111,027 research outputs found

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Pseudospectra in non-Hermitian quantum mechanics

    Get PDF
    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT-symmetric quantum mechanics.Comment: version accepted for publication in J. Math. Phys.: criterion excluding basis property (Proposition 6) added, unbounded time-evolution discussed, new reference

    The effect of job similarity on forgetting in multi-task production

    Get PDF
    For many decades, research has been done on the effect of learning and forgetting for manual assembly operations. Due to the evolution towards mass customization, cycle time prediction becomes more and more complex. The frequent change of tasks for an operator results in a rapid alternation between learning and forgetting periods, since the production of one model is causing a forgetting phase for another model. a new mathematical model for learning and forgetting is proposed to predict the future cycle time of an operator depending on the product mix of his actual assembly schedule. A main factor for this model is the job similarity between the task that is being learned and is being forgotten. In our experimental study the impact of job similarity onto the forgetting effect is measured. Two groups of operators were submitted to an equal time schedule, with other tasks to perform. At first, both groups were asked to perform the same main task. In the subsequent phase, they were submitted to different assembly tasks, each with another job similarity towards the main task, before again executing that main task. After a period of inactivity, the main task was assembled again by every subject. Results confirm that a higher job similarity results in a lower forgetting effect for the main task

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u

    VMEXT: A Visualization Tool for Mathematical Expression Trees

    Full text link
    Mathematical expressions can be represented as a tree consisting of terminal symbols, such as identifiers or numbers (leaf nodes), and functions or operators (non-leaf nodes). Expression trees are an important mechanism for storing and processing mathematical expressions as well as the most frequently used visualization of the structure of mathematical expressions. Typically, researchers and practitioners manually visualize expression trees using general-purpose tools. This approach is laborious, redundant, and error-prone. Manual visualizations represent a user's notion of what the markup of an expression should be, but not necessarily what the actual markup is. This paper presents VMEXT - a free and open source tool to directly visualize expression trees from parallel MathML. VMEXT simultaneously visualizes the presentation elements and the semantic structure of mathematical expressions to enable users to quickly spot deficiencies in the Content MathML markup that does not affect the presentation of the expression. Identifying such discrepancies previously required reading the verbose and complex MathML markup. VMEXT also allows one to visualize similar and identical elements of two expressions. Visualizing expression similarity can support support developers in designing retrieval approaches and enable improved interaction concepts for users of mathematical information retrieval systems. We demonstrate VMEXT's visualizations in two web-based applications. The first application presents the visualizations alone. The second application shows a possible integration of the visualizations in systems for mathematical knowledge management and mathematical information retrieval. The application converts LaTeX input to parallel MathML, computes basic similarity measures for mathematical expressions, and visualizes the results using VMEXT.Comment: 15 pages, 4 figures, Intelligent Computer Mathematics - 10th International Conference CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceeding

    Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology

    Get PDF
    The incidence of thyroid nodule is very high and generally increases with the age. Thyroid nodule may presage the emergence of thyroid cancer. The thyroid nodule can be completely cured if detected early. Fine needle aspiration cytology is a recognized early diagnosis method of thyroid nodule. There are still some limitations in the fine needle aspiration cytology, and the ultrasound diagnosis of thyroid nodule has become the first choice for auxiliary examination of thyroid nodular disease. If we could combine medical imaging technology and fine needle aspiration cytology, the diagnostic rate of thyroid nodule would be improved significantly. The properties of ultrasound will degrade the image quality, which makes it difficult to recognize the edges for physicians. Image segmentation technique based on graph theory has become a research hotspot at present. Normalized cut (Ncut) is a representative one, which is suitable for segmentation of feature parts of medical image. However, how to solve the normalized cut has become a problem, which needs large memory capacity and heavy calculation of weight matrix. It always generates over segmentation or less segmentation which leads to inaccurate in the segmentation. The speckle noise in B ultrasound image of thyroid tumor makes the quality of the image deteriorate. In the light of this characteristic, we combine the anisotropic diffusion model with the normalized cut in this paper. After the enhancement of anisotropic diffusion model, it removes the noise in the B ultrasound image while preserves the important edges and local details. This reduces the amount of computation in constructing the weight matrix of the improved normalized cut and improves the accuracy of the final segmentation results. The feasibility of the method is proved by the experimental results.Comment: 15pages,13figure

    Criteria for Continuous-Variable Quantum Teleportation

    Get PDF
    We derive an experimentally testable criterion for the teleportation of quantum states of continuous variables. This criterion is especially relevant to the recent experiment of Furusawa et al. [Science 282, 706-709 (1998)] where an input-output fidelity of 0.58±0.020.58 \pm 0.02 was achieved for optical coherent states. Our derivation demonstrates that fidelities greater than 1/2 could not have been achieved through the use of a classical channel alone; quantum entanglement was a crucial ingredient in the experiment.Comment: 12 pages, to appear in Journal of Modern Optic
    corecore