4 research outputs found

    Increasing Information Security with Mandatory Access Controls in the Operating System

    Get PDF
    Access control is a fundamental problem in all businesses and controlling access to computer and network resources is fundamental to information security. The distributed nature of the Internet makes complete and centralized control impossible, especially if there is a desire to have the security measures appear as seamless to the user as possible. Many layers of protection exist and each layer protects against different threats but with multiple vulnerabilities reported each day it is impossible to protect against all threats. The next best thing is to contain the attacks. One method of containing attacks is the use of mandatory access controls, not only in applications, but also in the operating system. The information provided in this paper should cut through the confusion associated with the many security solutions and assist in the development of an access control policy

    Performance study of a COTS Distributed DBMS adapted for multilevel security

    Get PDF
    Multilevel secure database management system (MLS/DBMS) products no longer enjoy direct commercial-off-the-shelf (COTS) support. Meanwhile, existing users of these MLS/DBMS products continue to rely on them to satisfy their multilevel security requirements. This calls for a new approach to developing MLS/DBMS systems, one that relies on adapting the features of existing COTS database products rather than depending on the traditional custom design products to provide continuing MLS support. We advocate fragmentation as a good basis for implementing multilevel security in the new approach because it is well supported in some current COTS database management systems. We implemented a prototype that utilises the inherent advantages of the distribution scheme in distributed databases for controlling access to single-level fragments; this is achieved by augmenting the distribution module of the host distributed DBMS with MLS code such that the clearance of the user making a request is always compared to the classification of the node containing the fragments referenced; requests to unauthorised nodes are simply dropped. The prototype we implemented was used to instrument a series of experiments to determine the relative performance of the tuple, attribute, and element level fragmentation schemes. Our experiments measured the impact on the front-end and the network when various properties of each scheme, such as the number of tuples, attributes, security levels, and the page size, were varied for a Selection and Join query. We were particularly interested in the relationship between performance degradation and changes in the quantity of these properties. The performance of each scheme was measured in terms of its response time. The response times for the element level fragmentation scheme increased as the numbers of tuples, attributes, security levels, and the page size were increased, more significantly so than when the number of tuples and attributes were increased. The response times for the attribute level fragmentation scheme was the fastest, suggesting that the performance of the attribute level scheme is superior to the tuple and element level fragmentation schemes. In the context of assurance, this research has also shown that the distribution of fragments based on security level is a more natural approach to implementing security in MLS/DBMS systems, because a multilevel database is analogous to a distributed database based on security level. Overall, our study finds that the attribute level fragmentation scheme demonstrates better performance than the tuple and element level schemes. The response times (and hence the performance) of the element level fragmentation scheme exhibited the worst performance degradation compared to the tuple and attribute level schemes

    An operating system approach to securing e-services

    No full text
    make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fa

    An operating system approach to securing e-services

    No full text
    corecore