1,758 research outputs found

    Equidistant Codes in the Grassmannian

    Full text link
    Equidistant codes over vector spaces are considered. For kk-dimensional subspaces over a large vector space the largest code is always a sunflower. We present several simple constructions for such codes which might produce the largest non-sunflower codes. A novel construction, based on the Pl\"{u}cker embedding, for 1-intersecting codes of kk-dimensional subspaces over \F_q^n, n(k+12)n \geq \binom{k+1}{2}, where the code size is qk+11q1\frac{q^{k+1}-1}{q-1} is presented. Finally, we present a related construction which generates equidistant constant rank codes with matrices of size n×(n2)n \times \binom{n}{2} over \F_q, rank n1n-1, and rank distance n1n-1.Comment: 16 page

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Three-point bounds for energy minimization

    Full text link
    Three-point semidefinite programming bounds are one of the most powerful known tools for bounding the size of spherical codes. In this paper, we use them to prove lower bounds for the potential energy of particles interacting via a pair potential function. We show that our bounds are sharp for seven points in RP^2. Specifically, we prove that the seven lines connecting opposite vertices of a cube and of its dual octahedron are universally optimal. (In other words, among all configurations of seven lines through the origin, this one minimizes energy for all potential functions that are completely monotonic functions of squared chordal distance.) This configuration is the only known universal optimum that is not distance regular, and the last remaining universal optimum in RP^2. We also give a new derivation of semidefinite programming bounds and present several surprising conjectures about them.Comment: 30 page

    Matrix representations for toric parametrizations

    Get PDF
    In this paper we show that a surface in P^3 parametrized over a 2-dimensional toric variety T can be represented by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This constitutes a direct generalization of the corresponding result over P^2 established in [BJ03] and [BC05]. Exploiting the sparse structure of the parametrization, we obtain significantly smaller matrices than in the homogeneous case and the method becomes applicable to parametrizations for which it previously failed. We also treat the important case T = P^1 x P^1 in detail and give numerous examples.Comment: 20 page
    corecore