11,566 research outputs found

    Reflection positivity and invertible topological phases

    Full text link
    We implement an extended version of reflection positivity (Wick-rotated unitarity) for invertible topological quantum field theories and compute the abelian group of deformation classes using stable homotopy theory. We apply these field theory considerations to lattice systems, assuming the existence and validity of low energy effective field theory approximations, and thereby produce a general formula for the group of Symmetry Protected Topological (SPT) phases in terms of Thom's bordism spectra; the only input is the dimension and symmetry group. We provide computations for fermionic systems in physically relevant dimensions. Other topics include symmetry in quantum field theories, a relativistic 10-fold way, the homotopy theory of relativistic free fermions, and a topological spin-statistics theorem.Comment: 136 pages, 16 figures; minor changes/corrections in version 2; v3 major revision; v4 minor revision: corrected proof of Lemma 9.55, many small changes throughout; v5 version for publication in Geometry & Topolog

    An invitation to 2D TQFT and quantization of Hitchin spectral curves

    Full text link
    This article consists of two parts. In Part 1, we present a formulation of two-dimensional topological quantum field theories in terms of a functor from a category of Ribbon graphs to the endofuntor category of a monoidal category. The key point is that the category of ribbon graphs produces all Frobenius objects. Necessary backgrounds from Frobenius algebras, topological quantum field theories, and cohomological field theories are reviewed. A result on Frobenius algebra twisted topological recursion is included at the end of Part 1. In Part 2, we explain a geometric theory of quantum curves. The focus is placed on the process of quantization as a passage from families of Hitchin spectral curves to families of opers. To make the presentation simpler, we unfold the story using SL_2(\mathbb{C})-opers and rank 2 Higgs bundles defined on a compact Riemann surface CC of genus greater than 11. In this case, quantum curves, opers, and projective structures in CC all become the same notion. Background materials on projective coordinate systems, Higgs bundles, opers, and non-Abelian Hodge correspondence are explained.Comment: 53 pages, 6 figure

    A Prehistory of n-Categorical Physics

    Full text link
    This paper traces the growing role of categories and n-categories in physics, starting with groups and their role in relativity, and leading up to more sophisticated concepts which manifest themselves in Feynman diagrams, spin networks, string theory, loop quantum gravity, and topological quantum field theory. Our chronology ends around 2000, with just a taste of later developments such as open-closed topological string theory, the categorification of quantum groups, Khovanov homology, and Lurie's work on the classification of topological quantum field theories.Comment: 129 pages, 8 eps figure

    Two-dimensional quantum Yang-Mills theory with corners

    Get PDF
    The solution of quantum Yang-Mills theory on arbitrary compact two-manifolds is well known. We bring this solution into a TQFT-like form and extend it to include corners. Our formulation is based on an axiomatic system that we hope is flexible enough to capture actual quantum field theories also in higher dimensions. We motivate this axiomatic system from a formal Schroedinger-Feynman quantization procedure. We also discuss the physical meaning of unitarity, the concept of vacuum, (partial) Wilson loops and non-orientable surfaces.Comment: 31 pages, 6 figures, LaTeX + AMS; minor corrections, reference update
    corecore