24,694 research outputs found

    Dynamics with Infinitely Many Derivatives: The Initial Value Problem

    Full text link
    Differential equations of infinite order are an increasingly important class of equations in theoretical physics. Such equations are ubiquitous in string field theory and have recently attracted considerable interest also from cosmologists. Though these equations have been studied in the classical mathematical literature, it appears that the physics community is largely unaware of the relevant formalism. Of particular importance is the fate of the initial value problem. Under what circumstances do infinite order differential equations possess a well-defined initial value problem and how many initial data are required? In this paper we study the initial value problem for infinite order differential equations in the mathematical framework of the formal operator calculus, with analytic initial data. This formalism allows us to handle simultaneously a wide array of different nonlocal equations within a single framework and also admits a transparent physical interpretation. We show that differential equations of infinite order do not generically admit infinitely many initial data. Rather, each pole of the propagator contributes two initial data to the final solution. Though it is possible to find differential equations of infinite order which admit well-defined initial value problem with only two initial data, neither the dynamical equations of p-adic string theory nor string field theory seem to belong to this class. However, both theories can be rendered ghost-free by suitable definition of the action of the formal pseudo-differential operator. This prescription restricts the theory to frequencies within some contour in the complex plane and hence may be thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators and the implications of restricting the contour of integration. Typos correcte

    Enlarged Controllability of Riemann-Liouville Fractional Differential Equations

    Full text link
    We investigate exact enlarged controllability for time fractional diffusion systems of Riemann-Liouville type. The Hilbert uniqueness method is used to prove exact enlarged controllability for both cases of zone and pointwise actuators. A penalization method is given and the minimum energy control is characterized.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Nonlinear Dynamics', ISSN 1555-1415, eISSN 1555-1423, CODEN JCNDDM, available at [http://computationalnonlinear.asmedigitalcollection.asme.org]. Submitted 10-Aug-2017; Revised 28-Sept-2017 and 24-Oct-2017; Accepted 05-Nov-201

    Joint Probability Distributions for a Class of Non-Markovian Processes

    Full text link
    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.Comment: 13 pages, 1 figur
    corecore