungarian Method with Hadoop was proved as unsatisfactory, being a model that
does not fit in this kind of algorithms. This is mainly caused by the restriction which
only allows one reduction on the job process and the overhead that signifies to send
a job to Hadoop, which needs to set up a JVM on nodes involved on the task execu-
tion.

51

7.2 Personal Conclusions

Making this project I have learned many new technologies and algorithms, and I prac-
ticed in real scenarios many techniques and methods learned in this degree.

The skills I have learned include:

• How the Hungarian Algorithm works, as well as Statistical Disclosure Control does
and the protection methods it proposes.

• How it works and how to use the Hadoop framework, which, nowadays, is having
increasingly focus because of the distributed computing and the big data model.

• How to start from zero implementing an algorithm with several specifications,
many of them different and sometimes contradictories, and how to deal with them.

• How to work within a data center.

• How to write this report with LATEX.

I have put in practice some knowledge received from subjects coursed in the Informatics
Engineering degree:

• Programming in C++ and Java, learnt at subjects like P1, PRAP, PRED, PROP,
etc.

• Working only with a command line and using queues, at LCAC, like I have learnt
at SO and ASO.

• Taking into account complexity, as I learned at ADA, and realize how important
it is.

• Applying clustering methods, as learned at MD and A.

• Use a distributed system, like Hadoop, and take advantage from it, as I learned at
SODX.

I also proved myself that I can do something like this project.

52

7.3 Future Work

Despite the results presented on this project, we still have some open problems to look
into them in order to advance in this research.

We have seen that on equal conditions, Hungarian Method is generally better than
Distance Based Record Linkage on linkage results. However, we focused on a dataset,
protected with just one method and counting on with all attributes in the protected
data. This suggests these experiments need to be repeated with other datasets and
intruder knowledge.

At the clustering scope, other methods can be tried, reducing the noise and the bias
introduced by the process of splitting and grouping records, avoiding compute distance
based on centroids. We can also avoid the curse of dimensionality and the waste of time
with techniques like Blocking if we reduce the number of attributes used to compute
such distance using feature selection methods.

Finally, parallelization process can be reformulated, applying some tricks to Hadoop in
order to able us to execute all data process in a single job or programming an ad-hoc
parallelization scheme, eluding as much as possible the overhead time for every data
processed.

53

Bibliography

[1] Agrawal, Rakesh; Srikant, Ramakrishnan. Privacy-preserving data mining. ACM
SIGMOD Record, 2000, Vol. 29, No. 2, p. 439-450.

[2] Bentley, J. L. Multidimensional binary search trees used for associative search-
ing. Communications of The ACM, 1975 Vol. 18, No. 9, p. 509-517. DOI
10.1145/361002.361007.

[3] Blakely, Tony; Salmond, Clare. Probabilistic record linkage and a method to calculate
the positive predictive value. International Journal of Epidemiology [online], 2002, Vol.
31, No. 6, p. 1246-1252. [Consulted: April 19th 2013] Available at: <http://ije.
oxfordjournals.org/content/31/6/1246.full>. DOI 10.1093/ije/31.6.1246.

[4] Chávez, Edgar; Navarro, Gonzalo; Baeza-Yates, Ricardo; Marroqúın, José Luis.
Searching in metric spaces. ACM Computing Surveys, 2001, Vol. 33, No. 3, p. 273-321.

[5] Dawes, Mike. The Optimal Assignment Problem [online PDF]. Ontario, Canada:
University of Western Ontario, Department of Mathemathics, Discrete Optimization
Course, January 2005. [Consulted: June 6th 2012]. Available at: <http://www.math.
uwo.ca/~mdawes/courses/344/kuhn-munkres.pdf>.

[6] Defays, D.; Nanopoulos, P. Panels of enterprises and confidentiality: The small aggre-
gates method. Proceedings of 92th Symposium on Design and Analysis of Longitudinal
Surveys. Ottawa, CA: Statistics Canada, 1993, p. 195-204.

[7] Domingo-Ferrer, Josep; Torra, Vicenç. Disclosure control methods and information
loss for microdata Confidentiality, Disclosure, and Data Access: Theory and Practical
Applications for Statistical Agencies, 2001, p. 91-110.

[8] Domingo-Ferrer, Josep; Torra, Vicenç. Validating Distance-Based Record Linkage
with Probabilistic Record Linkage. At: Catalonian Conference on AI. Proceedings
of the 5th Catalonian Conference on AI: Topics in Artificial Intelligence, Castellón,
Spain, October 24-25, 2002. London, UK: Springer-Verlag, 2002. p. 207-215.

[9] Edmonds, Jack; Karp, Richard M. Theoretical improvements in algorithmic efficiency

55

http://ije.oxfordjournals.org/content/31/6/1246.full
http://ije.oxfordjournals.org/content/31/6/1246.full
http://www.math.uwo.ca/~mdawes/courses/344/kuhn-munkres.pdf
http://www.math.uwo.ca/~mdawes/courses/344/kuhn-munkres.pdf

for network flow problems. Journal of the Association Computer Machinery, 1972, Vol.
19, No. 2, p. 248-264.

[10] Ghemawat, Sanjay; Gobioff, Howard; Leung, Shun-Tak. The Google file system.
At: ACM Symposium on Operating Systems Principles. Proceedings of the nineteenth
ACM symposium on Operating systems principles, Bolton Landing, NY, USA, October
19-22, 2003. New York, NY, USA: ACM, 2003. p. 29-43.

[11] Golin, Mordecaj J. Bipartite Matching and the Hungarian Method [online PDF].
Hong Kong, China: University of Science & Technology, Department of Computer Sci-
ence & Engineering, Introduction to Combinatorial Optimization Course, December
2004. [Consulted: June 5th 2012]. Available at: <http://www.cse.ust.hk/~golin/
COMP572/Notes/Matching.pdf>.

[12] Hernández, Mauricio A.; Stolfo, Salvatore J. Real-world data is dirty: Data cleans-
ing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998, Vol.
2, No. 1, p. 9-37.

[13] Hopcroft, J.E.; Karp, R.M. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 1973, Vol. 2, p. 225-231.

[14] Hundepool, Anco; Domingo-Ferrer, Josep; Franconi, Luisa; Giessing, Sarah; Schulte
Nordholt, Eric; Spicer, Keith; De Wolf, Peter-Paul. Statistical Disclosure Control. 1st
Ed. Wiley, 2012. ISBN: 978-1-1183-4821-5.

[15] Jardine, N.; Sibson, R. The Construction of Hierarchic and Non-Hierarchic Classi-
fications. The Computer Journal, 1968, Vol. 11, No. 2, p. 177-184.

[16] Kim, J.J. A method for limiting disclosure in microdata based on random noise
and transformation. Proceedings of the ASA Section on Survey Research Methodology,
1986. Alexandria, VA, USA: American Statistical Association, 1986, p. 303-308.

[17] Kuhn, Harold W. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly, 1955, Vol. 2, No. 1-2, p. 83-97.

[18] Lane, Julia; Heus, Pascal; Mulcahy, Tim. Data Access in a Cyber World: Making
Use of Cyberinfrastructure. Transactions on Data Privacy, 2008, Vol. 1, No. 1, p.
2-16.

[19] Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, Vol. 10, p. 707-710.

[20] Lipton, R. New directions in testing. Distributed Computing and Cryptography, Vol.

56

http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf
http://www.cse.ust.hk/~golin/COMP572/Notes/Matching.pdf

2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
1991, p. 191-202.

[21] Lloyd, S. Least squares quantization in PCM. IEEE Trans. on Information Theory,
1982, Vol. 28, p. 129-137.

[22] Mount, David M.; Arya, Sunil. ann 1.1.2.tar.gz. At: ANN - Approximate Near-
est Neighbor Library [online compressed file]. College Park, MD, USA: University
of Maryland, January 27th 2010. [Consulted: February 25th 2013]. Available at:
<http://www.cs.umd.edu/~mount/ANN/>.

[23] Moore, Richard A. Controlled Data Swapping Techniques for Masking Public Use
Microdata Sets. U. S. Bureau of the Census, 1996.

[24] Munkres, James. Algorithms for the Assignment and Transportation Problems.
Journal of the Society for Industrial and Applied Mathematics, 1957, Vol. 5, No. 1, p.
32-38.

[25] Nin Guerrero, Jordi. Contributions to Record Linkage for Disclosure Risk Assess-
ment. Ph.D. thesis, UAB, Departament de Ciències de la Computació. 2008. [Bib-
lioteca de Comunicació i Hemeroteca General, UAB, Bellaterra].

[26] Tassa, Tamir. Finding all maximally-matchable edges in a bipartite graph. Theo-
retical Computer Science, 2012, Vol. 423, p. 50-58.

[27] U.S. Census Bureau. FAQ. At: Statistical Disclosure Control [online PDF] Suit-
land, MD, USA: U.S. Census Bureau, June 21th 2001. [Consulted: April 16th 2013]
Available at: <http://www.census.gov/srd/sdc/>

[28] Valiant, L.G.. The complexity of computing the permanent. Theoretical Computer
Science, 1979, Vol. 8, p. 189-201.

[29] White, Tom. Hadoop: The Definitive Guide. 2nd Ed. Sebastopol, CA, USA:
O’Reilly, 2011. ISBN: 978-1-449-38973-4.

57

http://www.cs.umd.edu/~mount/ANN/
http://www.census.gov/srd/sdc/

	Introduction
	Motivations and objectives
	Structure of the Document

	Preliminaries
	Clustering
	Hadoop
	How Hadoop Works

	Optimal Assignment Problem
	Hungarian Method
	Example

	State of the art of Statistical Disclosure Control
	Protection Methods
	Noise Addition
	Rank Swapping
	Microaggregation

	Record Linkage
	Distance Based Record Linkage
	Probabilistic Record Linkage

	Information Loss and Disclosure Risk

	Hungarian Method for Disclosure Risk Assessment
	Hungarian Method as a New Privacy Measure
	Implementation Details
	Experiments
	Datasets
	Experimental Parameters
	Computation Environment

	Results
	Distance Based Record Linkage
	Hungarian Method
	Method Comparison

	Hungarian Method for Large Data
	Clustering Method for Data Partitioning
	Blocking Method for Data Partitioning
	Hadoop Hungarian Method

	Project Analysis
	Planning
	Cost Analysis

	Conclusions and Future Work
	Conclusions
	Personal Conclusions
	Future Work

	Bibliography

